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Abstract
An often addressed challenge in neuroscience research is the assignment of
different tasks to specific brain regions. In many cases several brain regions
are activated during a single task. Therefore, one is also interested in the
temporal evolution of brain activity to infer causal relations between activated
brain regions. These causal relations may be described by a directed, task
specific network which consists of activated brain regions as vertices and
directed edges. The edges describe the causal relations. Inference of the task
specific brain network from measurements like electroencephalography (EEG)
or functional magnetic resonance imaging (fMRI) is challenging, due to the low
spatial resolution of the former and the low temporal resolution of the latter.
Here, we present a simulation study investigating a possible combined analysis
of simultaneously measured EEG and fMRI data to address the challenge
specified above. A nonlinear state space model is used to distinguish between
the underlying brain states and the (simulated) EEG/fMRI measurements. We
make use of a modified unscented Kalman filter and a corresponding unscented
smoother for the estimation of the underlying neural activity. Model parameters
are estimated using an expectation-maximization algorithm, which exploits the
partial linearity of our model. Inference of the brain network structure is then
achieved using directed partial correlation, a measure for Granger causality.
The results indicate that the convolution effect of the fMRI forward model
imposes a big challenge for the parameter estimation and reduces the influence
of the fMRI in combined EEG–fMRI models. It remains to be investigated
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whether other models or similar combinations of other modalities such as, e.g.,
EEG and magnetoencephalography can increase the profit of the promising
idea of combining various modalities.

Keywords: EEG–fMRI fusion, effective connectivity, Kalman filter

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Estimation of effective connectivity between different brain regions from measured signals is
a demanding task, which has been addressed by several researchers. In applications, dynamic
causal modeling (DCM) (Friston et al 2003) is often used for functional magnetic resonance
imaging (fMRI) data. Another method, which was introduced for the analysis of fMRI data
more recently, is directed partial correlation (dPC) (Eichler 2005, Mader et al 2008). The
analog to the dPC in the frequency domain is partial directed coherence (Baccala et al 2006),
which was used for inference on cortical connections using electroencephalographic (EEG)
data (Supp et al 2007).

In fMRI data, the spatial resolution is extremely high, while the temporal resolution often
does not suffice to identify causal relations between the connected brain regions. Usually it
is not possible to distinguish between cause and effect. A further challenge for the analysis
of fMRI data is the fact that neural activity is observed indirectly through the blood oxygen
level dependence (BOLD) effect. The linkage of neural activity to the BOLD signal is
nonlinear.

EEG measurements in contrast measure the neural activity more directly with a very high
temporal resolution, while suffering from the ill-posed inverse problem, which is explained in
the following. The measured EEG data have to be interpreted as a weighted sum of different
cortical sources. The problem of deconvolving these sums, to extract the signals of single
sources themselves, is called the inverse problem. The ill-posedness of the inverse problem
describes the fact that there is no unique solution to it (Nunez and Srinivasan 2006). One has
to deal with this problem when trying to infer causal connections between brain regions from
EEG data. A further challenge in the analysis of EEG data is the presence of deep sources,
resulting in a reduced EEG signal.

In order to overcome the disadvantages of the single modalities, a multimodal method
to infer directed interactions is proposed here. This multimodal approach can be in general
applied to many different measurements, such as EEG, magnetoencephalography (MEG),
fMRI or near-infrared spectroscopy (NIRS).

This paper investigates the applicability to simulated EEG and fMRI data. A key focus
is on the combination of EEG and fMRI data. In Deneux and Faugeras (2010), a similar
combination of EEG and fMRI data is used to estimate source signals at a dense voxel grid
over the whole brain. In contrast to this, we restrict ourselves to a few regions of interest
(ROIs), but aim to also estimate effective connectivity between these brain regions.

The paper is structured as follows. Section 2 introduces a class of state space models,
which we propose for the estimation of effective connectivity and gives some examples of
concrete models. Section 3 details the estimation procedure. Some results on simulated data
are discussed in section 4.
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2. State space models for the estimation of effective connectivity

In this section, we briefly describe discrete state space models in general and propose a special
class of state space models devoted to the estimation of effective connectivity. State space
models are very general and can be used for many different tasks, e.g. for the decomposition
of EEG signals for artifact removal (Galka et al 2010), where they show benefits compared to
independent component analysis or factor analysis.

A discrete state space model is characterized by a Markov process X defining a hidden
state and observations Y(t), t = 1, . . . , N , which are conditionally independent given the state
(van der Merwe and Wan 2003). It may be described by a state and an observation equation
in the following way:

X(t) = F(X(t − 1), U(t), ε(t),Θ)

Y(t) = G(X(t), V(t), ξ(t),Θ).

Here, the transition function F and the observation function G depend on some time-dependent
external inputs U and V, respectively, as well as a parameter vector Θ. Throughout this paper,
the noise terms ε and ξ are assumed to be independently Gaussian distributed with zero mean
and the covariance matrix Q and R, respectively.

For the estimation of effective connectivity, the observations Y may denote any
measurements from techniques such as, e.g., fMRI, EEG, MEG or NIRS. The hidden
state X in contrast denotes quantities that are not directly available through the performed
measurements, e.g. neural activity, cerebral blood flow (CBF), cerebral blood volume (CBV)
or deoxyhemoglobin content.

A key step in the definition of our model is the choice of a quantity for which the
connectivity is modeled. This quantity is a part of the hidden state X and will be denoted as
Z in the following. In the proposed class of state space models, the transition equation for Z
is fixed to an autoregressive process of order p (AR[p]) with a weighted additive input U, i.e.

Z(t) =
p∑

i=1

AiZ(t − i) + �U(t) + ε(t). (1)

The parameter matrices Ai describe the connectivity between different brain regions at different
time lags i, whereas the parameter matrix � weights the external inputs. The transition
equations of possible further states are not restricted to any special type. However, they are
assumed to not incorporate additional noise terms. For simplicity, it is further assumed that
there are no external inputs (apart from noise) at the measurement level, i.e. V ≡ 0, and that
the measurement noise is additive and noise terms at different sensors are independent of each
other, i.e. R is diagonal.

In summary, the proposed model for the estimation of effective connectivity is described
by the following transition and observation equations:

X(t) =
(

Z(t)

χ(t)

)
=

(∑p

i=1 AiZ(t − i) + �U(t) + ε(t)

Fχ (X(t − 1))

)
(2)

Y(t) =

⎛
⎜⎝

YMod1(t)

YMod2(t)

...

⎞
⎟⎠ =

⎛
⎜⎝

GMod1(X(t))

GMod2(X(t))

...

⎞
⎟⎠ + ξ(t) (3)

ε ∼ N (0,Q), ξ ∼ N (0, R), (4)

where χ denotes the additional state variables. As indicated in (3), the model can use
multiple simultaneous measurements, such as, e.g., EEG and fMRI or EEG and MEG. A
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critical requisite for this model is a common variable Z for which the connectivity is modeled
among all modalities. This variable represents the main linkage between the modalities. In the
following, some specific examples of the proposed model class are given to show its flexibility.
We concentrate on the analysis of fMRI and EEG data, but the proposed model class can also
be used to analyze MEG or NIRS data.

2.1. Application to fMRI data

Eichler (2005) and more recently Mader et al (2008) proposed the estimation of effective
connectivity based on autoregressive processes. They modeled the fMRI measurement directly
by an autoregressive process of order p (AR[p]). A straightforward extension of this model
would be the explicit incorporation of measurement noise in a separate measurement equation,
resulting in the following state space model:

Z(t) =
p∑

i=1

AiZ(t − i) + ε(t)

Y(t) = Z(t) + ξ(t).

Here, Y is the actual fMRI measurement, while Z is the noise-free BOLD signal.

2.2. Application to EEG data

For the analysis of EEG data, a similar model may be used (Cheung et al 2008, 2009). The
EEG channels are not directly associated with specific regions of the brain but represent a
weighted sum of signals from different regions. To account for this fact, an additional matrix
K, describing the EEG forward model, is used, which maps the cortical signals to the EEG
measurements. The state space model is then described by

Z(t) =
p∑

i=1

AiZ(t − i) + ε(t) (5)

Y(t) = KZ(t) + ξ(t), (6)

where Z describes electrical dipoles at d cortical ROIs and Y models the EEG signal at e EEG
sensors. Consequently, the so-called lead-field matrix K is of dimension e × d.

In our model, the orientation of the electrical dipoles, which are supposed to be the origin
of the EEG signal, is assumed to be fixed and known. We assume a single dipole, located in the
center of the ROI, to represent the EEG source of the whole ROI. This restriction may be relaxed
using a cortical patch basis model (Cheung et al 2009, Limpiti et al 2006). In the simulations
we use the template head model from spm8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/)
together with the boundary element method to calculate the EEG forward model.

For the analysis of MEG data, the same state space model can be used by replacing the
EEG forward model, i.e. the matrix K, by the MEG forward model.

2.3. Combination of EEG and fMRI

To give an example of an extended model incorporating two modalities (figure 1), we consider
the combination of EEG and fMRI data in a similar way as in Deneux and Faugeras (2010).
The variable Z from the extended model above is chosen to be the mean-subtracted neural
activity at d ROIs. For the fMRI part of the model, some additional state variables (χ) are
introduced, namely the CBF f, the CBV v and the deoxyhemoglobin content q normalized to

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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Figure 1. Sketch of the model and summary of assumptions. Neural activity is the common
basis of EEG and fMRI measurements. The linkage between neural activity and the measurements
is given by the respective forward models. The neural activity evolves over time according to
an autoregressive process of order p (AR[p]). Red parts of the figure describe the estimation
procedure consisting of the estimation of hidden variables by the Kalman filter and smoother and
a maximum-likelihood (ML) parameter estimation.

baseline. The nonlinear transition function for these hemodynamic states is described by the
following system of differential equations (Deneux and Faugeras 2010):

⎛
⎝ f̈

v̇
q̇

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ε · (Z + z0) − κs ḟ − κf (f − 1)

1

τ
(f − v

1
α )

1

τ

(
f

1 − (1 − E0)
1/f

E0
− v

1
α

q
v

)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (7)

Here, ε, κs, κf , τ, α andE0 are physiological parameters, assumed to be known (Deneux and
Faugeras 2010), and z0 is the mean neural activity, i.e. Z = Z̃−z0, where Z̃ denotes the neural
activity. For the transition from time t to time t + 1, this system of differential equations is
numerically integrated with the values at time t as initial condition. Note that we assume no
additive noise term for this part of the transition function. Nevertheless, the hemodynamic
variables are random variables due to the dependence on the neural activity Z̃, which is
modeled with an explicit additive noise term. The observation or measurement equation for
the fMRI data is eventually given by

YfMRI
t+1 = V0(a1(vt − 1) + a2(qt − 1)) + ξ fMRI

t+1 , (8)

where V0, a1 and a2 are again known parameters as in Deneux and Faugeras (2010).
As a simplification, the electrical dipoles, representing the sources of the EEG signal, are

assumed to equal the mean-subtracted neural activity. This simplification is chosen since the
true connection between these quantities is, to the best of the authors’ knowledge, unknown
and more realistic models would further increase the complexity of the model. Thus, the EEG
part of the proposed model is identical to the EEG model from the previous section (6).
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3. Parameter estimation

The proposed class of state space models (2)–(4) involves several parameters, which have
to be estimated to calculate effective connectivities. These include the parameter matrices
Ai and � of the AR process as well as the covariance matrices Q and R of the process and
observation noise, respectively. Furthermore, the distribution of the state variables at time zero
is required. Assuming a Gaussian distribution for the state variables, this problem reduces to
the estimation of the mean μ0 and covariance Q0.

The parameters can be estimated by their maximum likelihood (ML) estimates. This is
done by an expectation maximization (EM) algorithm, which is similar to the EM algorithm
for linear state space models (Shumway and Stoffer 2006). The EM algorithm is an iterative
two-step procedure consisting of an expectation and a maximization step. These steps are
iterated successively until some convergence criteria are met. The basic idea of this algorithm
is to start with some initial parameters and approximate the state distribution using the Kalman
filter and smoother. The approximated state distribution is used together with the observations
to build a joint likelihood. This joint likelihood is then maximized in the maximization step,
resulting in new parameter estimates for the next iteration.

3.1. Expectation step

The expectation step requires the calculation of the conditional state distribution, given the
data. For linear state space models, this can be done by use of the linear Kalman filter and
smoother, exploiting the fact that linear transformations of Gaussian random variables result
again in Gaussian random variables. For nonlinear transformations, the state distribution has
to be approximated (van der Merwe and Wan 2003). Two common approximations are a non-
parametric approximation, e.g. by particle filters or a Gaussian approximation. For the present
application, the main disadvantage of non-parametric approximations is a rather complicated
ML estimation. Therefore, a Gaussian approximation is used. This reduces the calculation of
the conditional state distribution to the calculation of the conditional expectation and variance.
For this purpose, we make use of the unscented Kalman filter (UKF) and the corresponding
unscented smoother, depicting a computational efficient second-order approximation (Julier
and Uhlmann 1997). A numerically stable form of the UKF is given by the square root
UKF (van der Merwe 2004). Furthermore, it is possible to constrain the sigma points to a
physically realistic domain. All sigma points lying outside the valid domain are projected
onto the valid domain. The resulting constrained UKF shows further improvements in the
performance compared to the unconstrained UKF (Kandepu et al 2008, Kolas et al 2009). As a
last modification of the usual UKF, the filter used in this paper allows for missing observations
(Shumway and Stoffer 2006). This is important for the combination of two modalities with
different sampling frequencies.

The unscented smoother is a straightforward implementation of the nonlinear smoother
equations (Sarkka 2008) using the results from the constrained square root UKF. The ML
estimation below finally requires the calculation of a lag-one covariance smoother (Shumway
and Stoffer 2006), which can be approximated using the quantities from the UKF.

3.2. Maximization step

The proposed class of state space models has a particular structure, which can be exploited
for the ML parameter estimation. The state equation for the variable Z (2), involving the
parameters A,�, and Q, is linear. For these parameters the analytical maximization as for
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linear state space models (Shumway and Stoffer 2006) can be used. The j th parameter update
for the parameter R is given by

R(j) = N−1
N∑

t=1

(
V ar(y(t) − ŷ(t)) + (y(t) − ŷ(t))(y(t) − ŷ(t))T + R

(j−1)

It

)
,

where ŷ(t) = E(G(X(t))|yN) and

(
R

(j−1)

It

)
ii

=
{
(R(j−1))ii , i ∈ It

0, else
. (9)

The set It = {i ∈ {1, . . . , e}|yi(t) is missing} is the index set of missing observations. Note that
for missing observations the innovations y(t)− ŷ(t) are set to zero by the proposed algorithm.
Thus, for missing observations the variance of the observation error is set to the previous
estimate. The off-diagonal entries of R(j) are set to zero due to the assumption of uncorrelated
observation noise. For a nonlinear observation function G, the terms E(G(X(t))|yN) and
V ar(y(t) − E(G(X(t))|yN)) can be approximated by the unscented transform.

3.3. Statistical inference

For statistical inference on the connectivity, the dPC (Eichler 2005, Mader et al 2008) is used.
The dPC πij (u) of regions i and j at time lag u is defined as the correlation between Xi(t) and
Xj(t − u) after removing the linear effects of X(t)\{Xj(t − u)} (Eichler 2005). A consistent
estimator of the dPC is given by (Eichler 2006)

π̂ij (u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Âij (u)√
Q̂ii τ̂ij (u)

, u > 0

Q̂ij√
Q̂iiQ̂jj

, u = 0

, (10)

where

τ̂ij (u) = K̂jj +
u−1∑
v=1

∑
k,l

Âkj (v)K̂klÂlj (v) +
Âij (u)2

Q̂ii

(11)

with K̂ = Q̂−1. The ML estimates of the parameters are asymptotically Gaussian distributed
with zero mean and variance equal to the inverse information matrix. The resulting
approximate α significance level for the absolute value of the estimated dPC (|π̂ij (u)|) is
given by ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩


−1
(

1 − α

2

) √√√√ 1

N

̂V AR(Âij )

Q̂ii τ̂ij (u)
, u > 0


−1
(

1 − α

2

) √√√√ 1

N

̂V AR(Q̂ij )

Q̂iiQ̂jj

, u = 0

, (12)

where ̂V AR(Âij ) is estimated by numerical evaluation of the inverse information matrix and

−1 is the inverse standard normal distribution. In this paper, the significance levels are
Bonferroni corrected for multiple testing.
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Figure 2. (a) Graphical representation of the simulated interaction structure. The arrows denote
a directed interaction between two components. The numbers represent the VAR parameters with
subscripts (u) indicating the time lag. Numbers without subscript denote an interaction at time
lag 1. Each component has an additional influence on itself, which is not depicted. (b) Location of
the regions of interest (white squares) for the simulation example without deep source. The regions
are projected on the depicted slices to allow the visualization of all regions in a single graphic.
All regions are close to the surface of the head. (c) Estimated dPC values and corresponding
significance levels for the estimation without deep sources based on EEG data alone. Negative
time lags in the coordinate system (i, j) denote an influence from the component i on the component
j . Positive time lags show an influence in the opposite direction. At time lag zero instantaneous
interactions are visualized. The significance levels are Bonferroni corrected to achieve a global
significance level of 0.05. (d) Same as (c) but for the estimation based on EEG and fMRI data.

4. Results

In this section, the accuracy of the procedure for estimating effective connectivity is tested
based on simulated data. For all simulation examples presented in this paper, a five-
dimensional autoregressive process of order 2 is used to model the connectivity between
five different brain regions. The parameter matrices of the AR[2] are specified as follows (see
also figure 2(a)):

A(1) =

⎛
⎜⎜⎜⎜⎝

0.4 0 0 0 0
0 0.4 0 0 0

0.7 0.7 0.4 0 0
0 0.8 0 0.4 0
0 0 0 0.4 0.4

⎞
⎟⎟⎟⎟⎠ A(2) =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0.4
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠.
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Figure 3. (a) Location of the regions of interest (white squares) in the simulated example with
a deep source. The regions are projected on the depicted slices to allow the visualization of
all regions in a single graphic. Region 5 depicts a deep source. All other regions are close to
the surface of the head. (b) Estimated dPC values and corresponding significance levels for the
estimation with a deep source based on EEG data alone. Negative time lags in the coordinate system
(i, j) denote an influence from the component i on the component j . Positive time lags show an
influence in the opposite direction. At time lag zero instantaneous interactions are visualized. The
significance levels are Bonferroni corrected to achieve a global significance level of 0.05. False
positive estimates are marked red. (c) Same as (b) but for the estimation based on EEG and fMRI
data. (d) The same for the estimation based on fMRI data alone.

The covariance matrix Q equals the unity matrix. The covariance matrix R is set to

R =

⎛
⎜⎝

αMod1IeMod1 0 · · ·
0 αMod2IeMod2 · · ·
... · · · . . .

⎞
⎟⎠ ,

where αModi is a modality specific constant and IeModi
is the unity matrix of dimension equal

to the dimension of Y Modi (t). For each simulation, N = 2000 timesteps are simulated. For
the estimation procedure, the order of the autoregressive process was set to the true order
of 2.

The focus of this paper is the combination of EEG and fMRI data. Therefore, data are
simulated according to the combined model based on EEG and fMRI data (section 2.3). The
connectivity between brain regions is estimated in three different estimations, based solely on
EEG data, solely on fMRI data as well as on both EEG and fMRI data. Furthermore, two
different scenarios are compared differing in the location of the brain regions. In the first
scenario, the brain regions are located close to the surface of the head and distant from each
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Figure 4. Simulated and estimated states and BOLD signal for the first region. The estimation
was performed using fMRI data alone. The black curves depict the simulated values, and the red
curves represent the estimated values. The simulated BOLD signal is depicted with additional
measurement noise (bottom-right graphic). The estimated signal represents the BOLD signal
without measurement noise. The term ‘flow inducing signal’ describes the derivative of the
cerebral blood flow (CBF).

other (figure 2(b)). The second scenario is more challenging, in that one region is located deep
in the brain (figure 3(a)). This results in a comparably weak EEG signal corresponding to this
region.

For the first scenario, the results are accurate for the estimation based on EEG data alone
as well as for the estimation based on EEG and fMRI data (figure 2(c) and (d)). The second
scenario results in some false positive estimates for the estimation based on EEG data alone
(figure 3(b)). The strongest false positives are those involving the deep region 5. For the
estimation based on EEG and fMRI data the results are similar (figure 3(c)).

The third estimation is based on the fMRI data alone. Note that this estimation is not
based on the linear fMRI model described in section 2.1, but on the nonlinear model used
in the combined EEG/fMRI approach. The resulting dPC estimates show large deviations
from the correct values (figure 3(d)). A large number of false positive test results are present.
One possible reason for the incorrect dPC estimates is the temporal convolution inherent in
the hemodynamic model. This may also explain the high uncertainty represented through the
large significance levels in figure 3(d).

For a more detailed investigation of the effects of the hemodynamic model, the simulated
and estimated states and observations for the estimation based on fMRI data are compared
in the following (figure 4). The estimated CBF, CBV and deoxyhemoglobin content show
only small differences to the corresponding simulated values (figure 4). The simulated and
estimated BOLD signals are also very similar. Note that the simulated BOLD signal in
figure 4 is shown with additional measurement noise. The estimated flow inducing signal,
i.e. the derivative of the CBF, shows larger differences to the corresponding simulated values.
Even larger differences are present between the estimated and simulated neural activity. The
estimated neural activity appears to be a smoothed version of the simulated neural activity.
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One reason for the inaccurately estimated neural activity may be the convolution effect
of the hemodynamic model. It appears as if the convolution effect mainly affects the
transformation from the neural activity to the CBF. This can be deduced since the simulated
CBF is considerably smoother than the simulated neural activity, whereas the smoothness
of the curves stays similar for the other transformations (figure 4). The estimation of the
states based on the data is accurate as long as the simulated curve is sufficiently smooth.
This observation, combined with the previous observation, confirms the hypothesis that the
temporal convolution negatively affects the estimation results.

Another reason for the smooth estimated neural activity may be the following. The
Kalman filter uses information up to the current instant of time. The BOLD response to
the neural activity, however, is time delayed. Therefore, the fMRI data provide hardly any
information for the Kalman filter. Most information is incorporated through the Kalman
smoother. The Kalman smoother, in turn, usually provides smooth estimates (van der Merwe
and Wan 2003). Thus, the delayed hemodynamic response in combination with the method
used for the estimation of the neural activity may constitute a further reason for the inaccurate
estimates.

5. Conclusion

The analysis of multimodal signals is a key challenge in nowadays research. Here, we present
an idea based on state space models that due to its flexibility enables the analysis of various
signals recorded from different modalities. As revealed by the simulation study, the fMRI
poses the biggest challenge due to the BOLD signal. To what extent this limitation can be
overcome is to be analyzed in further studies. The possible combination of other modalities
such as, e.g., EEG and MEG using the described framework may also be very promising and
has to be investigated in future studies. The advantage of a combination of EEG and MEG
lies in the fact that both measurements have a high temporal resolution while still providing
complementary information.

In summary, we have presented a rather general framework that enables the analysis of
various types of signals. It is thereby not only possible to estimate the underlying activity
of interest but also its Granger-causal interdependence structure. The estimation of effective
connectivity, thus, becomes possible by combining the strengths of the various signal types.
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