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A B S T R A C T

Soil macrofauna play major roles in ecosystem functioning; however the ecological effects of macrofauna
are influenced by their spatial distribution. Close relationships to soil properties are one major factor for
determining spatial pattern of macrofauna. Information about macrofauna distribution pattern is scarce
especially at regional scales. The limited numbers of studies available suggest a considerable influence of
soil properties on macrofauna distribution. Therefore, this study was conducted in riparian forest to
elucidate spatial patterns of soil macrofauna and their relationship to abiotic soil properties at regional
scale. Soil macrofauna abundance, diversity, richness and evenness were analyzed at 200 sampling points
along parallel transects which ran perpendicular to a river. The hierarchical sampling design comprised
maximum distances of 0.5 km and minimum distances of 1 m between samples. Soil macrofauna was
extracted from 50 cm � 50 cm � 25 cm soil monoliths by hand-sorting. At each transect point additional
soil samples were taken for analysis of soil texture, standard soil properties and electrolytic conductivity.
Data were analyzed using geostatistics (variograms and cross-variograms) in order to describe and
quantify the spatial continuity of macrofauna characteristics and their relation to soil properties. The
variograms revealed the presence of spatial autocorrelation in the majority of parameters. Also,
relationships between macrofauna and soil properties such as soil texture and electrolytic conductivity,
could be detected. To get more information about macrofauna distribution patterns and macrofauna–
soil-relationships, subsets of the complete dataset were analyzed by means of applied time series
analysis. The basic pattern of diversity value along the spatial series could be estimated by an
autoregressive model. In addition, state-space analysis revealed that soil texture (silt) was important for
estimating soil macrofauna diversity along transects. The study shows that geostatistical analyses as well
as applied time series are suitable methods for analyzing macrofauna characteristics and for detecting
relationships to soil properties. In contrast to geostatistics, state-space analysis yields additional
information about the relative importance of different parameters for estimating macrofauna
characteristics.
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1. Introduction

Invertebrate soil macrofauna play major roles in ecosystem
functioning. Soil macrofauna such as millipedes (Blower, 1985) or
insect larvae (Gonglanski et al., 2005) and earthworms affect the
physical structure and function of soils and modulate the habitat
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for other species (Graff and Hartge, 1974; Lawton and Jones, 1995).
Since macrofauna can be assessed by means of relatively simple
methodological approaches, such as handsorting, soil macrofauna
represents a good model for analysis of basic functional aspects of
biodiversity in soil. Knowledge about invertebrate macrofauna
may thus considerably improve the understanding of ecosystem
functioning (Barrios, 2007).

The ecosystem effect of the soil macrofauna like any other
component of soil biodiversity is dependent on the spatial
distribution of the population (Lawton and Jones, 1995).
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Prerequisite of any estimation of functional effects of macrofauna
is therefore an assessment of their distribution patterns. At the
field scales, the spatial variability of macrofauna has been the
subject of several publications (Guild, 1952; Poier and Richter,
1992; Rossi et al., 1997; Cannavacciuolo et al., 1998; Nuutinen et al.,
1998; Decaens and Rossi, 2001; Jimenez et al., 2006; Joschko et al.,
2006). Given the ample literature about spatial patterns at the field
scale, spatial structures of earthworm populations at the regional
scale appeared to be likely (Poier and Richter, 1992; Rossi et al.,
1997; Nuutinen et al., 1998).

However, the analysis of biodiversity patterns and their relation
to environmental factors at the regional scale is still a challenge for
soil biodiversity research. For the regional scale, information about
the variability of macrofauna is scarce (Joschko et al., 2006). It is
however needed for better understanding the ecology of macro-
fauna, for predicting macrofauna activity and for designing
appropriate management schemes at this scale. One main reason
responsible for the absence of information about macrofaunal
diversity at the regional scale is the lack of adequate methods for
sampling and analyzing data at this dimension.

A key feature of soil information is that each observation relates
to a particular location in space. Knowledge of an attribute value is
thus of little interest unless location of measurement is known and
accounted for in the analysis (Goovaerts, 1999). Including the
sample locations in the analysis allows us to observe a spatial
process within the sample domain. However, important informa-
tion may be lost if locations of the observations are not considered
(Nielson and Wendroth, 2003). The procedures which do not
consider the spatial coordinates of the attributes, can lead to errors
in the interpretation of the results (Nielsen and Alemi, 1989) for
example the spatial process or the spatial continuity of the
observations could not be captured (Nielson and Wendroth, 2003).
Geostatistics provides descriptive tools such as variograms to
characterize the spatial pattern of continuous and categorical soil
attributes (Goovaerts, 1999; Gringarten and Deutsch, 2001). Also,
applied time series analysis offers techniques to investigate spatial
pattern of soil properties (Nielson and Wendroth, 2003; Timmer,
1998). The potential of applied time series techniques for
improving soil biological studies has only started to be exploited
(Joschko et al., 2006).

Species distributional patterns are likely to be controlled by
many factors acting at different scales (Jimenez et al., 2001).
Factors that determine spatial patterning of soil macro-organisms
can be divided into two categories: abiotic factors such as climate,
soil physical and chemical properties or resource availability, and
biotic factors such as inter- and intra-specific competition or
dispersal abilities (Aubert et al., 2003; Sereda et al., 2012). Little is
known about the factors that control or influence the observed
spatial pattern of soil macro-fauna at different scales; presumably,
abiotic factors are responsible at least partly, for the spatial pattern
of soil macro-invertebrates (Jimenez et al., 2001). In agricultural
soils, close relationships between earthworm species and abiotic
soil properties have been detected by spatial methods (Joschko
et al., 2006).

As factors shaping the spatial pattern of macrofauna, soil
properties such as soil texture (Joschko et al., 2006, 2009) have
been ascertained. The underlying mechanism of the relationship
between macrofauna and abiotic soil properties such as soil
texture is their moisture requirement (Graff and Hartge, 1974).
Spatial analysis of the relationships between macrofauna and soil
properties may be a first step for better understanding macro-
ecological principles in different landscapes.

In the last 15–20 years, riparian forests have become recognized
as important components of landscapes and serve as a vital link
between the aquatic environment and upland ecosystems (Giese
et al., 2000). Riparian ecosystems are aquatic-terrestrial ecotones
with unique biotic, biophysical and landscape characteristics (Lyon
et al., 1998). They are an essential ecotone, since they contribute to
restoring and maintaining regional diversity, besides controlling
surface water quality by regulating the nutrient inputs (Fernandez-
Alaez et al., 2005). Accordingly, sustainability and maintenance of
riparian vegetation or restoring of degraded sites is critical to
sustain inherent ecosystem function and values (Giese et al., 2000).

The first objective of this study is to analyze spatial relation-
ships between macrofauna (abundance, evenness, richness and
diversity) and abiotic soil properties (soil clay and silt content, ECe
and organic matter) at the regional scale in an Iranian riparian
forest. The basic hypothesis for this study was that spatial analysis
may considerably improve the estimation of macrofauna commu-
nity properties from soil properties compared to classical
correlation analysis. The estimation of macrofauna community
properties from soil properties would possibly enable prediction of
macrofauna distribution from relevant soil maps and could serve
as an important tool for regional scale biodiversity studies. The
second objective of this study is to evaluate different statistical
approaches for modelling spatial relationships between macro-
fauna and abiotic soil properties. Close links between soil
macrofauna and soil properties such as soil texture and soil
organic matter are to be expected due to their habitat and feeding
requirements. Since soil properties are usually spatially structured
in most soils (Goovaerts, 1999), classical correlation analysis is
insufficient to detect these relationships (Taylor and Bates, 2013).
Two different approaches to spatial analysis were taken: geo-
statistical analysis and time series analysis. Within the time series
analysis approach, the autoregressive and the state-space methods
were applied.

A third objective arises from the sampling design. Since the
sampling design of the study was optimized for geostatistical
analyses with hierarchically organized data sets, the question has
to be addressed how time series analysis can be adapted to analyze
geostatistically optimized data sets.

2. Materials and methods

2.1. Location and experimental design

The study was carried out in Wildlife Refuge of Karkhe in the
riparian forest of the south-western Iran (31�570–32�050N and
48�130–48�160E). The climate of the study area is semi-arid;
average yearly rainfall is about 325.8 mm with a mean temperature
of 24 �C. Plant cover mainly comprises Populus euphratica and
Tamarix sp. The sampling was done in March 2009 within a period
of 15 days. At this time moisture and temperature are suitable and
soil macrofauna reach their highest abundance.

Spatial sampling has to regard the extent, the sampling interval,
and the support (area or volume of an individual sample) (
Legendre and Legendre, 2012). These parameters must be chosen
based on the scientific question as well as physical and practical
limitations. According to Mathieu et al. (2004); soil biodiversity is
shaped by the co-action of numerous factors. Because these factors
act at different spatial scales, and may interact, ecological
processes are scale dependent and hierarchically structured. Thus,
the study tries to consider spatial variation of soil macrofauna from
the local (quasi-homogeneous units of some square meters) to the
regional scale (several square kilometres). To address the regional
scale, the extent of the study has to stretch over several hundred
meters. However, to reveal spatial variation starting at the topic
dimension, sampling intervals must include distances of less than
10 m. Due to limited resources (time, workforce) only a certain
number of samples could be analysed. Also, the sample support has
to be small enough to resolve spatial variation within a few meters,
but being large enough suppress micro-variability (within the sub-
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meter scale). Consequently, for the description of spatial interac-
tion of macrofauna and soil properties, a hierarchical sampling
procedure was chosen. The sampling design consisted of 200
sampling points along parallel transects (perpendicular to the
river) (Fig. 1). The distance between transects was 0.5 km. We
considered maximum distances between samples of 0.5 km
forming the basic grid. Around certain grid points, samples were
taken at 250 m, 100 m, 50 m, 20 m, 15 m, 10 m, 5 m, 2 m and 1 m
intervals (Fig. 1 and Table 1). These grid points with associated
samples on distances <0.5 km are called nests. We considered the
gradient of vegetation density to locate the nests. It means that the
nests were located in the areas with different gradient of
vegetation density; low to high density and vice versa. Hierarchical
(or nested) sampling is particularly useful to reveal the scales of
spatial processes.

2.2. Soil macrofauna

Soil macrofauna was defined according to Warren and Zou
(2002) as invertebrates visible at the naked eye (macroscopic
organisms). In this study, geobionts (large soil invertebrates that
permanently inhabit the soil), also geophiles (organisms that live
in the soil only for some phase of their life) (Maggenti et al., 2005)
were assessed.

The macrofauna was extracted from 50 cm � 50 cm � 25 cm soil
monoliths by hand-sorting the samples in the field. After detection,
the organisms were placed in plastic bags and transported to the
lab for species (group) determination and biomass assessment. The
number of individuals for each sample was determined on the day
of collection.
Fig. 1. Experimental design of the study. 200 sampling points arranged along parallel tr
samples was 0.5 km, but samples were also taken at 250 m, 100 m, 50 m, 20 m, 15 m, 10 m,
of sampling points in more detail. Information was extracted from Indian Remote Sens
2.3. Soil analyses

At each transect point, in approximately 1 m distance from the
macrofauna sample location, three bulk soil samples (1 kg each)
were taken from the upper soil horizon (0–25 cm) for physical and
chemical analyses at each sampling campaign. Soil texture was
determined by the Bouyoucos hydrometer method (Bouyoucos,
1962). The electrolytic conductivity (ECe) of the mineral soil was
determined on a soil: water suspension (1 w:1 v) (Burt, 2004). Soil
organic matter was determined using the Walkley–Black method (
Bremner, 1960).

2.4. Data preparation

Number of animals (abundance), evenness (Sheldon index),
richness (Menhinick index) and diversity (Shannon H' index) that
are useful to quantify spatial patterns (Gonglanski et al., 2005,
2008) by using PAST version 1.39 (Palaentological Statistics
Software Package 2006) were determined in each sample.

The distribution of variables was analyzed with Q–Q plots
(Timmer, 1998). Soil properties and macrofauna abundance were
log normally distributed; therefore a log-transformation (log
(x + 1)) was carried out before further analysis.

2.5. Non-spatial statistics

For the initial analysis of the relationship between earthworm
parameters and abiotic soil properties, we calculated the correla-
tion among soil properties and macrofauna using the rank
correlation coefficient (rs) (STATISTICA 7.0).
ansects. The distance between transects was 0.5 km. Maximum distances between
 5 m, 2 m and 1 m at different locations. The coloured subset shows the arrangement
ing Satellite (IRS P6), Linear imaging self scanner (LISS III).



Table 1
Number of samples which are characterized by the resp. Distance.

Distance (m) 500 250 100 50 30 25 20 15 10 5 2 1 Total number
Number of samples 57 13 16 15 1 1 16 15 16 16 17 17 200
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2.6. Geostatistics

The basic tool of geostatistics is the (semi) variogram. The
semivariance (g hð Þ) quantifies the dissimilarity of pairs of
observations of one variable depending on their spatial separation
distance h (Eq. (1)):

g hð Þ ¼ 1
2NðhÞ S

N hð Þ

i¼1
½Z Xið Þ � Z Xi þ hð Þ�2 ð1Þ

where z is the measured variable (soil macrofauna abundance,
evenness, richness and diversity and soil clay content, soil silt
content, ECe and organic matter), xi is the coordinate of one
sample, xi + h is the coordinate of another sample at distance (lag) h
and N(h) is the number of pairs of samples z(xi) and z(xi + h). The
semivariance essentially expresses the average variance of pairs of
points at a given distance.

Empirical variograms are plots of the semivariances, averaged
over distance classes (called lags), against the lag distance. To
describe spatial autocorrelation of a variable quantitatively, a
(theoretical) variogram model can be fitted to the empirical
variogram in order to obtain the model parameters nugget, sill
and range. The nugget effect is the variogram’s values at lag
distance zero (positive intercept on the ordinate). It summarizes
the micro-variability, which cannot be captured due to sampling
design, and the measurement error. The sill of the variogram is
the variance at which the variogram model reaches (asymptoti-
cally) a maximum. In many cases the empirical variogram levels
out at a certain distance. These cases are described by so called
bounded variogram models like the spherical or exponential
model (Webster and Oliver, 2009). The lag distance at which the
bounded variogram reaches the sill is called the range. At
distances smaller than the range we can observe spatial
autocorrelation while observations with distances larger than
the range are regarded as spatially independent (Gringarten and
Deutsch, 2001; Webster and Oliver, 2009). An indicator of the
strength of the spatial autocorrelation is the nugget to sill ratio. A
variable is considered to have a strong spatial dependence if the
ratio is less than 25%, and has a moderate spatial dependence if
the ratio is between 25% and 75%; otherwise, the variable has a
weak spatial dependence (Sun et al., 2003).

In order to get good estimates of the empirical (and theoretical)
variogram, it is advisable to have more than 100 pairs per lag
interval. To obtain sufficient number of pairs over small distances
for variogram modelling sampling design can be optimized by so
called nested sampling (Webster and Oliver, 2009). In nested
sampling the points are not arranged on a regular grid. Instead
sampling distances are varied from small to large, often chosen in a
geometric progression. This kind of geostatistical sampling design
provides a higher proportion of sample pairs over small distance as
compared with sampling on regular grids. Eventually this leads to
better model of the variogram at its origin and a better estimate of
the nugget.

In order to gather information about the spatial connection
between any two variables, and to compare the similarity of their
spatial structure patterns, cross-variograms can be constructed.
Empirical cross-variograms are plots of the cross-semivariance
against the lag distance. The cross-semivariance for two variables
is calculated as follows (Eq. (2)):

g hð Þ ¼ 1
2NðhÞ S

N hð Þ

i¼1
½Zu Xið Þ � Zu Xi þ hð Þ� � ½Zv Xið Þ � Zv Xi þ hð Þ� ð2Þ

where zu is the primary variable, (soil macrofauna abundance,
evenness, richness and diversity), zv is the covariate (soil clay
content, soil silt content, ECe and organic matter), xi is the
coordinate of the sample, N(h) is the number of pairs of samples z
(xi) and z(xi + h), separated by the separation distance (lag) h
(Webster and Oliver, 2009). Geostatistical analysis was performed
using the software GS+ version 5.1.1 (Gamma Design Software,
1995).

2.7. Time series analysis and state-space analysis

Time series analysis was developed for data that have been
observed at different points in time; these data series are often
characterized by correlation introduced by the sampling of
adjacent points (Shumway and Stoffer, 2000). Time series analysis
techniques may also be applied to spatial data, for instance, from
soil or agricultural sciences (Nielsen and Alemi, 1989; Nielson and
Wendroth, 2003; Legendre and Legendre, 2012). For the analysis,
data have to be sampled in a certain order and in a close enough
distance for showing autocorrelation between data points. Usually,
the adequate sampling design is found in transect studies with
evenly spaced sampling locations (Nielson and Wendroth, 2003).

However, time series techniques may be applied to non-
transect data, if data are re-organized or reoriented for analysis. E.
g. Stevenson et al. (2001) successfully analyzed data, obtained in a
block design experiment, with time-series analysis, after reorga-
nization of data. In the same sense, Joschko et al. (2009) analyzed
earthworm abundances and soil properties assessed along four
transects in a farmer’s field. For spatial analysis, values for each
earthworm parameter and soil properties along the four transects
were combined to one single data row and plotted as a continuous
sequence beginning with the first plot of the left transect and
ending with the first plot of the right transect The sequence of plots
at the endpoints of the transects was chosen so that distances
between plots were minimized.

The nested sampling design in our study, which was optimized
for geostatistical analysis, necessitates a reorganization of the data
for time series analysis. First, a sequence was created by using data
with distances from 1 to 500 m, starting with sample point 1 in the
left hand corner; the sampling locations (200) were connected by
moving from one sampling location to the next from one row to the
other while minimizing distances between locations.

The distance between sampling points deserves special
attention. The ideal experimental design is the use of regular,
equal distances (Nielson and Wendroth, 2003). If distances are
irregular they should at least belong to one distance class, if time
series analysis is to be applied (Nielsen, pers. comm.).

Distances from 1 to 500 m or even 10–500 m are unsuited for
assembling them in one distance class (Nielsen, pers. comm.)
Therefore, two data sets, characterized by different distances
between data points, were prepared. One group (Series I)
comprised main distances from 10 to 100 m which were the
distances within the sampling nests. Eighteen sampling nests (data



Table 2
Rank correlation coefficients (rs) between macrofauna and soil properties.

Silt (%) Clay (%) ECe (dS/m) OM (%)

Abundance 0.201 �0.195 0.009 0.071
Evenness 0.120 �0.214 �0.070 �0.019
Richness 0.200 �0.238 �0.082 0.188
Diversity 0.199 �0.219 �0.101 0.150

ECe: electrolytic conductivity; OM: soil organic matter content; abundance:
number of animals; evenness (Sheldon index); richness (Menhinick index) and
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point) were connected with the aim of minimizing distances
between them. Consequently, distances between the sampling
nests were variable and in most cases exceeded 100 m.

The second group of data (Series II) comprised distances
between 50 and 500 m, spaced evenly over the study area. With
these three data sets (all data, Series I, Series II), the following
calculations were carried out. First, the distribution of data was
analyzed with Q–Q plots (Timmer, 1998). Subsequently, the data
series were tested for first and second order stationary (Shumway
and Stoffer, 2000).

Subsequently, autocorrelation functions, partial autocorrela-
tion functions and cross correlation functions were calculated. For
this purpose, the open source program ASTSA (Stoffer, 2010) was
used. When autocorrelation in data series is detected, this
information can be used in autoregressive modelling.

2.7.1. ARMA models
In autocorrelated data series, the ARMA modeling allows to

quantify the autocorrelation by introducing an autoregressive (AR)
term and a moving average (MA) term (Shumway and Stoffe, 2000;
Nielson and Wendroth, 2003). The variable of interest Zi (soil
macrofauna abundance, evenness, richness and diversity) is
estimated by relating the observation at location i to the
observation at location i � 1 (or to locations i � 1, i � 2, i � 3, i � n,
depending on the order p of the AR model). In addition, for
estimating the variable of interest, the moving average of order q is
used, according to Eq. (1) (Nielsen and Alemi, 1989).

Z ¼ S
p

n¼1
Zi�n � S

q

n¼1
vi�n þ vi ð3Þ

vi is a white noise (independent and identically distributed normal
variable). While the autocorrelation function (number of lags of
autocorrelation) determines the order of the MA-term, the partial
autocorrelation function is used as indicative of the order of the AR
term (Shumway and Stoffer, 2000). For evaluating the model, the
autocorrelation function of the residuals of the autoregressive
model was calculated. All calculations were carried out with ASTSA
(Stoffer, 2010). For these section, the following parameters were
used: p (autoregressive order) = 1, d (distance order) = 0, q (moving
average) = 1.

2.7.2. State space models
With state-space analysis, the system’s state, characterized by a

state variable or a set of variables, is analyzed on its way through
space or time (Nielson and Wendroth, 2003). The state Zi at a given
location i is related to the state at the previous location i � 1
described by the state equation Zi = FZi-1 + vi, where F is a matrix
of transition coefficients and vi is an error term (Nielsen and Alemi,
1989; Wendroth et al., 1992, 1997; Shumway and Stoffer, 2000;
Nielson and Wendroth, 2003). The state variables are related to
observed variables Yi (soil macrofauna abundance, evenness,
richness and diversity) through Yi = MiZi+ vi, where Mi is a matrix
of observation coefficients characterizing the relationship between
underlying state and observation, Zi (soil clay content, soil silt
content, ECe and organic matter) is the true state vector and vi is
an error term quantifying the measurement uncertainty or noise
(Nielsen and Alemi, 1989; Wendroth et al., 1992, 1997; Nielson and
Wendroth, 2003; Timm et al., 2003). A Kalman filter with an EM
(Expectation–Maximization) algorithm helps to separate between
noise and reliable data (Nielsen and Alemi, 1989; Nielson and
Wendroth, 2003).

The challenge is to select appropriate variables which
characterize the system’s state under consideration. For state-
space modelling, variables showing autocorrelation and cross-
correlations were selected for the state vector (Nielson and
Wendroth, 2003). Subsequently, state-space analysis was carried
out according to Nielson and Wendroth (2003). First, the data were
normalized (Nielson and Wendroth, 2003). For analysis the
program STATE (Applied Statistical Time Series Analysis 2010, R.
Shumway, provided by courtesy of Ole Wendroth) was used.

3. Results

3.1. Rank correlation analysis between macrofauna and abiotic soil
properties

The soil macrofauna comprised the systematic groups of beetles
(Coleoptera, 27% of individuals), millipedes (24%), snails (21%),
earthworms (Lumbricidae) (9%), Diptera (15%) and others, for
example spiders (4%), ants (about 0.5%), reaching an abundance of
43.1 individuals/m2. Thus, not only geobionts, but also geophiles
were assessed.

Rank correlation analysis of soil macrofauna diversity indices
and soil properties indicated only weak relationships between
macrofauna indices and soil properties (Table 2). Significant
relationships were found between macrofauna diversity indices
(abundance, evenness, richness, diversity) and silt content
(positive), macrofauna diversity indices (abundance, evenness,
richness, diversity) and clay content (negative), macrofauna
diversity indices (except abundance) and ECe (negative) and, with
respect to some macrofauna indices, weak positive relationships to
soil organic matter content (Table 2).

3.2. Geostatistical analysis of macrofauna and soil properties

Macrofauna diversity indices were spatially structured: the
variograms revealed the presence of spatial autocorrelation. For all
these indices, bounded semivariograms were found. The vario-
grams of macrofauna diversity indices were characterized by
relatively large nugget values, which can be explained by sampling
error and short range variability.

The parameters characterizing soil properties were spatially
structured as well. The parameters of the theoretical models fitted
to the experimental variograms are given in Table 3. The variogram
of clay content was spherical; silt content and ECe were
exponential. The variograms of macrofauna diversity indices
(evenness, richness and diversity) were exponential. But, macro-
fauna abundance showed a spherical model. All variograms
showed positive nugget.

Spatial similarity between variables, indicating potential
relationships between macrofauna and soil properties, was
evaluated by cross-variograms for pairs of macrofauna indices
and measured soil properties (clay, silt, ECe). Model parameters
(nugget, sill, range) are presented in Table 4. According to the
cross-variogram, soil texture (clay and silt) was spatially closely
related to macrofauna indices (Table 4)
diversity (Shannon H0 index).



Table 3
Parameters of the theoretical models fitted to the experimental variograms (macrofauna and soil properties).

Variable Model Nugget (C0) Sill (C0 + C) Nugget to sill ratio Range (m) R2 R2 of cross-validation

Abundance Spherical 0.61 1.49 0.41 500 0.81 0.30
Evenness exponential 0.08 0.28 0.29 2937 0.65 0.29
Richness exponential 0.20 0.48 0.42 2295 0.50 0.29
Diversity exponential 0.15 0.31 0.48 952 0.59 0.29
Clay Spherical 0.07 0.14 0.50 365 0.59 0.47
Silt exponential 0.05 0.16 0.31 2515 0.48 0.49
OM Spherical 0.54 1.08 0.50 269 0.68 0.20
ECe exponential 0.49 1.46 0.33 500 0.81 0.54

Co: nugget variance: the variogram values at lag distance zero. Sill: the variance at which the variogram model reaches a maximum; C: structural variance; range: the lag
distance at which the bounded variogram reaches the sill; nugget to sill ratio: the indicator of the strength of the spatial autocorrelation, the variable is considered to have a
strong spatial dependence if the ratio is less than 25%, and has a moderate spatial dependence if the ratio is between 25% and 75%; otherwise, the variable has a weak spatial
dependence. R2: goodness of fit of theorical model fitted to the experimental variogram; R2 of cross-validation: regression coefficient. ECe: electrolytic conductivity; OM: soil
organic matter content; abundance: number of animals; evenness: Sheldon index; richness: Menhinick index; diversity: Shannon H0 index.

Table 4
Parameters of cross-semivariograms for pairs of measured macrofauna and soil properties.

Pair of properties Model Nugget (C0) Sill (C0 + C) Nugget to sill ratio Range (m) R2 R2 of cross-validation

Abund.-silt Exponential 0.10 0.27 0.37 568 0.70 0.23
Abund.-ECe Spherical 1.46 9.88 0.15 136 0.85 0.31
Abund.-clay Exponential 0.12 0.36 0.33 800 0.80 0.23
Abund.-OM Spherical 0.36 0.84 0.43 253 0.80 0.29
Evenness-silt Exponential 0.03 0.07 0.43 434 0.75 0.21
Evenness-ECe Spherical 0.43 3.28 0.13 109 0.68 0.22
Evenness-clay Exponential 0.03 0.10 0.30 798 0.87 0.21
Evenness-OM Spherical 0.09 0.22 0.41 259 0.91 0.21
Richness-silt Exponential 0.04 0.09 0.44 420 0.62 0.23
Richness-Ece Exponential 0.99 6.68 0.15 990 0.92 0.22
Richness-clay Spherical 0.06 0.28 0.21 5037 0.84 0.23
Richness-OM Exponential 0.22 0.44 0.50 540 0.81 0.21
Diversity-silt Exponential 0.03 0.17 0.18 2843 0.61 0.24
Diversity-Ece Exponential 0.78 5.01 0.16 846 0.91 0.25
Diversity-clay Exponential 0.04 0.15 0.27 1207 0.90 0.24
Diversity-OM Spherical 0.17 0.33 0.52 359 0.83 0.24

Co: nugget variance; C: structural variance; R2: goodness of fittness of theorical model fitted to the experimental variogram; R2 of cross-validation: regression coefficient. ECe:
electrolytic conductivity, OM: soil organic matter content, Abund. = abundance: Number of animals, Evenness (Sheldon index), Richness (Menhinick index) and Diversity
(Shannon H0 index).
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3.3. Time series analysis: autocorrelation functions of macrofauna and
abiotic soil properties

In contrast to geostatistical analysis, time series analysis
required a data transformation prior to analysis to derive a one-
dimensional arrangement. Based on the data selection of series I
and II, the following results in macrofauna and soil texture
variables were found (Table 5). Except ECe in data series II all
variables showed autocorrelation; the number of lags however was
mostly between 1 and 2. Only in case of soil texture the
autocorrelation stretched over more, maximally 4 lags.
Table 5
Autocorrelation function of data series I (10–100 m) and series II (50–500 m).

ACF 10–100 Lags 50–500 Lags

Abundance Yes 2 Yes 1
Eveness Yes 2 Yes 1
Richness Yes 2 Yes 1
Diversity Yes 1 Yes 1
ECe Yes 2 No 0
Clay Yes 4 Yes 2
Silt Yes 4 Yes 3

ACF: autocorrelation function, ECe: electrolytic conductivity, abundance: number of
animals, evenness (Sheldon index), richness (Menhinick index) and diversity
(Shannon H0 index).
3.4. Autoregressive models of macrofauna indices

The presence of autocorrelation could be used in modelling the
data series by means of an autoregressive (AR) model. In the
following, the procedure of AR modelling is shown with the
variable Shannon index (50–500 m). First, the autocorrelation
function is shown, which indicates autocorrelation over one lag,
because its autocorrelogram value exceeds coefficient interval in
one lag (Fig. 2a). This made it eligible to be incorporated in first
order autoregressive state-space model. The order of the moving
average (MA) model part is thus one. Second, the partial
autocorrelation function is shown (Fig. 2b) which indicated
autocorrelation also in the first lag that justifies an AR model
with the order one. The respective AR model (1,1) estimates the
basic pattern of diversity value change along the spatial series
(Fig. 3). The residuals however, despite a lack of autocorrelation,
were still very large. Also, most of the fluctuations were not
grasped by the model. Similar results were found in the variables
macrofauna abundance, evenness and richness.

3.5. Cross-correlation functions of macrofauna and soil properties

In order to improve the modelling, cross-correlation functions
between macrofauna indices and soil properties were calculated
(Table 6). In the 10–100 m spatial series, three pairs yielded cross-
correlations (Table 6). The relationship between evenness and clay
was negative but the relationship between Menhinick or Shannon



Fig. 2. Autocorrelogram for Shannon H0 (50–500 m spatial series); a: autocorrela-
tion function of Shannon H0 (50–500 m spatial series) and b: partial autocorrelation
function of Shannon H0 (50–500 m spatial series). Shannon H0: diversity; upper and
lower lines: 95% confidence interval is �0.197.

Table 6
Results of cross-correlation function analysis.

CCF, 10–100 m ECe Clay Silt

Abundance No No No
Evenness No Yes No
Richness No No Yes
Diversity No No Yes
CCF, 50–500 m ECe Clay Silt
Abundance No No No
Evenness No No No
Richness No No No
Diversity No No Yes

CCF: cross-correlation function; ECe: electrolytic conductivity, abundance: number
of individuals, evenness (Sheldon index), richness (Menhinick index) and diversity
(Shannon H0 index).
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index and silt was positive. In Fig. 4, the positive relationship
between Shannon index and silt is shown. In the 50–500 m spatial
series, the only cross-correlation function was found in the
variables of Shannon and silt; the results indicated again a positive
relationship between the two series (Fig. 5).

3.6. Autoregressive state-space model of macrofauna

On the basis of these findings, autoregressive state-space
analysis was carried out to estimate macrofauna diversity at each
location with soil properties. With the data series I (10–100 m),
however, based on the three variable pairs showing cross-
correlations between macrofauna indices and soil properties, no
reasonable state-space model could be found.

In contrast, in the data series II (50–500 m), a state-space model
could be found for estimating a macrofauna index based on soil
Fig. 3. ARMA model of the spatial series of Shannon (50–500 m spatial series).
property. With state-space analysis, the Shannon index could be
estimated with soil texture (silt) (Fig. 6). The coefficient of
determination was R2 = 0.82. About 38% of variability of the
Shannon index could be explained with silt content; however, the
contribution of preceding values of the Shannon index (SHi�1) to
the estimation was considerably higher (62%) (Fig. 6).

A comparison of the different statistical methods used in this
study and their corresponding results that were obtained are given
in Table 7.

4. Discussion

This study addresses macrofauna abundance, diversity, even-
ness and richness along transects in the riparian forest of the
south-western Iran. Emphasis was laid upon the relationship
between macrofauna and soil properties such as soil texture.
However, biotic interactions as well can contribute to the
formation of spatial patterns in soil fauna (Birkhofer et al.,
2010). Sereda et al. (2012) pointed out the importance of
considering biotic and abiotic processes when studying the
distribution of macrofauna.

As expected, all macrofauna indices studied were spatially
structured, with ranges of several hundred meters and more. It
may be because of large scale heterogeneity, reflecting gradients of
soil texture and vegetation system (Ettema and Wardle, 2002).
Spatial relationship between soil macrofauna diversity and
vegetation density have been found by Gholami et al. (2014) in
this area, that may confirm the effect of vegetation beside soil
properies, on spatial variability of soil macrofauna diversity at large
ranges. Small-scale variability was not captured well, which is
indicated by the large nugget variance (Joschko et al., 2009). It can
be explained by sampling error, short range, random and inherent
variability.

Due to the spatial structure of macrofauna community
properties, the possibility for the application of classical statistics
for analysis of the macrofauna–soil properties relationship was
limited (Joschko et al., 2009; Taylor and Bates, 2013). So
predictably, rank correlation analysis with data that shows spatial
dependencies, revealed, that relationships between macrofauna
and soil properties were not strong.

Since soil properties also showed spatial dependencies, cross
semivariograms were calculated. With this approach, relationships
were detected between macrofauna indices and soil properties,
especially soil texture, i.e. silt and clay content. However, with the
geostatistical approach, no further details of the relationship
between macrofauna and soil properties could be identified.

Therefore, the time series approach was chosen in order to get
more information about the nature of this relationship. Compara-
ble to the geostatistical results, the time series analyses showed
spatial autocorrelation in almost every parameter studied, with
autocorrelation over 1–2 lags, corresponding to distances of



Fig. 4. Cross-correlation function between Shannon index and silt (10–100 m spatial series). Upper and lower lines: 95% confidence interval is �0.197.

Fig. 5. Cross-correlation function between Shannon and silt (50–500 m spatial series). Upper and lower lines: 95% confidence interval is �0.197.
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maximally 200 m (10–100 m series) or 1000 m (50–500 m). The
autocorrelation function provides information about the separa-
tion distance with which a measured value is related to its
neighbours and, it is a manifestation of the fact that at or beyond
the lag distance, observations will vary at random (Nielson and
Wendroth, 2003).

Classical, ordinary least squares linear regression analysis was
unsuitable because observations were not independent from each
other (Joschko, 2009; Aquino et al., 2015). Therefore, quantification
of the macrofauna community properties–soil relationships across
transects was carried out by autoregressive state-space analysis
(Nielson and Wendroth, 2003). In fact, autoregressive (AR) models
were tested positively for estimating macrofauna indices along
Fig. 6. Estimating the Shannon Index (diversity) of soil macrofauna with silt; s
transects. However, there were still considerable large residuals
which necessitate further efforts to better describe the spatial
distribution of macrofauna indices.

The AR model was used for the 50–500 m space data points. The
question arises, how biodiversity indices could be autocorrelated
at this spacing. The likely reason is close relationships of biota to
spatially structured soil properties, as already suggested by Ettema
and Wardle (2002). Therefore, as a next step, cross-correlation
functions were calculated. The numbers of cross-correlations were
considerably lower than the number of valid cross-variograms.
This fact is probably due to the amount of data available for the
geostatical analysis (200 data points) compared to the less than
100 data for the CCF analysis. With this approach, positive
tate-space analysis, data series II (50–500 m). SH: Shannon index; SI: silt.



Table 7
Comparison of the statistical methods applied in this work.

Rank correlation co-efficient Geostatistics (variogram) Autoregressive moving average
(ARMA)

State—space model

Approach Aspatial global approach Spatial global approach Serial/spatial global approach Serial/spatial local approach
Results Rank correlation analysis of soil

macrofauna diversity indices and soil
properties indicated only weak
relationships between macrofauna
indices and soil properties

The variograms revealed the presence
of spatial autocorrelation. According
to the cross-variograms, soil texture
(clay and silt) was spatially closely
related to macrofauna indices

Time series analysis yields more
information about the
relationship between fauna and
soil than geostatistics alone.
The ARMA model shows
reasonable estimation of
diversity values along the spatial
series

State-space analyses described
macrofauna diversity as a function of
soil texture. It was found, that for
estimating macrofauna diversity
(Shannon Index), the silt content
contributed with about 38%

Hierarchical
sampling
design

Applicable Applicable In contrast to geostatistical
analysis, time series analysis
required a data transformation
prior to analysis to derive a one-
dimensional arrangement

In contrast to geostatistical analysis
the sampling design has to be
optimized and adapted with ideally
an equidistant sampling design

Advantage rank correlation analyses helped to
select the most important soil
properties being related to
macrofauna properties

Variography analyze the spatial
autocorrelation of the variables

The ARMA model shows
estimation of diversity values
along the spatial series

State-space analysis has a great
potential for analyzing relationships
between different spatial
series of data such as soil biodiversity
and environmental variables at
regional scales

Weakness Due to the spatial structure of
macrofauna and soil properties, the
possibility for the application of
classical statistics such as Pearson’s or
Spearman’s correlation is limited for
two reasons: 1) technically, spatial
autocorrelation violates the
underlying assumption of
“independent observations” in the
classical statistical methods; 2) from
the ecological standpoint, classical
methods do not suffice since they
cannot discriminate between
“external” and “internal” drivers of
the macrofauna’s spatial distribution

Variography is less suitable to assess
the interactions between two more
variables. Multivariate variography,
based on cross-variograms, can be
become very complex and difficult to
interpret. And it is not well suited to
sort out the contribution of “external”
and “internal” effects on spatial
distribution

ARMA, is not fully compatible
with the spatial data set used
here. Data transformation was
necessary before ARMA was
applicable

State-space analysis, is not fully
compatible with the spatial data set
used here. Data transformation was
necessary before state-space was
applicable
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relationships between macrofauna and silt content, negative
relationships to clay content were detected. Interestingly, these
general relations correspond to the rank correlation analysis,
which however must not always be the case.

State-space models or dynamic linear models have been used to
characterize macrofauna diversity at each location with soil
properties (Shumway and Stoffer, 2000). This approach has been
widely and successfully applied in agronomy, mainly when
compared to classical models of multiple regressions (Aquino
et al., 2015). Interestingly, the first data set yielded no valid state-
space models. Obviously, the design with large distances between
sampling nests was not adequate for the state-space approach
which necessitates ideally equidistance between data points. Only
the second data set, consisting of widely distributed samples 50–
500 m apart dispersed over the whole study area, yielded a
reasonable state-space model, with an R2 of 0.82 between
observed and estimated values. Also in this case, confidence limits
were still very large, and the coefficient of determination relatively
low (Nielson and Wendroth, 2003), but the results indicate that
this approach was an important step in the right direction.

With this state-space approach, the relative importance of the
soil to estimating the variable of interest could be ascertained.
State-space analyses enabled to describe macrofauna diversity
along transects as a function of soil texture. It was found, that for
estimating macrofauna diversity (Shannon Index), the silt content
contributed with about 38% to the estimation.

Soil properties are important for soil biota and often determine
their distribution by texture (Joschko et al., 2010) that character-
izes the physical environment for macrofauna. The silt content
indicates the water availability in soils. Soil moisture is one of the
most important environmental variables for soil biota. Recently,
soil texture, especially clay and fine silt, has been used for
classifying earthworm populations in sandy agricultural soils in
Germany (Joschko et al., 2009). Our observations thus partly
support the findings of Joschko et al. (2009) that showed soil
texture is important for estimating earthworm parameters along
transects using state-space analysis.

Contributing to these results might be the fact, that the
macrofauna studied was a heterogeneous systematic group, and
comprised besides geobionts, geophiles such as diptera larvae
where the relationship to soil properties might be less close. The
relationship can be expected to be considerably closer, if only one
systematic group, e.g. earthworms, is addressed. The biodiversity
as well as the soil parameters could be improved and optimized in
future studies. The relationship between biodiversity character-
istics and environmental variables was recently introduced as
indicator of sustainability (Vellend et al., 2007). This concept might
also be applicable to soil ecological parameters and should be
studied more closely.

5. Conclusion

Spatial studies considerably improve the analysis of macro-
fauna distribution and the analysis of macrofauna–soil relation-
ships at the regional scale. Time series analysis yields more
information about the relationship between fauna and soil than
geostatistics alone. As revealed by state-space analysis, soil silt
content is a strong predictor for macrofauna diversity. State-space
analysis may help to better explore and understand relationships
between soil biodiversity and environmental variables at regional
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scales. However, for the application of AR modelling and state-
space analysis, the sampling design has to be optimized and
adapted with ideally an equidistant sampling design. It was known
in this study that the application of modern statistical techniques
helps to identify links between biodiversity and its environment
and may thereby advance future biodiversity researches.
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