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Abstract

When parameters are estimated from noisy data, the uncertainty of the estimates in terms of their standard deviation
scales like the inverse square root of the number of data points. In the case of deterministic dynamical systems w
observation noise, superior scaling laws can be achieved. This is demonstrated numerically for the logistic map, the va
oscillator and the Lorenz system, where exponential scaling laws and power laws have been found, depending on th
of degrees of freedom. For some special cases, analytical expressions are derived.
 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

When noisy time series are analysed, one o
encounters the situation that the structure of
underlying dynamical process is known, but so
coefficients are unknown. These must be estima
from measured data. In this Letter we investigate, h
the accuracy of the estimated parameters depend
the number of data points, i.e., the length of the ti
series.

* Corresponding author.
E-mail address: horbelt@physik.uni-freiburg.de (W. Horbelt)
URL address: http://webber.physik.uni-freiburg.de/~horbelt.
0375-9601/03/$ – see front matter 2003 Elsevier Science B.V. All rig
doi:10.1016/S0375-9601(03)00349-9
To be more specific, the parameter estimation pr
lem is stated as follows. Consider an autonom
deterministic time-continuous dynamical system
scribed by a differential equation that depends on a
of unknown parametersp.

(1a)ẋ = f (x,p), t ∈ [T0, T0 + T ],
(1b)x(T0) = x0.

In the case of time-discrete systems, Eqs. (1)
replaced by

(2)xn = x(tn) = f (xn−1,p), n = 1, . . . ,N.

The dynamical parametersp and the initial valuesx0
are combined to the vectorθ = (x0,p). Assuming
that the first component ofx can be observed, th
hts reserved.

http://www.elsevier.com/locate/pla
http://webber.physik.uni-freiburg.de/~horbelt
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Fig. 1. Objective function of the logistic map Eq. (5) for noisele
data of different lengthsN . For each length one time series w
simulated with the true parametersθ = (x0, a) = (0.8,1.85) and
without noise. Thenχ2(θ) was plotted as a function ofa, x0 being
set to its true value. Curves for higherN are higher than those fo
smallerN since the summands of Eq. (4) are non-negative.
global minimum ata = 1.85 becomes successively sharper but
number of local minima increases.

measurement process is modelled by theobservation
equation

(3)yn = x1(tn, θ) + ηn, n = 1, . . . ,N.

Here, ηn denotes independent normally distribut
random numbers with zero mean and varianceσ 2

data,
accounting for measurement noise.

The maximum likelihood method can be used
estimate θ from the measured data. It minimis
the objective function, which is the sum of square
residuals between the data and the model trajec
divided by the variance of the noise:

(4)χ2(θ) =
N∑

n=1

(
yn − x1(tn, θ)

σdata

)2 != min.

The ML estimator is asymptotically unbiased and e
cient [1] because it takes into account all informat
known about the data. In the context of then-step pre-
diction error proposed in [2], Eq. (4) corresponds
theN -step prediction error.

χ2(θ) can have a quite irregular appearance
Consider the logistic map

(5)xn = f (xn−1, a) = 1− ax2
n−1, n = 1, . . . ,N
with the parametera ∈ (0;2] and the state variabl
xn ∈ [1 − a;1].1 In Fig. 1 its objective function is
plotted against the dynamical parameter for differ
lengths of the time series. While the number of
cal minima increases withN , they become succe
sively sharper, promising that the parameter estim
becomes successively more accurate, provided tha
correct minimum is found. It is this increase of the a
curacy that we intend to quantify in this Letter. F
non-linear regression and stochastic auto-regres
systems the standard deviation of the estimates sc
like N−0.5 [4,5]. For deterministic dynamical system
with added observation noise, stronger power laws
exponential laws are possible, as shown in the seq

The following section will provide mathematic
definitions and numerical techniques. In Section
numerical results will be reported for some examp
of dynamical systems. Analytical results will be giv
in Section 4.

2. Methods

In order to simplify this presentation, we confi
ourselves to scalar time-discrete systems in this
tion. For time-continuous systems more compreh
sive descriptions of the parameter estimation me
ods and applications to measured data can be fo
in [6–9].

In the scalar case, Eqs. (2) and (3) read

(6)xn = f (xn−1,p),

(7)yn = xn(p) + ηn, n = 1, . . . ,N.

2.1. Fisher information

The least squares estimatep̂ is the parameter vecto
that minimises the objective function Eq. (4). In t
limit of small noise levels we can assume that
estimation error�p between the estimatêp and the
true parametersp0 is also small and we can expan
xn(p) with respect to�p:

(8)xn(p̂) = xn(p0) + gn · �p, gn = ∂xn

∂p

∣∣∣∣
p=p0

.

1 The alternative notationzn = rzn−1(1 − zn−1) is related to
Eq. (5) by the transformationsa = r

4(r − 2) andx = 4z−2
r−2 .
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Plugging this and Eq. (7) into the objective functi
Eq. (4) we get

(9)χ2(p̂) = σ−2
data

N∑
n=1

[
yn − xn(p̂)

]2

(10)

= σ−2
data

N∑
n=1

[
xn(p0) + ηn − xn(p0)

− gn · �p
]2

(11)= σ−2
data

N∑
n=1

[
ηn − gn · �p

]2 != min.

At the estimated parameters the gradient of
objective function with respect to�p vanishes. This
leads to the normal equations

(12)A�p =
N∑

n=1

ηngn with A =
N∑

n=1

gng
t
n.

Some algebra shows that the covariance matrix of
estimate is

(13)
〈
�p�pt

〉 = I−1 = 2H−1,

whereI = σ−2
dataA is the Fisher information matrix a

the true parameters [1] andH is the Hessian matrix
of χ2. The sensitivitiesgn follow from the dynamical
equation (2):

gn = f p(xn−1) + fx(xn−1)gn−1

(14)with f p = ∂f

∂p
and fx = ∂f

∂x

and by induction:

(15)gn =
n−1∑
i=0

f p(xi)

n−1∏
j=i+1

fx(xj ).

In special cases the Fisher information matrix
singular, meaning that the desired parameters ca
be identified uniquely from the data [10]. The
exceptions are not considered here.

2.2. Multiple shooting

Finding the global minimum of Eq. (4) can be
demanding task, as can be seen from Fig. 1. For
reason the multiple shooting technique developed
ordinary differential equations [6] was transferred
t

time-discrete systems [9]. In this approach all syst
statesxn, n = 0, . . . ,N , are treated as fit variables an
the constrained non-linear optimisation problem

(16a)χ2(θ)
!= min,

(16b)xn = f (xn−1, θ), n = 1, . . . ,N

is solved iteratively with a generalised Gauss–New
method [6] or a quasi-Newton method [11]. Since
constraints Eq. (16b) may be violated on intermed
iteration steps, the final solution can be reac
through “forbidden ground”. This freedom allows t
method to stay close to the observed data and red
the problem of local minima. As a final precaution t
true trajectories were always provided as a star
guess in the optimisation procedure. For a deta
discussion of the numerical issues of the multi
shooting approach see [12].

3. Empirical results

In this section the scaling behaviour is investiga
by simulation studies for some typical examples
dynamical systems. The following subsections con
three examples of different complexity.

3.1. Logistic map I: standard deviation of parameter
estimates

Time-discrete systems allow us to focus on
essential properties of dynamical systems. The m
prominent deterministic time-discrete system is the
gistic map Eq. (5). Fora > 2 the map is unstable, s
the constrainta � 2 has to be implemented in the p
rameter estimation procedure. In order to circumv
boundary effects on the statistics,a = 1.85 was chosen
as the true parameter.

Time series with lengthN ranging from 2 to 60
were generated according to Eq. (5). For largerN the
sensitivity of the end of the trajectory with respe
to its beginning would approach a limit imposed
the machine precision. The initial value wasx0 = 0.8.
White Gaussian noise with a noise level of 10% w
added, i.e., the standard deviation of the noise
10% of that of the signal. Then the multiple shooti
approach described above was applied to the data
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Fig. 2. Sample standard deviation of estimates for logistic m
(a) one degree of freedom; crosses: initial valuex0 fixed to 0.8,
parametera fitted; plus signs: parameter fixed to 1.85, initial val
fitted; solid line: exponential curve with exponentλ = 0.50263;
(b) two degrees of freedom; crosses: 0.1% noise; plus signs
noise; solid lines: 1/N curves.

first onlya was estimated whilex0 was assumed to b
known.

For eachN , 1000 time series were generated a
the parameter estimatesâi were obtained. Although
their distribution is not exactly Gaussian, especia
for small N , their meanā and their sample standa

deviationσ = [ 1
999

∑
i (âi − ā)2

]1/2
were computed a

a measure of the accuracy. Fig. 2(a) displaysσ as a
function of N . It turns out to scale like exp(−λN),
where λ = 0.503 is the Lyapunov exponent of th
logistic map, defined by

(17)λ = lim
N→∞

1

N

N−1∑
n=0

log
∣∣f ′(xn)

∣∣.
In the next simulation,a was fixed to 1.85 andx0
was fitted. Again 1000 time series were analysed
eachN , leading to a similar result.
Finally, both variables were fitted simultaneous
In this case,σ(N) came out as a rather discontinuo
curve rather than a smooth function. The accur
increases almost step-like at certain values ofN which
depend on the initial valuex0. The reason is tha
some data points in the time series contain m
information than others. This problem was tackled
choosing a different initial valuex0 for each of the
1000 replications, so that the steps were smoothed
The initial values were generated by iterating Eq. (
thus their distribution reflects the invariant measure
the map. Furthermore a small number of failed fits w
excluded, for which the final value of the objecti
function was ten times higher than expected. Althou
the multiple shooting approach helps in circumvent
local minima, it cannot suppress them completely.

Again the standard deviation of the estima
parameter was plotted againstN (see Fig. 2(b)). In
this case it seems to scale like 1/N . The deviation
of the estimated initial value from the respective tr
value was also analysed. It did not show an equiva
scaling law. This can be understood as a consequ
of the varying initial value. The sample standa
deviation of the estimation error is not a meaning
number in this case.

Regarding these results it seems that the m
number of degrees of freedom determines the k
of scaling law while the difference between initi
values and dynamic parameters is less important.
scaling curves shown in Fig. 2 are jagged due to
observation noise in the time series. The method u
in the following subsection estimates the parame
uncertainties from noiseless data and yields, theref
smoother curves.

3.2. Logistic map II: standard deviation from Fisher
information

In the limit of small noise levels, the variance a
covariance of the estimated parameters are give
Eq. (13). The sensitivities Eq. (15) can be compu
directly from noiseless data. Nevertheless it is nec
sary to regard an ensemble of time series for eacN

since they depend on the initial values.
The sensitivities with respect to the initial value a

calculated differently than those with respect to d
namic parameters. In order to simplify the compu
tions in the case of two degrees of freedom, we in
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Fig. 3. Distributions ofσ for the generalised logistic map with on
degree of freedom, on a logarithmic scale, withN = 2, . . . ,60 from
right to left. The horizontal axis shows the standard deviationσi ,
computed manually as described in the text. The vertical axis sh
the corresponding quantile; (a)a = 1.85; (b)a = 2.

duce the generalised logistic map

(18)xn = a0 − a2x
2
n−1, n = 1, . . . ,N

with two dynamic parameters,a0 anda2 = a. Though
a0 is still always equal to 1, it is now viewed as a
parameter, either known or unknown.

For eachN from 2 to 60, 10000 time series we
computed with different initial values generated
before. At first a0 was assumed to be known. F
each realizationi, the (scalar) matrixA in Eq. (13)
was computed and inverted, giving a “manual stand
deviation”σi . These are to be multiplied withσdata to
get the theoretical standard deviations in the limit
smallσdata.

In Fig. 3(a) the statistical distributions of theσi are
shown on a logarithmic scale for allN . The rightmost
curve corresponds toN = 2 and is jerky due to the
finite number of data points. The leftmost curves
successively smoother, but also broader. An interes
result visible is that the logarithm ofσ but notσ itself
has a nearly Gaussian distribution. Fig. 3(b) shows
distributions fora = 2. In this case the shape of th
curves is almost identical for allN , except for very
small N . This reflects the fact that the logistic ma
has a higher symmetry fora = 2. The exponentia
scaling law is already visible: the distance betwe
two adjacent curves is approximately constant in
semi-logarithmic plot. However, when looked up
on a linear scale, the curves would be dominated
those rare realizations with extraordinarily highσi .
Therefore, the simple mean ofσi does not provide a
meaningful measure. A more suitable number is
log-averaged standard deviationσ̃ , defined by

(19)log σ̃ = 1

M

M∑
i=1

logσi .

It will be used in all following investigations.
In Fig. 4(a),σ̃ resulting from the data in Fig. 3(a)

compared with the corresponding exponential funct
exp(−λN). This plot can be seen as an improv
version of Fig. 2(a). In Fig. 4(c) the same can be s
for the data of Fig. 3(b), corresponding toa2 = a = 2.
When a0 was the unknown fit parameter, the sa
results were obtained (see Fig. 4(a) and (c)). In th
figures, no deviation from the exponential scaling la
is visible. In order to show how good the accordan
really is, all σ̃ were multiplied with exp(λN). This is
shown in Fig. 4(b) and (d), respectively.

Fig. 5 shows the results for two degrees of freedo
i.e., botha0 and a2 were assumed to be unknow
In this caseA−1 is a 2× 2 matrix and the squar
roots of the two diagonal elements were plott
Regardless ofa2, σ̃ scales asymptotically roughly lik
1/N , confirming the result of Fig. 2(b). Fora = 2,
the Lyapunov exponent is higher and the limit of t
machine precision is reached earlier than fora = 1.85.
Therefore the plot range in Fig. 5 was restricted
N �50.

3.3. Lorenz system

In this subsection, as an example of a continu
dynamical system, we regard the Lorenz system

(20)ẋ = s(y − x),

(21)ẏ = −xz+ rx − y,

(22)ż = xy − bz
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Fig. 4. Log-averagedσ as a function ofN for the generalised logistic map with one degree of freedom. The true parameters werea0 = 1,
a2 = 1.85 in the upper panels, corresponding to Fig. 2(a), anda0 = 1, a2 = 2 in the lower panels. In the left column (a), (c),σ̃ for the
estimation ofa0 anda2 is drawn with circles and crosses, respectively. The accuracy scales exponentially. The solid lines indicate exp
functions exp(−λN), whereλ = 0.50263 in panel (a) andλ = log(2) in panel (c). These are the Lyapunov exponents of the map fo
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with s = 10, r = 46 andb = 2.667. For eachT be-
tween 1 and 25, 1000 noiseless time series of lengT
were simulated with a sampling time�t = 0.04. Then
the parameter estimation procedure described in [
was applied to thex component to minimise the obje
tive function Eq. (4) with respect to one, two or thr
fitted parameters. The initial values were fixed to th
true values in all cases. Finally the covariance m
trix was evaluated at the solution point to obtain st
dard deviationsσi for the fitted parameters. Fig. 6(
shows the distribution functions for theseσi in the case
of one degree of freedom (s fitted, r and b fixed).
The rightmost curve corresponds toT = 1. With in-
creasingT , the shape of the curves becomes m
symmetric. The log-averagedσ scales like exp(−λT )

to within linewidth (see crosses in Fig. 6(b)), whe
λ = 1.24 is the Lyapunov exponent of the system [1
The same result is obtained whenb is fitted (circles)
or whenr is fitted (not shown).
Fig. 6(c) and (d) show some of the results wh
two or all three parameters were fitted. Again
exponential law turns into a power lawσ ∼ T α . For
two degrees of freedom, the exponent seems to be
−1.5. Numerical limitations bound theT range that
can be exploited to below 15. In Fig. 6(d) a pow
law with α = −1 is drawn for comparison althoug
due to numerical errors the curves do not contai
large region of constant slope. It should be emphas
that in all cases the scaling behaviour is clearly be
than the usual 1/

√
N law. This is because the comple

dynamic information of the data is taken into acco
for the parameter estimation.

3.4. Van der Pol oscillator

For the logistic map and the Lorenz system w
one degree of freedom, the accuracy of the para
ter estimates appeared to be ruled by the positive L
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Fig. 5. Same as Fig. 4 for two degrees of freedom in d
ble-logarithmic plot. The two point types correspond to the t
square roots of the diagonal elements of the computed co
ance matrix. The solid lines indicate the power lawσ ∼ N−1.
(a) a = 1.85; (b)a = 2.

punov exponent. This indicates that an exponen
scaling law is only possible for chaotic systems. Ho
ever, power laws with exponents below−0.5 are pos-
sible for other examples. In this section we consi
the van der Pol oscillator, a system showing a limit
cle. The dynamical equation reads

(23)ẍ = kẋ
(
1− x2) − x,

with k = 1. It generates oscillations with a perio
τ = 6.66, which is used as a unit in the sequ
We simulated time series of lengthNτ with N =
2,4, . . . ,200, sampled with�t = 0.1τ .

To obtain initial values on the attractor, a mas
piece of lengthτ/2 was simulated after removing th
transient. Due to the invariance of the equation w
respect to sign reversal, the second half period dif
from the first one only in the sign and gives iden
cal results with respect to the accuracy of estima
Initial values were read off at 10 equidistant tim
(phases) on the master piece. For eachN and each
phase, the parameter estimation procedure was
formed with noiseless data and standard deviationσi

were determined from the Fisher information matr
analogously to Section 3.3.

The σi were averaged for eachN and plotted
versusN in Fig. 7(a). They scale likeT −3/2. In
Fig. 7(b) they are multiplied withT 3/2 to show the
net effect. The net values are asymptotically const
Finally in Fig. 7(c) we regard the dependence
the standard deviation on the initial value. For t
simulation, 100 equidistant phases were chosen
each N . For N ranging from 5τ to 55τ in steps
of 5τ , the computed standard deviation is plotted
a function of the phase of the initial value with
the master piece. These functions areτ

2-periodic as
mentioned above. The effect of the scaling lawσ ∼
T −3/2 was removed from these curves by multiplyi
them with T 3/2. The effect of the phase is lik
a boundary effect. It is most pronounced for sh
trajectories and flattens out for larger ones.

3.5. Summary of empirical results

In the preceding section scaling laws of various
namical systems were determined empirically. Th
results are summarised in Table 1. Also included
results for the two-dimensional Hénon map that w
not reported in detail. In this case the empirically d
termined scaling exponentλ′ = 0.3 was not equal to
the Lyapunov exponentλ = 0.419.

4. Analytical results

The preceding section has demonstrated that
namical systems show a variety of different scal
laws. Now we will give results of a mathematic
analysis of the behaviour in some selected cases.

4.1. Stationary stochastic Markov processes

Though this non-deterministic class of dynami
systems is not in the main scope of this Letter, it is w
suited for comparison. Consider a stochastic Mar
process without observation noise

(24)xn = f (xn−1,ηn,p),
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T 1000 fits were made. (b) Log-averaged standard deviations for a single degree of freedom (points). The solid line indicates the e
scaling lawσ ∼ exp(−λT ), whereλ = 1.24 is the Lyapunov exponent of the Lorenz equation for the chosen parameters. Each cros
upper curve represents the mean of one curve in panel (a). (c) Same for two degrees of freedom (points). The solid line indicates a
σ ∼ 1/T 3/2. (d) Same for three degrees of freedom (points). The solid line corresponds toσ ∼ 1/T . In this case no definite scaling law can
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whereηn are independent identically distributed ra
dom vectors. Denote the true parameters withp0 and
the maximum likelihood estimates witĥp. From the
martingale central limit theorem follows under t
assumption of ergodicity and stationarity, that(p̂ −
p0)

√
N is asymptotically normally distributed wit

constant covariance matrix, i.e., the standard de
tion of the estimation error scales like 1/

√
N (see [14],

p. 131).

4.2. Scalar chaotic maps

This subsection derives analytically the exponen
scaling law for scalar chaotic maps with one degre
freedom, seen, e.g., in Fig. 2(a). In order to simp
the discussion, we regard only the dependence
dynamic parameters while the initial value is assum
to be known.

Following up Eq. (15) we can write

(25)gn = znun,

(26)with zn =
n−1∏
j=0

fx(xj ),

(27)and un =
n−1∑
i=0

f p(xi)z
−1
i+1.

The numberszn embody the high sensitivity of th
end of the trajectory with respect top. On average
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g law
Table 1
Summary of scaling laws

Dynamical system Technique used Degrees See Fig. Scalin
of freedom

Logistic map Empirical standard deviation, evaluated from ensemble of fits with noisy data 1 2(a) exp(−λN)

2a 2(b) N−1

Generalised logistic map Manual standard deviation, computed by recursion, log-averaged 1 4 exp(−λN)

2 5 N−1

Hénon map Empirical standard deviation, evaluated from ensemble of fits with noisy data 1 – exp(−λ′N)

2 – N−1

Lorenz system Noiseless fit 1 6(a) exp(−λT )

2 6(b) T −1.5

3 6(c) indefinite

Van der Pol oscillator Noiseless fit 1 7 T −1.5

a One parameter and one initial value.
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|zn| increases exponentially. To be more specific,
regard

(28)λ = lim
n→∞

1

n
log|zn|

(29)= lim
n→∞

1

n

n−1∑
j=0

log
∣∣fx(xj )

∣∣,
which is exactly the definition of the Lyapunov exp
nent in Eq. (17).

On the other hand,un in Eq. (27) behaves like
noisy power series sincef p(x) is bounded andz−1

i+1
decays exponentially. We denote its limiting val
by u∞. Regarding only the asymptotics ofgn, we can
replaceun with u∞ in Eq. (25). Then we arrive at

(30)A ≈ u∞ut∞
N∑

n=1

z2
n

(31)≈ u∞ut∞
1

1− e−2λ︸ ︷︷ ︸
const

e2λN.

The latter relation is a rough estimate obtained
replacing |zn| with exp(λn) according to Eq. (28)
When a single parameter is estimated,A is a scalar
and the standard deviation of the estimate isσ =
σdata

√
A ∼ exp(−λN), in concordance with the em

pirical results of Figs. 2(a) and 4(a), (c).
In the case of two degrees of freedom,A is a square

matrix. In the approximation of Eq. (30), it is sing
lar, sinceu∞ut∞ has rank one. That means that on
one eigenvalue ofA increases like exp(λN) while the
other one is much smaller. In most cases the estim
directions in the parameter space are linear comb
tions of both eigenvectors, so the corresponding v
ances do not scale exponentially. It would be de
able to understand the power law shown in Fig. 2(b
a similar manner, however, this phenomenon is m
difficult to access than the simple result for a sin
degree of freedom.

4.3. Periodic systems

The previous section considered a system with
exponential scaling law. In the sequel we will deri
analytically the power law that is visible in Fig.
Consider a model that depends on a single param
p and generates scalar periodic trajectoriesx(t,p)

with period τ (p) and frequencyω(p) = 2π/τ(p),
i.e.,

(32)x(t,p) = f
(
ω(p)t,p

)
,

wheref (φ,p) is 2π -periodic inφ. The true paramete
shall be denoted byp0. Furthermore assume that
measurement of the trajectory is made over the len
Nτ(p0) with a sampling time�t = τ (p0)/m,m ∈
N.

The observation equation (7) holds withn = im +
j , i = 0, . . . ,N − 1, j = 1, . . . ,m. Eqs. (8)–(13) do
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Fig. 7. Confidence intervals for the van der Pol oscillator, compu
from fits with noiseless data; (a) averaged standard deviation
function of N in double-logarithmic plot (points) and a scalin
law σ ∼ 1/T 3/2 (solid line); (b) deviation of simulation from th
scaling law. Note the small range of the vertical axis; (c) sca
standard deviation as a function of the starting point of the trajec
Only the first half period is shown. The second half is identical
to a symmetry of the system. The different curves correspon
different lengths, ranging from 5τ (out-most curve) to 55τ (flattest
curve). Each curve was multiplied withT 3/2 to remove the effec
of the scaling law. For longer time series, the standard deviatio
successively less dependent on the starting point.

also apply but the sensitivities are now

(33)gn = d
f

(
ω(p)n�t,p

)∣∣∣∣
dp p=p0
= ∂f

∂φ

(
ω(p0)n�t,p0

)
n�t

dω

dp

(34)+ ∂f

∂p

(
ω(p0)n�t,p0

)
.

Case 1. The parameter has no influence on the per
i.e., dω

dp = 0.

Then the equationω(p0)m�t = 2π and the 2π -
periodicity of ∂f

∂p
lead to

(35)gn = ∂f

∂p

(
ω(p0)(im + j)�t,p0

)

(36)= ∂f

∂p

(
ω(p0)j�t,p0

)
and

(37)A =
Nm∑
n=1

g2
n =

N−1∑
i=0

A1 = NA1

(38)with A1 =
m∑

j=1

[
∂f

∂p

(
ω(p0)j�t,p0

)]2

.

A1 is independent fromi. According to Eq. (13) the
standard deviation of the estimate scales likeN−0.5.

Case 2. ω depends onp.

If dω
dp does not vanish, the first term of Eq. (34) is

the orderO(n). The second term is bounded since∂f
∂p

is periodic. So the first term is dominant forn, i → ∞.
We expandgn in terms of powers ofi and retain only
the highest order term, indicating the others withO(.):

(39)gn = ∂f

∂φ

(
ω(p0)j�t,p0

)
im�t

dω

dp
+O(1).

Again recalling Eq. (12) we get

(40)

A =
N−1∑
i=0

i2A2 +O(i)

= 1

3
N3A2 +O

(
N2)

with A2 =
m∑

j=1

[
∂f

∂φ

(
ω(p0)j�t,p0

)
m�t

dω

dp

]2

.

Again looking at Eq. (13), the standard deviation ôp
scales asymptotically likeN−1.5 in accordance with
Fig. 7.
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In summary this underlines that parameters in
encing the period of a trajectory are more delic
than parameters that only affect the shape of a p
odic orbit. A similar result was obtained in [15] for th
chaotic Mackey–Glass equation. Though this delay
feedback system does not produce periodic trajecto
for the parameters regarded, the delay time has an
portant influence on intrinsic oscillations and acco
ingly the estimated delay parameter turned out to
extraordinarily accurate.

5. Summary

In this Letter we regarded the standard deviatioσ
of parameters estimated from noisy time series of
terministic dynamical systems and investigated its
lation to the length of the time series. Depending
the number of degrees of freedom, different asym
totic scaling laws were found. Scalar time discrete s
tems as well as continuous chaotic systems with
unknown parameter show an exponential scaling
with the coefficient in the exponent being equal to
Lyapunov exponent of the system. For scalar time
crete systems this result could be explained ana
cally. When two parameters are estimated, the ex
nential law turns into a power lawσ ∼ Nα . However,
in all examples analysed, the exponentα was still well
below −0.5. Finally, for periodic systems in whic
the period is influenced by a parameter, a power
σ ∼ N−1.5 was both derived analytically and demo
strated numerically.

The fact that the exponential law holds only f
one degree of freedom has great practical releva
It means that the extreme sensitivity of a chaotic s
tem with respect to its initial values (quantified by
positive Lyapunov exponent) cannot be exploited
yield precise parameter estimates if nuisance para
ters must be estimated simultaneously.

Other examples in which the accuracy of an e
mate does not follow the usualN−0.5 law, were re-
ported in [16,17]. These effects cannot be reprodu
when small amounts of observation noise is adde
the data. In contrast, the scaling laws reported in
Letter were robust with respect to observation nois

The reason for the superior scaling laws is that
objective function exploits the full dynamic informa
tion of the time series rather than all data points in
pendently as in the case of regression or stochastic
namical systems. This requires that the time series
successfully be modelled by a deterministic differe
tial equation. Moreover we assumed that the struc
of the model is known and that the global minimum
the cost function is found. For practical applicatio
these conditions are not always fulfilled. Neverthel
one can say that for the purpose of parameter est
tion and system identification it is important to ta
into account the complete dynamic nature of the da

Note added in proof

After acceptance of the Letter, the authors w
pointed to Ref. [18], in which the relation between t
accuracy of initial value estimates and the Lyapun
exponent has been established.
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