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Abstract

When parameters are estimated from noisy data, the uncertainty of the estimates in terms of their standard deviation typically
scales like the inverse square root of the number of data points. In the case of deterministic dynamical systems with added
observation noise, superior scaling laws can be achieved. This is demonstrated numerically for the logistic map, the van der Pol
oscillator and the Lorenz system, where exponential scaling laws and power laws have been found, depending on the number
of degrees of freedom. For some special cases, analytical expressions are derived.
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1. Introduction To be more specific, the parameter estimation prob-
lem is stated as follows. Consider an autonomous
deterministic time-continuous dynamical system de-

When noisy time series are analysed, one often scribed by a differential equation that depends on a set
encounters the situation that the structure of the of unknown parameters.

underlying dynamical process is known, but some

coefficients are unknown. These must be estimated* = f(x,p), 7&[To,To+T], (1a)

from measured data. In this Letter we investigate, how x(7p) = xo. (1b)

the accuracy of the estimated parameters depends on _ ) )

the number of data points, i.e., the length of the time " the case of time-discrete systems, Egs. (1) is

series. replaced by
xn:x([n):f(xn—l,p), n=1...,N. (2)

* Gorresponding authr, The dynamical parametepsand the initial valuesg
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Objective function x2(a,0.8)

Parameter a

Fig. 1. Objective function of the logistic map Eq. (5) for noiseless
data of different lengthsv. For each length one time series was
simulated with the true parametefs= (xg,a) = (0.8,1.85) and
without noise. Therx2(9) was plotted as a function af, xg being

set to its true value. Curves for highat are higher than those for
smaller N since the summands of Eq. (4) are non-negative. The
global minimum atz = 1.85 becomes successively sharper but the
number of local minima increases.

measurement process is modelled by ahservation
equation

,N. ®)

Here, n, denotes independent normally distributed
random numbers with zero mean and variangga
accounting for measurement noise.

The maximum likelihood method can be used to
estimated from the measured data. It minimises
the objective function, which is the sum of squared

Yn=x1(t,0) +n,, n=1,...

residuals between the data and the model trajectory, Y» = Xn(P) + 1,

divided by the variance of the noise:

2!
) = min.

The ML estimator is asymptotically unbiased and effi-
cient [1] because it takes into account all information
known about the data. In the context of thestep pre-
diction error proposed in [2], Eq. (4) corresponds to
the N-step prediction error.

x2(9) can have a quite irregular appearance [3].
Consider the logistic map

4

N
x20)=Y_

n=1

(yn —x1(ty, 0)

Odata

n=1...,N (5)

2
Xp=f(xp_1,a) =1— ax, q,
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with the parameter: € (0; 2] and the state variable
xn € [1—a;1].1 In Fig. 1 its objective function is
plotted against the dynamical parameter for different
lengths of the time series. While the number of lo-
cal minima increases witlv, they become succes-
sively sharper, promising that the parameter estimate
becomes successively more accurate, provided that the
correct minimum is found. It is this increase of the ac-
curacy that we intend to quantify in this Letter. For
non-linear regression and stochastic auto-regression
systems the standard deviation of the estimates scales
like N—9° [4,5]. For deterministic dynamical systems
with added observation noise, stronger power laws and
exponential laws are possible, as shown in the sequel.
The following section will provide mathematical
definitions and numerical techniques. In Section 3
numerical results will be reported for some examples
of dynamical systems. Analytical results will be given
in Section 4.

2. Methods

In order to simplify this presentation, we confine
ourselves to scalar time-discrete systems in this sec-
tion. For time-continuous systems more comprehen-
sive descriptions of the parameter estimation meth-
ods and applications to measured data can be found
in [6-9].

In the scalar case, Egs. (2) and (3) read

(6)
Q)

X = f(xXn—1, P),
n=1...,N.
2.1. Fisher information

The least squares estimgtés the parameter vector
that minimises the objective function Eq. (4). In the
limit of small noise levels we can assume that the
estimation errorA p between the estimatg and the
true parameterg is also small and we can expand
x,(p) with respect toA p:

0xy,

. (8
81) P=Pro

xn(i?)=xn(Po)+gn'AP» 8n =

1 The alternative notation, = rz,_1(1 — z,_1) is related to
Eq. (5) by the transformations= 4 (- — 2) andx = %2

r—=2"
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Plugging this and Eq. (7) into the objective function time-discrete systems [9]. In this approach all system
Eq. (4) we get statesy,, n =0,..., N, are treated as fit variables and
the constrained non-linear optimisation problem

2
x“(p)= odataz — (P 9) 2(60) - min. (162)
N Xp= f(xp-1,0), n=1...,N 16b
= G(j;%aZ[xn (pO) + Nn — Xn (Po) . / . . . . ( )

e1 is solved iteratively with a generalised Gauss—Newton

— g, Ap]2 (10) method [6] or a quasi-Newton method [11]. Since the

constraints Eq. (16b) may be violated on intermediate

_ Udataz — g, Ap = min. (11) iteration steps, the final solution can be reached

through “forbidden ground”. This freedom allows the
method to stay close to the observed data and reduces
the problem of local minima. As a final precaution the
true trajectories were always provided as a starting
guess in the optimisation procedure. For a detailed

At the estimated parameters the gradient of the
objective function with respect ta\ p vanishes. This
leads to the normal equations

N N discussion of the numerical issues of the multiple
AAp=>) mg, WithA=) g,g. (12) shooting approach see [12].
n=1 n=1
Some algebra shows that the covariance matrix of the
estimate is 3. Empirical results
<ApAp’):I_1=2H_1, (13)

In this section the scaling behaviour is investigated
wherel = o3.2A is the Fisher information matrix at Py simulation studies for some typical examples of
the true parameters [1] anHl is the Hessian matrix ~ dynamical systems. The following subsections contain
of x2. The sensitivitieg,, follow from the dynamical ~ three examples of different complexity.

equation (2):

3.1. Logistic map |: standard deviation of parameter

8y = fp(xn—l) + fx(xn—l)gn—l estimates
. 0 9
with f, = of and f, = o (14) . .
aop dx Time-discrete systems allow us to focus on the
and by induction: essential properties of dynamical systems. The most

prominent deterministic time-discrete systemis the lo-
gistic map Eq. (5). For > 2 the map is unstable, so
Z S p(xi) H Je(xj). (%) the const?ainc:q <2 hastobe implerrr)lented in the pa-
j=itl rameter estimation procedure. In order to circumvent
In special cases the Fisher information matrix is boundary effects on the statisties= 1.85 was chosen
singular, meaning that the desired parameters cannotas the true parameter.
be identified uniquely from the data [10]. These Time series with lengthV ranging from 2 to 60

exceptions are not considered here. were generated according to Eq. (5). For laryethe
sensitivity of the end of the trajectory with respect
2.2. Multiple shooting to its beginning would approach a limit imposed by

the machine precision. The initial value was= 0.8.
Finding the global minimum of Eq. (4) can be a White Gaussian noise with a noise level of 10% was
demanding task, as can be seen from Fig. 1. For thisadded, i.e., the standard deviation of the noise was
reason the multiple shooting technique developed for 10% of that of the signal. Then the multiple shooting
ordinary differential equations [6] was transferred to approach described above was applied to the data. At
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Fig. 2. Sample standard deviation of estimates for logistic map;
(a) one degree of freedom; crosses: initial valgefixed to 0.8,
paramete fitted; plus signs: parameter fixed to 1.85, initial value
fitted; solid line: exponential curve with exponeht= 0.50263;

(b) two degrees of freedom; crosses: 0.1% noise; plus signs: 1%
noise; solid lines: AN curves.

first only a was estimated whileg was assumed to be
known.

For eachN, 1000 time series were generated and
the parameter estimatés were obtained. Although
their distribution is not exactly Gaussian, especially
for small N, their meanaz and their sample standard
deviationo = [9_39-9 3@ - 13)2]1/2 were computed as
a measure of the accuracy. Fig. 2(a) displayas a
function of N. It turns out to scale like exp-AN),
where 1 = 0.503 is the Lyapunov exponent of the
logistic map, defined by

1 N-1
_ H - /7
h= lim =% log|f'(x)]. (17)
n=0
In the next simulationg was fixed to 1.85 andg
was fitted. Again 1000 time series were analysed for
eachN, leading to a similar result.
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Finally, both variables were fitted simultaneously.
In this caseg (N) came out as a rather discontinuous
curve rather than a smooth function. The accuracy
increases almost step-like at certain value¥ afhich
depend on the initial valueg. The reason is that
some data points in the time series contain more
information than others. This problem was tackled by
choosing a different initial valueg for each of the
1000 replications, so that the steps were smoothed out.
The initial values were generated by iterating Eq. (5),
thus their distribution reflects the invariant measure of
the map. Furthermore a small number of failed fits was
excluded, for which the final value of the objective
function was ten times higher than expected. Although
the multiple shooting approach helps in circumventing
local minima, it cannot suppress them completely.

Again the standard deviation of the estimated
parameter was plotted against (see Fig. 2(b)). In
this case it seems to scale likg L. The deviation
of the estimated initial value from the respective true
value was also analysed. It did not show an equivalent
scaling law. This can be understood as a consequence
of the varying initial value. The sample standard
deviation of the estimation error is not a meaningful
number in this case.

Regarding these results it seems that the mere
number of degrees of freedom determines the kind
of scaling law while the difference between initial
values and dynamic parameters is less important. The
scaling curves shown in Fig. 2 are jagged due to the
observation noise in the time series. The method used
in the following subsection estimates the parameter
uncertainties from noiseless data and yields, therefore,
smoother curves.

3.2. Logistic map I1: standard deviation from Fisher
information

In the limit of small noise levels, the variance and
covariance of the estimated parameters are given by
Eq. (13). The sensitivities Eq. (15) can be computed
directly from noiseless data. Nevertheless it is neces-
sary to regard an ensemble of time series for efich
since they depend on the initial values.

The sensitivities with respect to the initial value are
calculated differently than those with respect to dy-
namic parameters. In order to simplify the computa-
tions in the case of two degrees of freedom, we intro-
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Fig. 3. Distributions ofr for the generalised logistic map with one
degree of freedom, on a logarithmic scale, with=2, ..., 60 from

right to left. The horizontal axis shows the standard deviatipn
computed manually as described in the text. The vertical axis shows
the corresponding quantile; (@)= 1.85; (b)a = 2.

duce the generalised logistic map
,N (18)

with two dynamic parametergg andaz = a. Though
ap is still always equal to 1, it is now viewed as a fit
parameter, either known or unknown.

For eachN from 2 to 60, 10000 time series were
computed with different initial values generated as
before. At firstag was assumed to be known. For
each realization, the (scalar) matrixd in Eq. (13)
was computed and inverted, giving a “manual standard
deviation”o;. These are to be multiplied withyata to
get the theoretical standard deviations in the limit of
smalloygata

In Fig. 3(a) the statistical distributions of the are
shown on a logarithmic scale for all. The rightmost
curve corresponds t& = 2 and is jerky due to the
finite number of data points. The leftmost curves are

xnzao—azxf_l, n=1,...

successively smoother, but also broader. An interesting .

result visible is that the logarithm ef but noto itself

has a nearly Gaussian distribution. Fig. 3(b) shows the Z =xy — bz
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distributions fora = 2. In this case the shape of the
curves is almost identical for alV, except for very
small N. This reflects the fact that the logistic map
has a higher symmetry fat = 2. The exponential
scaling law is already visible: the distance between
two adjacent curves is approximately constant in this
semi-logarithmic plot. However, when looked upon
on a linear scale, the curves would be dominated by
those rare realizations with extraordinarily high
Therefore, the simple mean of does not provide a
meaningful measure. A more suitable number is the
log-averaged standard deviatiéndefined by

1 M
logs = -~ ; logo;. (19)

It will be used in all following investigations.

In Fig. 4(a),6 resulting from the data in Fig. 3(a) is
compared with the corresponding exponential function
exp(—AN). This plot can be seen as an improved
version of Fig. 2(a). In Fig. 4(c) the same can be seen
for the data of Fig. 3(b), correspondingdg—=a = 2.
When ag was the unknown fit parameter, the same
results were obtained (see Fig. 4(a) and (c)). In these
figures, no deviation from the exponential scaling laws
is visible. In order to show how good the accordance
really is, alle were multiplied with exgAN). This is
shown in Fig. 4(b) and (d), respectively.

Fig. 5 shows the results for two degrees of freedom,
i.e., bothap and ay were assumed to be unknown.
In this caseA™! is a 2x 2 matrix and the square
roots of the two diagonal elements were plotted.
Regardless af, 6 scales asymptotically roughly like
1/N, confirming the result of Fig. 2(b). Far = 2,
the Lyapunov exponent is higher and the limit of the
machine precision is reached earlier thander 1.85.
Therefore the plot range in Fig. 5 was restricted to
N <50.

3.3. Lorenz system

In this subsection, as an example of a continuous
dynamical system, we regard the Lorenz system

x=s(y —x), (20)
y=—xz+rx—y, (21)
(22)
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Fig. 4. Log-average@ as a function ofN for the generalised logistic map with one degree of freedom. The true parameteragwerk

ap = 1.85 in the upper panels, corresponding to Fig. 2(a), @ane- 1, ap = 2 in the lower panels. In the left column (a), (é),for the
estimation ofzg anday is drawn with circles and crosses, respectively. The accuracy scales exponentially. The solid lines indicate exponential
functions exg—AN), wherei = 0.50263 in panel (a) and = log(2) in panel (c). These are the Lyapunov exponents of the map for the

respective parameters. The right panels show the deviatiénfafm the exponential law, i.eg exp(AN), normalised so that the curves are
equal to 1 atv =60.

with s = 10, r = 46 andb = 2.667. For eacll’ be- Fig. 6(c) and (d) show some of the results when

tween 1 and 25, 1000 noiseless time series of lefigth  two or all three parameters were fitted. Again the
were simulated with a sampling timer = 0.04. Then exponential law turns into a power law~ T¢. For

the parameter estimation procedure described in [8,9] two degrees of freedom, the exponent seems to be near
was applied to the componentto minimise the objec- —1.5. Numerical limitations bound th& range that

tive function Eq. (4) with respect to one, two or three can be exploited to below 15. In Fig. 6(d) a power
fitted parameters. The initial values were fixed to their law with « = —1 is drawn for comparison although
true values in all cases. Finally the covariance ma- due to numerical errors the curves do not contain a
trix was evaluated at the solution point to obtain stan- large region of constant slope. It should be emphasized
dard deviations; for the fitted parameters. Fig. 6(a) that in all cases the scaling behaviour is clearly better
shows the distribution functions for thesein the case  than the usual /N law. This is because the complete

of one degree of freedony (fitted, » and b fixed). dynamic information of the data is taken into account
The rightmost curve corresponds To= 1. With in- for the parameter estimation.

creasingT, the shape of the curves becomes more
symmetric. The log-averagedscales like exp-AT)

to within linewidth (see crosses in Fig. 6(b)), where
A =1.24 is the Lyapunov exponent of the system [13].
The same result is obtained wheris fitted (circles)
or whenr is fitted (not shown).

3.4. Van der Pol oscillator

For the logistic map and the Lorenz system with
one degree of freedom, the accuracy of the parame-
ter estimates appeared to be ruled by the positive Lya-
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phase, the parameter estimation procedure was per-
formed with noiseless data and standard deviatigns
were determined from the Fisher information matrix,
analogously to Section 3.3.

The o; were averaged for eaciv and plotted
versus N in Fig. 7(a). They scale liker =%/2. In
Fig. 7(b) they are multiplied witi"®/? to show the
net effect. The net values are asymptotically constant.
Finally in Fig. 7(c) we regard the dependence of
the standard deviation on the initial value. For this
simulation, 100 equidistant phases were chosen for
each N. For N ranging from 5 to 55r in steps
of 5¢, the computed standard deviation is plotted as
a function of the phase of the initial value within
the master piece. These functions grgeriodic as
mentioned above. The effect of the scaling law~
T-3/2 was removed from these curves by multiplying
them with 7%/2. The effect of the phase is like
a boundary effect. It is most pronounced for short

Log-averaged ¢

o
.
T

Log-averaged o

0.01 L—t——

BE— : —— trajectories and flattens out for larger ones.
2 3 5 10 20 30 50
Length N 3.5. Summary of empirical results
Fig. 5. Same as Fig. 4 for two degrees of freedom in dou- ) ) ) )
ble-logarithmic plot. The two point types correspond to the two In the preceding section scaling laws of various dy-
square roots of the diagonal elements of the computed covari- namical systems were determined empirically. These
ance "la;g{‘- bThe Szo”d lines indicate the power law~ N1, results are summarised in Table 1. Also included are
@a=185 (D)a=2. results for the two-dimensional Hénon map that were

o _not reported in detail. In this case the empirically de-
punov exponent. This indicates that an exponential termined scaling exponent = 0.3 was not equal to
scaling law is only possible for chaotic systems. How- the Lyapunov exponent= 0.419.
ever, power laws with exponents belevd.5 are pos-
sible for other examples. In this section we consider
the van der Pol oscillator, a system showing a limit cy-

cle. The dynamical equation reads 4. Analytical results

¥ =ki(l-x%) —x, (23) The preceding section has demonstrated that dy-
namical systems show a variety of different scaling
laws. Now we will give results of a mathematical
analysis of the behaviour in some selected cases.

with & = 1. It generates oscillations with a period

7 = 6.66, which is used as a unit in the sequel.

We simulated time series of lengthit with N =

2,4,...,200, sampled withht = 0.17. _ )
To obtain initial values on the attractor, a master 4-1- Sationary stochastic Markov processes

piece of lengthr /2 was simulated after removing the

transient. Due to the invariance of the equation with ~ Though this non-deterministic class of dynamical

respect to sign reversal, the second half period differs Systems is not in the main scope of this Letter, itis well

from the first one only in the sign and gives identi- suited for comparison. Consider a stochastic Markov

cal results with respect to the accuracy of estimates. process without observation noise

Initial values were read off at 10 equidistant times

(phases) on the master piece. For eadh and each ~ *n = f(*n-1,1,, p), (24)
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Fig. 6. Confidence intervals for the Lorenz system, computed from fits with noiseless data. (a) Empirical distribution functions of standard
deviations for estimation of. All other parameters and all initial values were fix@dtakes values from 1 to 25 from right to left. For each

T 1000 fits were made. (b) Log-averaged standard deviations for a single degree of freedom (points). The solid line indicates the exponential
scaling lawo ~ exp(—AT), wherei = 1.24 is the Lyapunov exponent of the Lorenz equation for the chosen parameters. Each cross in the
upper curve represents the mean of one curve in panel (a). (c) Same for two degrees of freedom (points). The solid line indicates a power law
o~1/ T3/2, (d) Same for three degrees of freedom (points). The solid line correspoads g 7. In this case no definite scaling law can be
identified.

wherep, are independent identically distributed ran- the discussion, we regard only the dependence on
dom vectors. Denote the true parameters vighand dynamic parameters while the initial value is assumed
the maximum likelihood estimates with. From the to be known.

martingale central limit theorem follows under the Following up Eg. (15) we can write

assumption of ergodicity and stationarity, thgit —

po)V/'N is asymptotically normally distributed with g, = zuuts, (25)
constant covariance matrix, i.e., the standard devia- n—1
tion of the estimation error scales likg &N (see [14],  with ¢, = [T 6. (26)
P. 131) j=0
-1
4.2. Scalar chaotic maps < _
mep and u, =Y f,(i)zkh. 27)
i=0

This subsection derives analytically the exponential
scaling law for scalar chaotic maps with one degree of The numbers,, embody the high sensitivity of the
freedom, seen, e.g., in Fig. 2(a). In order to simplify end of the trajectory with respect {@. On average,
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Table 1
Summary of scaling laws
Dynamical system Technique used Degrees  See Fig. Scaling law
of freedom
Logistic map Empirical standard deviation, evaluated from ensemble of fits with noisy data 1 2(a) (—r8%p
2a 2y N1
Generalised logistic map Manual standard deviation, computed by recursion, log-averaged 1 4 (—1NXp
2 5 N1
Hénon map Empirical standard deviation, evaluated from ensemble of fits with noisy data 1 — (—)\Exp
2 - N1
Lorenz system Noiseless fit 1 6(a) &pT)
2 6(b) T 15
3 6(c) indefinite
Van der Pol oscillator Noiseless fit 1 7 1715

& One parameter and one initial value.

|z | increases exponentially. To be more specific, we one eigenvalue ofl increases like exp.N) while the

regard other one is much smaller. In most cases the estimated
1 directions in the parameter space are linear combina-
A= lim —log|z,| (28) tions of both eigenvectors, so the corresponding vari-
n—-oon

ances do not scale exponentially. It would be desir-
able to understand the power law shown in Fig. 2(b) in
a similar manner, however, this phenomenon is more
difficult to access than the simple result for a single
which is exactly the definition of the Lyapunov expo- degree of freedom.
nentin Eq. (17).

On the other handy, in Eq. (27) behaves like a

n—1
. 1
= lim_ - ;Iogm x))], (29)

noisy power series sincg ,(x) is bounded and; 4.3. Periodic systems
decays exponentially. We denote its limiting value
by u. Reggrdmg (_)nly the asymptotics 9)‘1,.We can The previous section considered a system with an
replaceu, with us in Eq. (25). Then we arrive at exponential scaling law. In the sequel we will derive
N analytically the power law that is visible in Fig. 7.
AXuoul, Zzg (30) Consider a model that depends on a single parameter
e1 p and generates scalar periodic trajectorigs, p)
1 with period 7(p) and frequencyw(p) = 27/t (p),
N uottl, ——— PN, (31) ie
1_eo-2 €.,
const
The latter relation is a rough estimate obtained by x(t, p) = f(w(p)t, p), (32)

replacing |z,| with exp(An) according to Eq. (28).
When a single parameter is estimatedjs a scalar wheref (¢, p) is 2r-periodic ing. The true parameter

and the standard deviation of the estimatesis= shall be denoted byg. Furthermore assume that a
Odatay/ A ~ exp(—AN), in concordance with the em- measurement of the trajectory is made over the length
pirical results of Figs. 2(a) and 4(a), (c). Nt (po) with a sampling timeAt = t(pg)/m,m €

In the case of two degrees of freedatnis asquare  N.
matrix. In the approximation of Eq. (30), it is singu- The observation equation (7) holds with=im +

lar, sinceucul, has rank one. That means thatonly j,i=0,...,N—1,j=1,...,m. Egs. (8)—(13) do
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We expandg, in terms of powers of and retain only

0 0.1 0.2 0.3 04 0.5 the highest order term, indicating the others wgith):
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Fig. 7. Confidence intervals for the van der Pol oscillator, computed 8rn = 8{:& (CU(PO)] At, PO)lmAld— + 0. (39)
from fits with noiseless data; (a) averaged standard deviations as
function of N in double-logarithmic plot (points) and a scaling  Again recalling Eq. (12) we get
law o ~ 1/T3/2 (solid line); (b) deviation of simulation from the
scaling law. Note the small range of the vertical axis; (c) scaled 2 .
standard deviation as a function of the starting point of the trajectory. A= Z i“A2 + O(@)

Only the first half period is shown. The second half is identical due i=0
to a symmetry of the system. The different curves correspond to 1 3 2
different lengths, ranging from5(out-most curve) to 55 (flattest = §N Ar + O(N ) (40)

curve). Each curve was multiplied With%/2 to remove the effect

of the scaling law. For longer time series, the standard deviation is . i f . dw 72
successively less dependent on the starting point. with Az = Z @ (a)(po)] At, po)mAtﬁ :
j=1
also apply but the sensitivities are now Again looking at Eq. (13), the standard deviatiorpof
scales asymptotically likev—1® in accordance with

d
gn = d—f(w(p)nAt, p) (33  Fig.7.
P p=po
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In summary this underlines that parameters influ- pendently as in the case of regression or stochastic dy-
encing the period of a trajectory are more delicate namical systems. This requires that the time series can
than parameters that only affect the shape of a peri- successfully be modelled by a deterministic differen-
odic orbit. A similar result was obtained in [15] for the tial equation. Moreover we assumed that the structure
chaotic Mackey—Glass equation. Though this delayed- of the model is known and that the global minimum of
feedback system does not produce periodic trajectoriesthe cost function is found. For practical applications
for the parameters regarded, the delay time has an im-these conditions are not always fulfilled. Nevertheless
portant influence on intrinsic oscillations and accord- one can say that for the purpose of parameter estima-
ingly the estimated delay parameter turned out to be tion and system identification it is important to take

extraordinarily accurate.

5. Summary

In this Letter we regarded the standard deviation
of parameters estimated from noisy time series of de-
terministic dynamical systems and investigated its re-
lation to the length of the time series. Depending on
the number of degrees of freedom, different asymp-
totic scaling laws were found. Scalar time discrete sys-
tems as well as continuous chaotic systems with one
unknown parameter show an exponential scaling law
with the coefficient in the exponent being equal to the
Lyapunov exponent of the system. For scalar time dis-
crete systems this result could be explained analyti-
cally. When two parameters are estimated, the expo-
nential law turns into a power law ~ N%. However,
in all examples analysed, the exponentas still well
below —0.5. Finally, for periodic systems in which
the period is influenced by a parameter, a power law
o ~ N~1° was both derived analytically and demon-
strated numerically.

The fact that the exponential law holds only for
one degree of freedom has great practical relevance.
It means that the extreme sensitivity of a chaotic sys-
tem with respect to its initial values (quantified by its
positive Lyapunov exponent) cannot be exploited to
yield precise parameter estimates if nuisance parame-
ters must be estimated simultaneously.

Other examples in which the accuracy of an esti-
mate does not follow the usual—®° law, were re-
ported in [16,17]. These effects cannot be reproduced
when small amounts of observation noise is added to
the data. In contrast, the scaling laws reported in this
Letter were robust with respect to observation noise.

The reason for the superior scaling laws is that the
objective function exploits the full dynamic informa-
tion of the time series rather than all data points inde-

into account the complete dynamic nature of the data.

Note added in proof

After acceptance of the Letter, the authors were
pointed to Ref. [18], in which the relation between the
accuracy of initial value estimates and the Lyapunov
exponent has been established.
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