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Abstract
Simulation of combination therapies is challenging due to computational com-
plexity. Either a simple model is used to simulate the response for many combi-
nations of concentration to generate a response surface but parameter variability 
and uncertainty are neglected and the concentrations are constant—the link to 
the doses to be administered is difficult to make—or a population pharmacoki-
netic/pharmacodynamic model is used to predict the response to combination 
therapy in a clinical trial taking into account the time-varying concentration pro-
file, interindividual variability (IIV), and parameter uncertainty but simulations 
are limited to only a few selected doses. We devised new algorithms to efficiently 
search for the combination doses that achieve a predefined efficacy target while 
taking into account the IIV and parameter uncertainty. The result of this method 
is a response surface of confidence levels, indicating for all dose combinations 
the likelihood of reaching the specified efficacy target. We highlight the impor-
tance to simulate across a population rather than focus on an individual. Finally, 
we provide examples of potential applications, such as informing experimental 
design.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Population simulation of PKPD models and response surface analysis currently 
co-exist as distinct methods for model-based combination therapy assessment. 
Each method is tailored to address specific questions but neglects important as-
pects of the other method. 
WHAT QUESTION DID THIS STUDY ADDRESS?
The two challenges of applying population simulation and response surface anal-
ysis jointly are: How to informatively summarize the output of population simu-
lation such that it can be interpreted in a response surface, and how to perform 
the computations efficiently? 
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Population simulation results can be informatively summarized by the confi-
dence level to reach a prespecified efficacy target. We propose two algorithms to 
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INTRODUCTION

Combination therapies of two or more partner drugs are 
the standard in many indications, such as malaria,1 bacte-
rial infections,2,3 or cancer.4,5 Different benefits arise from 
the use of combinations. For example, the emergence of 
resistance is slowed down or existing resistances are over-
come by tackling the disease on independent mechanisms 
of action6,7 or the joint effect may be reaching the thera-
peutic target at overall lower doses, reducing treatment 
cost and toxicity. Population pharmacokinetic/pharma-
codynamic (PK/PD) models of combination therapies 
are an emerging field. Applications range from semi-
mechanistic drug-drug interaction modeling3,8,9 to dose 
optimization.10–12 Especially the latter application, as well 
as model-based prediction of clinical trial results, rely on 
model simulations which are impeded by the combinato-
rial complexity of combination therapies.

The two main approaches for simulation-based com-
bination therapy assessment are: (1) response surface and 
isobolographic analysis,13,14 and (2) population simula-
tion,15 both suffering from shortcomings. For the former, 
response surfaces and isoboles are useful tools to establish 
a comprehensive overview of the treatment and to explore 
drug-drug interactions. However, they usually are evalu-
ated for concentration-response rather than dose-response 
relationships,4,9,16 neglecting effects governed by PKs and 
PDs. Furthermore, they are calculated only for a unique set 
of parameters, neglecting both interindividual variability 
(IIV) and parameter uncertainty. This hampers their ap-
plication in the clinical setting. The second method, popu-
lation simulation using nonlinear mixed effects (NLMEs) 
PK/PD models, accounts for PKs and PDs and allows the 
calculation of clinical efficacy end points, including their 
confidence intervals. However, it is often performed only 
for relatively few doses.3,8,16,17 Global trends and dosing 
opportunities might thus be overlooked.

We propose fast new algorithms based on both popu-
lation simulation and response surface analysis to fully 
characterize the dose-response of combination therapies 
taking into account PKs, PDs, parameter uncertainty, 
and IIV. By focusing on a predefined efficacy target, like 

responder rate of 95%, the number of simulations can be 
reduced down to 10% of a brute force approach. The out-
put is a confidence level response surface and confidence 
level isoboles which show all the minimum combination 
doses that achieve the target of interest, here, 95% re-
sponder rate, at any given confidence level, for instance, 
at a confidence level of 80%. We apply the methodology 
to malaria and antibiotics research as examples and dis-
cuss how these simulations can inform further the drug-
development process.

METHODS

Including parameter uncertainty in a response surface 
analysis has to overcome two main challenges which are 
highlighted in the top row of Figure 1. First, to summa-
rize the variability of the predicted efficacy end point due 
to IIV and parameter uncertainty into an output which 
is easy to interpret and can be visualized as heatmap. 
Second, to keep the computing time reasonable.

The first issue is solved by introducing an effi-
cacy target (e.g., reaching 90% treatment success rate, 
as sketched in Figure  1a,b), where success rate dis-
tributions resulting from parameter uncertainty are 
compared to the efficacy target at different doses. The 
likelihood of achieving the efficacy target (i.e., the con-
fidence level), can be obtained from the quantiles of the 
simulated distributions. The confidence level as model 
output is informative in terms of efficacy as well as pa-
rameter uncertainty. For combination therapies, the 
confidence level response surface could be obtained in 
a brute-force manner from simulations at different dose 
combinations.

The second issue of computational cost is addressed 
by efficient algorithms. The idea of the procedure is out-
lined by example of monotherapy in Figure  1c–f and 
generalized to combination therapy in Figure 1g–j. For 
each realization of parameters from the uncertainty dis-
tribution, the effective dose reaching the efficacy target 
can be found by line search algorithms, such as bisec-
tion18 (Figure 1c), as long as the dose-response curve is 

compute confidence level response surfaces with a fraction of the computing time 
required by brute force. 
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
We provide a general framework of how to incorporate variability and parameter 
uncertainty into response surface analysis and show how response surface analy-
sis has an application in a clinical context.
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monotonously increasing. The effective dose separates 
the dosing space into efficacious and nonefficacious re-
gions (Figure  1d): checking whether a dose is greater 
than the effective dose fully informs about clinical suc-
cess. Due to parameter uncertainty, the effective dose 
itself follows a distribution, exemplified in Figure  1e. 
The confidence level is then readily derived from the 
cumulative distribution function of effective doses. The 
resolution of the dose-confidence level relationship 
in Figure  1f is far greater than in Figure  1b, but was 
achieved with similar computational effort.

The method of effective doses is generalized to com-
bination therapy with newly developed algorithms. The 
effective dose itself is replaced by the effective isobole 
(i.e., the curve connecting all doses achieving the 
efficacy target, shown in Figure 1g as the green curve). 
The fastIsoboles algorithm, described below, replaces 
the bisection method. The monotonicity assumption 
is generalized by requiring that for each efficacy level, 
all corresponding dose combinations are connected by 
a single isobole curve. The effective isobole therefore 
separates the dosing space into nonefficacious and ef-
ficacious dose combinations, highlighted in Figure 1h. 
Parameter uncertainty implies a distribution of effective 
isoboles, which is shown in Figure 1i, and the resulting 
confidence level response surface from the generaliza-
tion of the cumulative distribution function is shown in 
Figure 1j. This step is performed by the second new al-
gorithm, aggregateIsoboles, by assessing the fraction of 
populations for which a dose combination is “above” the 
respective effective isobole.

Both the brute force and the effective isoboles approach 
require an NLME PK/PD model to compute success rates 
and their confidence intervals via population simulation. 
In this work, we assume model parameters were esti-
mated via maximum likelihood estimation and refer to the 
asymptotic distribution of estimators as parameter uncer-
tainty distribution, quantifying how well parameters are 
identified. Due to the mixture of parameter uncertainty 
and IIV, population simulation involves a two-step Monte-
Carlo sampling process.19 Precise mathematical formula-
tions are detailed in the Supplementary Information Text 
S1. First, a set of population parameters is drawn from the 
parameter uncertainty distribution. This set of parameters 
defines the realization of a population and parametrizes 
a multivariate distribution of individual parameters. In 
the next step, Nsupj, parameter sets of individual subjects 
are sampled conditioned on the population parameter re-
alization. This two-step parameter sampling procedure is 
repeated for a number of populations, Npop, generating the 
population ensemble, the highest level in the hierarchical 
sampling process. The relevant model outputs for individ-
uals are the PD outputs deciding over treatment success or 

failure. For a population, the relevant output is the success 
rate, denoting the fraction of individuals with successful 
treatment and for the population ensemble, the relevant 
output in this work is the confidence level of reaching the 
efficacy target.

fastIsoboles algorithm

The fastIsoboles algorithm indicated in Figure 1g is used 
to efficiently compute the effective isobole of each popu-
lation. It is a generalization of the bisection method18 to 
two dimensions and is depicted in Figure 2. In contrast 
to usual optimization or root-finding algorithms, which 
converge toward one point in the explored space, this al-
gorithm converges to a whole curve, the effective isobole. 
The input requirements are the objective function for 
calculating the success rate y  =  f (AMT1 and AMT2), 
where AMTi denotes the dose of drug i, the efficacy tar-
get ŷ  and the boundaries AMTimax of the dosing space 
to be searched. In the example shown in Figure  2, the 
efficacy target is ŷ = 95% success rate and maximal doses 
are set to AMT1max = 1000 mg and AMT2max = 1000 mg. 
The following steps outline the algorithm, a more de-
tailed and mathematically precise description is avail-
able in Text S1.

1.	 The algorithm is initialized by evaluating the success 
rate at the nine regularly interspaced grid points cov-
ering the whole dosing space shown in Figure  2a as 
colored tiles.

2.	 The effective isobole is estimated from all evaluated 
doses by two-dimensional linear interpolation via the 
R-routine contourLines.20 In Figure 2a, the isobole esti-
mate of the first iteration is depicted as the black line.

3.	 The grid resolution is doubled, introducing poten-
tial new dose combinations to be evaluated shown 
as crosses in Figure 2a. However, the success rate is 
only evaluated at a dose combination if the distance 
between the current estimate of the isobole path and 
the grid point is smaller than the current grid resolu-
tion, saving simulation at uninformative doses. The 
green ribbon encloses all points evaluated in the next 
iteration. Figure 2b shows the intermediate result at 
iteration 2.

4.	 Repeat steps 2 and 3 until convergence or a predefined 
maximum number of iterations have been reached. 
Figure 2c shows the result at iteration 6.
The number of evaluated doses grows exponentially 

with iteration number. Therefore, only a low number of 
iterations less than seven is feasible in practice. Seven it-
erations correspond to a resolution of 27 + 1 = 129 doses 
per drug, which will be sufficient in most cases. For the 
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realistic case examples we tested, convergence with re-
spect to the Fréchet distance dF21,22 is demonstrated 
in Text S1 meaning that the maximum distance of any 
point on the estimated isobole from the true isobole is 
given by dFj ≤

1
√

22j at iteration number j. Therefore, prox-
imity to the true isobole is guaranteed along the whole 
estimated isobole by the Fréchet distance metric. As bi-
section which converges to exactly one root in the inter-
val, fastIsoboles converges to one isobole only, therefore 
is only applicable to “monotonous” surfaces with one 
contour line per effect level. An extended discussion of 

convergence, computational complexity, and limitations 
is given in Text S1.

aggregateIsoboles algorithm

The effective isobole divides the dosing space into two dis-
tinct regions indicated in Figure 1h: in the region enclosed 
by the isobole and the mono-dose axes, the success rate is 
below the efficacy target, whereas in the outside region, 
the success rate is at least the efficacy target. Figure  3 

(a) (b)

(f)(e)(d)(c)

(g) (h) (i) (j)
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shows how the confidence level response surface is recov-
ered from the distribution of effective isoboles. The steps 
of the procedure are as follows:

1.	 Computationally, the effective isobole is represented 
as an ordered list of points through which it passes. 
Augmenting this list with the origin of the dos-
ing space yields a polygon enclosing the region in 
which the efficacy target is not reached, indicated 
in Figure  3a.

2.	 For each point of a finely resolved grid, use a fast dedi-
cated algorithm23,24 to determine whether the respective 
dose combination lies outside or within this polygon 
(i.e., reaches the efficacy target or not). Encode the re-
spective regions with 0 (efficacy target not reached) or 
1 (efficacy target achieved or exceeded). In Figure 3b, 
treatment failure is colored red and success is color 
coded as green. The recommended resolution of the 
sampling grid is twice the final resolution of the fastI-
soboles algorithm.

3.	 Repeat steps 1 and 2 for all populations of the population 
ensemble and average the treatment successes for each 
grid point. The fraction of populations achieving the effi-
cacy target corresponds to the confidence level of achiev-
ing the efficacy target.

4.	 From the confidence level response surface, isoboles cor-
responding to different confidence levels can readily be ob-
tained via linear interpolation. The response surface and an 
exemplary confidence level isobole is visualized in Figure 3c.

In summary, naively extending the methodology of 
population simulation to combination therapies requires 
aggregation of simulation results and is impeded by com-
binatorial complexity. By pre-specifying an efficacy target, 
simulations can be summarized by the confidence level of 
reaching the efficacy target. Simulations can be focused 
on the most informative dose combinations close to the ef-
fective isobole to reduce the computational cost to obtain 
the full confidence level response surface with a fraction 
of the simulations compared to the brute-force approach.

F I G U R E  2   The fastIsoboles algorithm. (a) The algorithm is initialized at nine evenly spaced doses where the objective function is 
evaluated. The black curve represents the current approximation of the effective isobole of the 95% success rate efficacy target via 2D-linear 
interpolation. Dose combinations to be evaluated in the next iteration are indicated by the crosses enclosed by the ribbon. (b) The algorithm 
at iteration two, with the updated dose combinations and updated approximation of the isobole. (c) The terminated algorithm at iteration six 
with highly resolved isobole
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F I G U R E  1   Overview of methods. (a) Success rate distributions resulting from parameter uncertainty, simulated at different doses. The 
efficacy target, a success rate of 90%, is highlighted as the red horizontal line. Shaded green areas of violin plots correspond to the fraction 
of populations meeting the efficacy target criterion. (b) Confidence level of reaching the efficacy target at a given dose. The confidence 
level corresponds to the green shaded areas in panel a. The confidence level is known exactly at only seven doses. (c) The dose-success rate 
relationship for one population is shown as the dashed black line. The effective dose (dashed green line) indicates where success rates achieve 
the efficacy target (red horizontal line). Circles denote the iterations of a binary search algorithm which, in this case, finds the effective dose 
within five iterations, amounting to seven function evaluations. (d) The effective dose allows to classify any dose into non-efficacious (red 
area) or efficacious (green area) via a simple “less than” operation. (e) Distribution of effective doses resulting from parameter uncertainty. (f) 
Confidence levels as cumulative distribution function of effective doses. The confidence level is known exactly at a much higher resolution 
but the computations took as many function evaluations as in panel b. (g) Newly developed algorithm “fastIsoboles,” which extends one-
dimensional binary search to finding arbitrary curves in two dimensions. The effective isobole (i.e., all dose combinations achieving the 
efficacy target), is shown as the green curve. (h) Classification of dose combinations into efficacious or nonefficacious solely based on the 
information contained in the effective isobole. (i) Distribution of effective isoboles resulting from parameter uncertainty. (j) Confidence level 
response surface resulting from aggregating the distribution of effective isoboles with the “aggregateIsoboles” algorithm. The highly resolved 
confidence level response surface was obtained at a fraction of the computational cost of the brute force approach
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RESULTS

Malaria model

Description of the PK/PD model and 
simulations

A current goal in malaria research is the development of 
novel combination therapies ideally reducing the current 
3-day therapies to a single dose. Administration schemes 
with single doses rather than the current schemes with 
repeated doses improve patient compliance and in return 
are expected to slow down the emergence of resistance 
due to treatment failures cause by early abandonment of 
treatment.25–27 The efficacy target is a cure rate of at least 
95% across the population.27

An example is shown for malaria where the popula-
tion PK/PD model is parameterized based on a combi-
nation of preclinical and clinical data, and is described 
in detail including model equations in Text S2. Briefly, 
plasma concentrations of either drug are described by 
a two-compartmental linear elimination model. The 
parasite population is growing exponentially and killed 
with a rate depending on the drug concentration with 
a sigmoidal relationship. Treatment is successful if the 
parasite concentration in blood is below the limit of 
quantification of 10 parasites/ml at day 28 after treat-
ment. PD drug-drug interaction is modeled as empirical 
Bliss independence model modified to account for differ-
ent maximal effect sizes, as described by Wicha et al.8 For 
the purpose of this publication, artificial but realistic pa-
rameter and covariate values are used. Both drugs’ hypo-
thetical maximum feasible doses are limited to 800 mg.

We computed the PD profiles over 28 days after drug 
administration for 750 populations, each including 1500 
subjects; deduced for each individual if treatment was 
successful or not at day 28 and computed the effective 
isobole corresponding to the efficacy target of 95% suc-
cess rate for each of the 750 populations with the fas-
tIsoboles algorithm using six iterations and calculated 
the confidence level response surface using aggre-
gateIsoboles. For illustration, we simulated one popu-
lation on the full dose grid to compare the cure isobole 
of individual patients to the success rate isobole of one 
population in Figure 4.

The difference between individual level and 
population level isoboles

Despite concave cure isoboles for individual subjects, the 
success rate isobole of a population can be convex. When 
starting from the effective mono-dose of drug two indi-
cated as the red cross in Figure 4a, adding a small amount 
of drug one does not significantly reduce the amount of 
drug two required to cure the subject. However, cure 
isoboles can differ quite drastically between individual 
subjects as a consequence of IIV. For example, patients 
can be strong or poor responders for either of the drugs. 
Examples are given in Figure 4b, where each isobole cor-
responds to the cure-isobole of a subject sampled from IIV. 
A subject with low response to compound two is depicted 
in blue and a poor responder to compound one is shown 
in red. On the population level, both subjects push the ef-
fective isobole shown in Figure 4c outward only for their 
respective ineffective drug but not for the other drug. Even 

FIGURE 3   Confidence level response surface. (a) For each population, the effective isobole (EI; black curve) and the segments from the origin 
up to the intersect of the axes with the isobole (grey) are connected to form a polygon enclosing the dose combinations at which the treatment goal 
was not achieved. (b) Translation into binary values across all dose combinations. All dose combinations enclosed by the isobole and coordinate axes 
are shown in red and are coded as zero (for failure: efficacy target is not achieved), all other dose combinations are colored in green and are coded 
as one (for success: efficacy target is achieved or exceeded). (c) Averaging the binary values from the previous step over all populations for each dose 
combination results in the confidence level response surface. The 95% confidence level isobole is indicated as black curve
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though adding small amounts of drug one to the effective 
mono-dose of drug two does not help the red subject, on 
the population level there is a benefit, reducing the re-
quired dose of drug two to achieve the target success rate.

Characterizing the drug’s dose-response under 
uncertainty

The confidence level response surface summarizes the 
influence that parameter uncertainty has on the effec-
tive isoboles for the targeted 95% success rate because 
they indicate the likelihood of reaching the treatment 
target. Sampling population parameters from their un-
certainty distribution leads to different realizations ef-
fective isoboles, which are shown in Figure 5a. Using the 
aggregateIsoboles algorithm, these isoboles were trans-
lated into the confidence level response surface shown 
in Figure 5b. Two confidence level isoboles are shown in 
Figure 5b as well: the black curve indicates the confidence 
level isobole of dose combinations that have a 95% prob-
ability of reaching the target success rate of 95%, whereas 
the grey line visualizes the dose combinations having only 
a 50% chance to do so.

The interpretation of the confidence level response 
surface is tightly connected to the prespecified efficacy 
target. At any given dose combination, the probability 
of achieving the efficacy target is known, but the rest of 
the success rate distribution is unknown. To emphasize 

this, population simulations were performed with an in-
dependent population ensemble at selected points along 
the 50% (circles, labels 1–3) and 95% (crosses, labels 4–6) 
confidence level isoboles which are shown in grey and 
black in Figure  5b. The respective success rate distribu-
tions are shown in Figure 5c as violin plots with the 5% 
quantile highlighted as crosses and the median as cir-
cles. The median of the success rate distributions at dose 
combinations one to three lies at 95% success rate. This 
directly translates into a 50% probability of reaching a 
success rate of 95% or above, as predicted. However, it is 
not known that they would achieve a success rate of about 
90% with a probability of 95% (crosses for combinations 
1–3). Analogously, for simulation at doses four to six, it is 
known that they achieve the efficacy target of 95% with a 
probability of 95%, but probabilities for other success rate 
values are unknown.

The 95% confidence level isobole achieves the effi-
cacy target with dramatically lower doses than the re-
spective maximum feasible dose for each compound. 
The maximum feasible doses for compounds one and 
two are indicated by the cyan-colored lines in Figure 5b 
and population simulation predicts 100% efficacy at the 
combination of these doses (dose combination 7). The 
dose combinations enclosed by the maximum feasible 
doses and the black 95% confidence level isobole repre-
sent the treatment opportunity window and can be ana-
lyzed further to optimize treatment with regard to cost, 
safety, and efficacy.

F I G U R E  4   Malaria 1. Individual and population responses of the malaria model. (a) Response surface for one individual and its 
corresponding isobole (black line). In this case, success corresponds to cure. The black isobole divides the dosing space into unsuccessful 
and successful doses. At low levels of compound one, the isobole is concave: an increase of compound one dose only slightly decreases the 
required dose of compound two. (b) All individual cure isoboles for one population: interindividual variability leads to different individual 
cure isoboles each separating the dosing space into unsuccessful and successful regions differently. In color, are two different patient 
phenotypes in terms of drug sensitivity to either of the drugs. The blue subject responds well to drug one but poorly to drug two, the red 
subject vice versa. (c) Success rate response surface for one population and effective isobole (black line) at the target efficacy of 95% success 
rate. The effective isobole shows all dose combinations that achieve a 95% success rate in that population. The effective isobole is convex: at 
low doses of compound one, an increase of compound one dose reduces the required compound two dose to maintain the success rate. This 
beneficial property of the combination therapy is a population level effect
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Antibiotics model

We now apply the methodology to combination therapies 
of antibiotic treatments. Two antibiotics frequently used 
in combination to overcome resistance in Gram-positive 
methicillin-resistant staphylococcus aureus (MRSA) bac-
terial infections are vancomycin2,28,29 (VAN) and mero-
penem30,31 (MER). The semimechanistic PD model of 
VAN-MER treatment was developed and calibrated on 
in vitro data of clinical isolates of MRSA.2,8 It features the 
relevant phenomena, such as the Eagle effect,32 and the 
synergistic interaction between the two drugs. In their 
publication, the authors link this model to previously pub-
lished PK models31,33 in order to perform exemplary clini-
cal trial simulation. The plasma concentrations of VAN and 
MER serve as direct inputs for the PD model. Simulations 
were performed for 500 populations, including 1000 sub-
jects each over the time interval of 24 h at a dosing regimen 
of 2 × 1000 mg VAN b.i.d. and 3 × 1000 mg t.i.d. The clini-
cal end point of interest is a 1000-fold reduction of bacterial 
burden within 24 h, denoted as the bactericidal end point. 
All mathematical equations and details of the model are 
available in Text S3. The efficacy target is a success rate of 
95% of patients meeting the bactericidal end point.

The two main features of the effective isoboles shown 
in Figure 6a are the strong synergistic effect that MER has 
on VAN and the large spread of the effective isoboles due 
to parameter uncertainty. The strong synergism becomes 
apparent at very low MER doses, which suffice to reduce 

the amount of VAN required to achieve 95% success and ap-
pears to hold for most parameter realizations. Second, the 
effective isoboles are distributed across the whole scanned 
dosing space (Figure  6a), which can also be observed in 
the confidence level response surface with a much broader 
distribution of confidence levels than in the malaria model 
(Figure 6b, large yellow and light blue areas). Considering 
the parameter uncertainty, success rates of 95% are just 
about achieved with high confidence at the clinically rel-
evant dose of 1000 mg MER t.i.d. and 1000 mg VAN b.i.d.8

In this example, the dose assessment is impeded by 
poorly informed parameters giving rise to the wide distri-
bution of doses that could still meet the treatment target. 
The isobole simulation results can be analyzed to identify 
the critical parameters that need to be determined more 
precisely to gain less uncertain dose predictions, thus aiding 
experimental design. Correlating the location of the effec-
tive isoboles with their corresponding population parame-
ters identifies which parameters influence the predictions 
most strongly, see Text S3 for more details. This sensitivity 
analysis reveals which parameters the experimental design 
should focus to reduce the variability of the prediction most 
efficiently. In Figure 6c, the standard error of the nine most 
influential parameters were reduced to 5% of their original 
value, which could be achieved by additional experimen-
tal data for parameter estimation. The spread of the con-
fidence levels is greatly reduced and the new information 
would allow to confidently reduce the recommended dose 
amounts without the risk of underdosing.

F I G U R E  5   Malaria 2. Effective isoboles and confidence level response surfaces of the malaria model. (a) Different effective isoboles for 
different realizations of population parameters from the parameter uncertainty distribution. The isoboles of 750 populations, each including 
1500 subjects are shown, the efficacy target is a success rate of 95%. (b) The confidence level response surface of achieving at least 95% 
success rate in the population. The grey isobole corresponds to a 50% confidence level, the black isobole to 95% confidence. Cyan dashed 
lines indicate the (hypothetical) maximum feasible dose. Numbers indicate the locations at which the exemplary population simulations in 
panel (c) were performed. (c) Traditional outcome of population simulations with the distribution of success rates across the populations 
simulated: distributions obtained from population simulations at the doses indicated in panel b. Simulations were performed independently 
from the calculations of the response surface to validate the results. The circles indicate the median of the distributions, while crosses 
indicate the lower end of the 95% left-open confidence interval ranging between the 5% and 100% quantiles. The confidence level response 
surface indicates at which quantile the target success rate is located, but does not make any other statement about the rest of the distribution 
of success rates
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Speed improvement

The fast algorithms allowed to calculate both confidence 
level response surfaces at high resolution. In comparison 
to the brute-force method of simulating the population 
ensemble at each grid point, the total number of simula-
tions was reduced by 21-fold for the malaria model after 
six iterations and 6.7-fold for the antibiotics model after 
five iterations. The relative saving compared to brute-force 
depends on the shape of the effective isobole and increases 
with the number of iterations. More details on the speed 
gain and a benchmark of the algorithm’s convergence can 
be found in Text S1.

DISCUSSION

Connecting population PK/PD models and response sur-
face analysis leads to new insights into the behavior of 
combination therapies. Isoboles and response surfaces 
of individuals, populations, and the population ensemble 
each carry different insights to understand properties of a 
given combination therapy. First, the individual-level PK/
PD response surface accounts both for PD interactions as 
well as the PK properties, which are relevant in the clini-
cal context. As a population effect, it was shown that com-
binations with concave isoboles for individuals can still 
improve success rates because IIV allows for realizations 
of subjects which respond differently well. This is in line 

with similar findings of Palmer and Sorger in the onco-
logic setting.34 Last, informed decisions need to account 
for the effects of parameter uncertainty on the predictions 
which is covered by confidence level response surfaces 
and isoboles.

Reporting high-dimensional simulation results intu-
itively is critical in communicating with collaborators. 
Confidence level response surfaces and isoboles are ef-
fective visualizations displaying prediction uncertainty, 
which go beyond population simulation at few selected 
doses. They can be used to intuitively compare combina-
tions with different partner drugs or to assess the impact 
of certain parameters in a simulation study, informing ex-
perimental design, as shown in the section about the an-
tibiotics model.

By focusing on the efficacy level of interest, highly 
resolved confidence level response surface simulations 
become feasible. The combinatorial complexity requires 
trade-offs between the complexity of the simulation at a 
given dose level and the number of dose combinations 
scanned. In current literature, one of the two trade-offs 
is currently made. In the first case, population simulation 
is performed at relatively few doses.3,8,25,35 The doses are 
typically chosen based on current therapy standards and 
are highly informative about the simulated doses, as con-
fidence levels can be derived for all target success rates. In 
other cases, simulations scan a larger dose combination 
range but are only performed for few different parame-
ter sets.4,25 These simulations are useful to understand 

F I G U R E  6   Antibiotics. Effective isoboles and confidence level response surfaces of the antibiotics model. (a) Effective isoboles for 
antibiotics combination therapy treatment. The target efficacy is a 95% success rate of reaching the bactericidal endpoint. The given 
parameter uncertainty imposes a large variation between the population realizations. (b) The confidence level response surface of achieving 
the efficacy target of at least 95% success rate in the population. The grey isobole corresponds to a 50% confidence level, the black isobole 
to 95% confidence. The two confidence levels’ isoboles are rather distant, indicating the large influence of parameter uncertainty. (c) 
The standard deviations of the nine most influential parameters were reduced 20-fold after a hypothetical experiment informing those 
parameters. The confidence level response surface changed dramatically, allowing for lower doses to be selected with high confidence: 
With improved parameter estimates, the confidence level of reaching 95% success rates at a dose combination of 1000 mg MER +500 mg 
VAN is about 99% whereas with poor parameter estimates (panel b), the confidence level at this dose combination is only about 75%. MER, 
meropenem; VAN, vancomycin
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the mechanistic features of the interaction but might 
overlook the additional effects introduced by parameter 
variability from IIV and parameter uncertainty. The pro-
posed methods add a third possibility to the tool set of 
combination therapy simulation, filling the gap the other 
two approaches left open. A shortcoming is that the al-
gorithm only allows for fixed dosing schedules, requiring 
multiple runs when dosing schedule variations should be 
explored. Models of combination therapy are complex to 
explore and each simulation approach has their benefits 
and weaknesses. Only combining the methods of all three 
approaches allows for a comprehensive understanding of 
the model.

On the algorithmic side, the main assumption is the 
monotonicity of the dose-response relationship. Just as bi-
section might terminate early and return no root at all for 
nonmonotonous problems, fastIsoboles is prone to “over-
look” the effective isobole in nonmonotonous settings. 
Furthermore, aggregateIsoboles assumes a single isobole 
per population as input. Both fastIsoboles and aggre-
gateIsoboles could be adapted to account for nonmonot-
onous surfaces, but we believe the presented algorithms 
already cover most use-cases. Nevertheless, monotonicity 
of success rate response surfaces should be checked by 
brute-force simulations for a few populations before run-
ning fastIsoboles for the whole population ensemble. The 
performance gains of the fastIsoboles algorithm varied be-
tween six and 16-fold reduction of simulations (see Text 
S1), effectively cutting down simulation times from days 
to hours. A termination criterion improves this efficiency 
even more by stopping the algorithm when the isobole 
curve has converged, shortcutting the last and most ex-
pensive iterations. The algorithm is robust with regard to 
nonlinearities of the isobole, such as the kink at low MER 
doses in the VAN-MER model. In some extreme cases, the 
algorithm might have convergence problems, as we detail 
in Text S1. However, these cases are likely to be of minor 
practical relevance. Other path-finding algorithms which 
effectively follow the isobole, such as an adaption of an 
integration-based profile likelihood algorithm,36 were 
tested but dismissed because of inferior performance in 
this low-dimensional setting. The assessment of hyperpa-
rameters, such as the population size or number of popu-
lations, can be performed by varying those numbers and 
testing the effective isoboles or confidence level isoboles 
for stationarity.

Future research could be pointed to more than two 
partner drugs6 and toxicity modeling. Combination ther-
apies with more than two drugs can only be analyzed 
with this method by high-dimensional cross sections, 
when one dose is fixed. The methodology can readily 
be applied to toxicity modeling by simply replacing the 
dose-response by a dose-toxicity relationship. This way, 

the dose-response surface can be optimized constrained 
by the dose-toxicity response surface as described by 
Bottino et al.4 allowing for a more sophisticated dose 
constraint than the one used in the malaria example. We 
hope that the versatility of the presented algorithms and 
concepts enable and stimulate future research in other 
disease areas as well.

CONCLUSION

The presented method joins the methods of population 
simulation and response surface analysis. On the one 
hand, the full complexity of the population PK/PD model 
is considered, including the dynamics of PKs and PDs, 
IIV, and parameter uncertainty. On the other hand, a gen-
eral overview of the combination therapy’s behavior at 
different dose combinations is given by the response sur-
face. This is made feasible by prespecifying a desired suc-
cess rate, the efficacy target. The confidence level to reach 
the target success rate is an informative summary statistic 
both in terms of efficacy as well as uncertainty. The result-
ing confidence level response surface and its isoboles are 
easy to interpret clinically: The confidence level isobole 
defines the minimum doses that reach the target success 
rate at a given confidence level.

The method was illustrated with two examples for the 
indication of malaria and antibiotics with a target suc-
cess rate based on cure. However, it can be applied to any 
disease indication: for example, to oncology with a target 
success rate based on survival or 50% tumor size reduc-
tion; or to epilepsy with a target success rate based on 50% 
reduction in seizure frequency. The only prerequisite is to 
have a model able to predict the clinical outcome from the 
administered dose combination.

The algorithms fastIsoboles and aggregateIsoboles re-
solve the trade-off between computational complexity and 
dose resolution by focusing on the efficacy levels of inter-
est and minimizing simulations for uninformative doses. 
The algorithms are publicly available as R-package in SI 
and on https://github.com/IntiQ​uan/popul​ation​Isoboles.
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