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During the past decades the components involved in cellular signal transduction from membrane
receptors to gene activation in the nucleus have been studied in detail. Based on the qualitative
biochemical knowledge, signalling pathways are drawn as static graphical schemes. However, the
dynamics and control of information processing through signalling cascades is not understood.
Here we show that based on time resolved measurements it is possible to quantitatively model
the nonlinear dynamics of signal transduction. To select an appropriate model we performed
parameter estimation by maximum likelihood and statistical testing. We apply this approach
to the JAK-STAT signalling pathway that was believed to represent a feed-forward cascade.
We show by comparison of different models that this hypothesis is insufficient to explain the
experimental data and suggest a new model including a delayed feedback.
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1. Introduction

Deciphering the genome of an organism is only the
very first step towards understanding the mecha-
nisms in living cells. A more detailed picture is
required to understand the regulatory properties
of metabolic, genetic and cellular signalling net-
works. These networks are characterized by their
dynamic behavior. Nonetheless, the extensive bio-
chemical knowledge about these systems is pre-
dominantly represented in a static and qualitative
manner by drawing arrows connecting interacting
components of the network, see e.g. [KEGG] and

Fig. 1. However, as stated in a recent Editorial in
Nature: “But, to really understand the biochemical
networks thus represented, one needs to have num-
bers attached to the arrows” [Campbell, 1999], for
similar claims, see also [Koshland, Jr., 1998; Zheng
& Flavel, 2000; Endy & Brent, 2001; Editorial, 2000;
Downward, 2001].

A first step in this direction of analyzing the dy-
namics is the simulation of these networks. There-
fore, the qualitative scheme is translated into a
set of parameterized differential equations. Choos-
ing the parameters is a difficult task and they are
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Fig. 1. Graphical representation of the JAK-STAT pathway of the Epo-receptor.

usually taken from the literature, see e.g.
[Kholodenko et al., 1999; Kremling & Gilles, 2000].
Unfortunately, biochemical parameters can differ by
orders of magnitude depending on the experimen-
tal conditions. Therefore, this approach faces the
simulation dilemma [Timmer et al., 2000], i.e. it is
difficult to decide whether discrepancies between
simulated and measured data result from inade-
quate parameters or from an insufficient model.
Yet, this approach has been applied to investi-
gate genetic networks [Loomis & Sternberg, 1995;
McAdams & Shapiro, 1995], robustness of chemo-
taxis [Barkai & Leibler, 1997; Alon et al., 1999] and
the segment polarity network [von Dassow et al.,
2000], short-term signaling of the epidermal growth
factor receptor [Kholodenko et al., 1999], optimal-
ity of metabolic networks [Edwards et al., 2001]

stem cell overproducing in colon cancer [Boman
et al., 2001], apoptosis [Fussenegger et al., 2000],
emergent properties of signal pathways [Bhalla &
Iyengar, 1999] and whole cell behavior [Tomita
et al., 1999]. Usually, dependence of the result with
respect to the chosen parameters is investigated by
sensitivity analysis.

To solve the simulation dilemma we follow a dif-
ferent approach by estimating the parameters from
experimental data. Having optimized the parame-
ters of the model, discrepancies between the mea-
sured and the simulated data allow for the con-
clusion that the model is not sufficient, i.e. the
biochemical concept the mathematical model was
based upon has to be reconsidered.

We apply this data-based approach by model-
ing the dynamics of the JAK-STAT signalling path-
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way. Translating the believed graphical representa-
tion of this pathway, a feed-forward cascade, in a set
of coupled differential equations, and fitting the pa-
rameters revealed that this model is insufficient to
explain the measured data. Therefore we propose
a generalized model. We validate this model with
independent measurements.

The paper is organized as follows: In the next
section we briefly describe the investigated pathway
and the acquisition of data. In Sec. 3, the methods
of parameter estimation, model selection and identi-
fiability are discussed. The application of the meth-
ods to infer a dynamical model of the JAK-STAT
signalling pathway is given in Sec. 4.

2. The JAK-STAT Pathway and

Data Acquisition

Functioning cells originate from undifferentiated
progenitor cells. Differentiation of progenitor cells is
triggered by hormones. Erythropoietin (Epo) is the
hormone that promotes the development of progen-
itor cells to red blood cells.1

Upon binding of Epo to cell surface receptors,
multiple signalling pathways transduce the signal
to the nucleus where the respective genes are ac-
tivated. Here, we concentrate on the JAK-STAT
pathway, see Fig. 1; for a more detailed description,
see [Darnell, Jr., 1997; Pellegrini & Dusanter-Fourt,
1997].

Binding of Epo to the extracellular part of
the receptor leads to activation by phosphoryla-
tion of the so-called Janus kinase (JAK) at in-
tracellular, cytoplasmic domain of the receptor. In
turn, this leads to phosphorylation of monomeric
STAT-5, a member of the STAT (signal transduc-
tion and activator of transcription) family of tran-
scription factors. The phosphorylated monomeric
STAT-5 forms dimers and these dimers migrate
into the nucleus where they bind to promotor re-
gion of the DNA and initiate gene transcription.
It was believed that the active role of STAT-5
ends in the nucleus by dedimerization, dephos-
phorylation and export to the cytoplasm where
it is eventually degradated [Haspel et al., 1996;
Haspel & Darnell, Jr., 1999]. Thus, the JAK-STAT
signalling pathway represents a feed-forward cas-
cade. Its graphical representation is given in Fig. 1.

Biochemically, the time courses of the acti-
vation of the Epo-receptor, the phosphorylated
(momomeric and dimeric) STAT-5 in the cytoplasm
and the total amount of STAT-5 in the cytoplasm
were determined. The measured values represent
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Fig. 2. Examples of the measured time series. (a) Activa-
tion of the Epo-receptor. (b) Phosphorylated STAT-5 in the
cytoplasm. (c) Total amount of STAT-5 in the cytoplasm.

1Therefore Epo serves as a doping substance for athletes.



June 24, 2004 10:14 01046

2072 J. Timmer et al.

relative units. Unfortunately, it is currently not pos-
sible to simultaneously quantify STAT-5 in the nu-
cleus. For a detailed description of the biochemical
techniques to measure the different components, see
[Swameye et al., 2003].

Figure 2 displays (a) the time courses of Epo-
receptor activation, (b) phosphorylated STAT-5 in
the cytoplasm and (c) the total amount of STAT-
5 in the cytoplasm for one representative experi-
ment. In the time series of phosphorylated STAT-5
a plateau is reproducibly detected between 10 and
30 min.

3. Methods

In this section we discuss the topics of parameter
estimation, identifiability and model selection that
will be applied in Sec. 4.

To derive a dynamical model for the pathway
under consideration, one has to first decide be-
tween a discrete or continuous state space. Then
one has to chose between a dynamically determin-
istic or stochastic model. From the measured data
and the underlying nature of a chemical reaction we
conclude that a continuous state space is the ade-
quate description. Chemical reactions are intrinsi-
cally stochastic. But, since each cell comprises in the
order of 104 STAT-5 molecules, the deterministic
limit should be reached. Therefore, we aim to model
this system by a deterministic differential equation.

To render the following discussion concerning
parameter estimation and identifiability not too ab-
stract, we exemplify it for the model that corre-
sponds to Fig. 1: Assuming mass-action kinetics and
denoting the amount of activated Epo-receptors by
EpoRA, unphosphorylated monomeric STAT-5 by
x1, phosphorylated monomeric STAT-5 by x2, phos-
phorylated dimeric STAT-5 in the cytoplasm by x3

and phosphorylated dimeric STAT-5 in the nucleus
by x4, we arrive at the following model (model 1):

ẋ1 = −k1x1 EpoRA (1)

ẋ2 = +k1x1 EpoRA − k2x
2

2 (2)

ẋ3 = −k3x3 + 0.5k2x
2

2 (3)

ẋ4 = +k3x3 (4)

The initial values for x2, x3, x4 are zero, the initial
value for x1 is a free parameter that also has to be
estimated from the data. The observed quantities
are:

y1 = k5(x2 + 2x3) (5)

y2 = k6(x1 + x2 + 2x3) (6)

y3 = k7 EpoRA , (7)

where k5 − k7 have to be included as scaling pa-
rameters since only relative units can be measured.
The factors of 2 in Eqs. (5) and (6) reflect the fact
that a dimer produces a signal twice as high as a
monomer. Note, that EpoRA, measured by y3, is
not a dynamical variable but an external input. y1

and y2 will be used to estimate the parameters.

3.1. Parameter estimation

Formally, the problem of parameter estimation in
the present context reads:

ẋ = f(x, u) (8)

y(ti) = g(x(ti)) + ε(ti) , (9)

where u presents the time course of the activated
Epo-receptor and ε(ti) the observational noise.

The simplest approach to parameter estimation
in differential equations is based on estimating time
derivatives from the observed data and transferring
the task to a regression problem, see [Hegger et al.,
1998] for a more detailed description and success-
ful application of this approach. This approach re-
quires that the observational noise is small and that
the observations offer enough information about the
dynamical variables. Both needs are not fulfilled in
the present setting since the noise is substantial and
only linear combinations of the dynamical variables
are observed.

A more promising approach is the initial value

approach [Schittkowski, 1994] which takes into ac-
count the dynamical nature of the task. Choosing
initial guesses for the initial value x1(t = 0) and the
parameters k, here, one aims to minimize:

χ2(x1(t = 0), k)

=

N∑

i=1

2∑

j=1

(yD
j (ti) − yM

j (ti; x1(t = 0), k)2

σ2

ij

,

with yD
j (ti) the measured data and yM

j (ti; x1(t =
0), k) the output of the model. Assuming a Gaus-
sian distribution for the measurement errors, this
approach yields the maximum likelihood estimates
for the parameters and the initial value which allows
for statistical inference as discussed in Sec. 3.3.

Depending on the underlying dynamics, this
approach might run into the problem of numerous
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local minima [Timmer et al., 1998]. In this case
one should use the so-called multiple shooting ap-

proach developed in [Bock, 1981, 1983]; for appli-
cations see [Timmer et al., 2000; Horbelt et al.,
2001]. Fortunately, the present task turned out to
be well behaved enough to be handled by the initial

value approach.

3.2. Identifiability

Given a dynamical system as in Eqs. (1)–(4) and ob-
servation functions as in Eqs. (5) and (6), it might
be possible that not all parameters can be estimated
[Vajda et al., 1989; Ljung & Glad, 1994]. For exam-
ple, solving Eq. (7) for EpoRA and plugging it in
Eqs. (1) and (2) leads to:

ẋ1 = −k1/k7x1y3 (10)

ẋ2 = +k1/k7x1y3 − k2x
2

2 (11)

showing that k1 and k7 cannot be estimated sepa-
rately, but only their ratio.

Analogous calculations show that the identifi-
able parameter combinations are: k2x1(0), k5/k2,
k6/k2. Furthermore, all dynamical variables xi are
identifiable only in combination with k2 of the form
k2xi. Only k3 is uniquely determined.

For the purpose of parameter estimation and
model selection the model should be transferred
into an identifiable one by introducing the identi-
fiable parameter combinations as new parameters.

3.3. Model selection

Selecting an adequate model structure is the most
difficult part of the modeling process for which no
perfect solution exists. Here, we follow the forward
selection strategy, i.e. we start with the simplest
reasonable model and refine it in a way suggested
by biochemical knowledge until further refinement
does not improve the fit. We expect that more re-
solved future measurements will be called for a fur-
ther refinement of our final model proposed here.

As a measure of a significant improvement we
choose the likelihood ratio test (LRT) [Cox & Hink-
ley, 1994; Timmer & Klein, 1997]. If a more general
model M1 with r1 parameters does not offer a suffi-
cient improvement of the fit compared to a simpler
submodel M2 with r2 parameters, the ratio of the
likelihoods or, for convenience, twice the difference
of the log likelihoods L are distributed as:

2(L(M1) −L(M2)) ∼ χ2

r1−r2

In the case of one additional parameter the criti-
cal value at 1% level of confidence for the LRT is
6.635. In this way, the LRT penalizes overparame-
terization. The above distributional result holds if
the so-called standard conditions are fulfilled [Cox
& Hinkley, 1994; Vuong, 1989]. The most important
of these are:

(1) The models are nested.
(2) The true parameters are not part of the bound-

ary of the parameter space.
(3) The parameters are identifiable under the null

hypothesis.

The last point explains the above-mentioned
advice to formulate models in such a way that the
parameters are identifiable. Point 2 is of special im-
portance here, since the parameters in the present
setting mainly represent rate constants which are
constrained to be non-negative. In the case that this
type of nonstandard condition is given, it has been
shown that the LRT statistic becomes a mixture of
χ2 distributions, in the simplest case of one addi-
tional parameter [Self & Liang, 1987]:

2(L(M1) −L(M2)) ∼
1

2
χ2

0 +
1

2
χ2

1 ,

where χ2

0
represents a Dirac measure at zero. Dis-

regarding distributional results of this kind renders
the tests conservative, i.e. disabling the detection of
a violation of the null hypothesis. Combined with an
adjustment of the α niveau with increasing number
of data, LRTs provide a consistent model selection
strategy, i.e. if the more complex model is the true
one, it will be recovered with probability one if the
number of data points increases [Neyman & Pear-
son, 1933; Bauer et al., 1988].

If the first standard condition is not fulfilled,
i.e. the models are not nested, statistical model se-
lection becomes more cumbersome. Here, we follow
a bootstrap strategy suggested by [Hall & Wilson,
1991]. The basic idea is to investigate whether the
empirical difference of χ2 values of the two models
is consistent with the distribution of the difference
of χ2 values based on one of the fitted models. In or-
der to avoid confusion with superscripts we denote
χ2 values by C in the following.

The detailed procedure is as follows:

(1) Calculate the χ2 values of both models

Ck =

N∑

i=1

2∑

j=1

(yD(i, j)−yMk (i, j))2

σ2

ij

, k=1, 2
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and their difference

C12 = C1 − C2

(2) Assume model 1 to be correct and simulate the
time series yM1(i, j). Generate bootstrap time
series yM∗

1 (i, j) by adding noise with variance
σ2

ij to the simulated time series.

(3) For each bootstrap time series yM∗

1 (i, j) fit both
models and calculate

C∗1

12 = (C∗

1 − C∗

2 ) − C12

(4) Reject the null hypothesis “Model 1 is correct”
if C12 is not consistent with the hypothesis of
being drawn from the distribution C∗1

12
−C12 at

a given significance level.
(5) Repeat steps 2–4 assuming model 2.

Note, that possible outcomes of this procedure in-
clude the cases of rejecting as well as not rejecting
both models.

In the context of model selection a remark on
why not apply the popular Akaike Information Cri-

terion (AIC) [Akaike, 1973, 1974] is in order. Akaike
suggested to compare two models by:

AIC(Mi) = 2(L(Mi)) + 2ri ,

and choosing the one with smaller AIC. For the
above setting with one additional parameter for
the more general model, this exactly equals the
LRT with α = 0.156, consequently leading to false
positive results in 15.6% of the cases independent
from the number of data points [Atkinson, 1981;
Teräsvirta & Mellin, 1986]. Thus, AIC is not a con-
sistent model selection criterion. Furthermore, its
derivation assumes the above-mentioned standard
conditions and it is not known how it behaves if
they are not fulfilled. The same holds for the classi-
cal F -test which is asymptotically equivalent to the
LRT in the present setting.

4. A Dynamical Model of the

JAK-STAT Pathway

In this section, we first describe the model selection
process. The selected model is finally valitated by
application to time series obtained from an inde-
pendent experiment.

4.1. Model selection

In this section we describe the iterative modeling
process of the dynamics of the JAK-STAT signalling
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Fig. 3. Fit of model 1 (feed-forward) to the measured time
series of phosphorylated and total STAT-5 in the cytoplasm.

pathway. The parameter estimation is based on
three repetitions of the experiment. The dynami-
cal parameters are fitted simultaneously for all ex-
periments while the scaling parameters k7 − k9 are
fitted separately. Only the resulting fit for one of
the experiments will be displayed.

We start the modeling procedure with model 1
already briefly discussed in Sec. 3 given by

ẋ1 = −k1x1 EpoRA (12)

ẋ2 = +k1x1 EpoRA − k2x
2

2 (13)

ẋ3 = −k3x3 + 0.5k2x
2

2 (14)

ẋ4 = +k3x3 (15)

This model summarizes the hitherto point of view of
a feed-forward cascade underlying the signal trans-
duction, see Fig. 1. Figure 3 displays the resulting
fit.

Even without any statistics, it can be concluded
that this model is not able to describe the measured
data. Note, that apart from the qualitative wrong
behavior of the total amount of STAT-5, the model
cannot reproduce the plateau in the time series



June 24, 2004 10:14 01046

Modeling the Nonlinear Dynamics of Cellular Signal Transduction 2075

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

S
T

A
T

-5
 p

ho
sp

ho
ry

la
tio

n 
 in

 th
e 

cy
to

pl
as

m
 

 (
ar

b.
 u

ni
ts

)

time (min)

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

to
ta

l a
m

ou
nt

 o
f S

T
A

T
-5

 
 in

 th
e 

cy
to

pl
as

m
 

 (
ar

b.
 u

ni
ts

)

time (min)

Fig. 4. Fit of model 2 (feed-forward model with a back-
reaction) to the measured time series of phosphorylated and
total STAT-5 in the cytoplasm.

for the phosphorylated STAT-5 in the period from
10–30 min.

Typically, chemical reactions are to some degree
reversible. To test whether the inclusion of a back-
reaction from the dimer to the monomer (model 2)
improves the fit, Eqs. (13) and (14) of model 1 are
replaced by:

ẋ2 = +k1x1 EpoRA − k2x
2

2 + 2k′

3x3 (16)

ẋ3 = −k3x3 + 0.5k2x
2

2 − k′

3x3 (17)

Although this generalization improves the fit signif-
icantly (LR = 7.8, p < 0.01) the resulting fit in
Fig. 4 again shows that this model cannot be suffi-
cient.

The marginal differences between the fits of the
two models is reflected by the fact that the back-
reaction rate constant is only 3% of the forward-
reaction rate constant.

The unsuccessful models considered so far as-
sumed that the active role of STAT-5 ends in the
nucleus. This triggers the idea that STAT-5, after
dedimerization and dephosphorylation in the nu-
cleus, might reenter the cytoplasm and is involved

into another round of activation. A detailed descrip-
tion of STAT-5 in the nucleus would require at least
four components: the free dimer, the dimer bound
to promotor regions of the DNA, the dedimerized
activated monomer and the deactivated monomer.
Without measurements of at least some of these
components the models would not be identifiable.
Therefore, it is necessary to search for effective mod-
els to describe the behavior in the nucleus. The two
simplest approaches are:

(1) One effective compartment.
This changes Eqs. (12) and (15) to

ẋ1 = −k1x1 EpoRA + 2k4x4 (18)

ẋ4 = +k3x3 − k4x4 (19)

(2) An effective delay.
This assumes that the sojourn time in the nu-
cleus can be captured by a fixed delay. Equa-
tions (12) and (15) are replaced by

ẋ1 = −k1x1 EpoRA + 2k4x3(t − τ) (20)

ẋ4 = +k3x3 − k4x3(t − τ) (21)

To ensure mass conservation, the condition
k3 ≥ k4 has to hold.

Identifiability analysis as discussed in Sec. 3.2 shows
that the parameters k4 and τ are identifiable.

We first treat the second alternative of an effec-
tive delay (model 3). Figure 5 displays the resulting
fits.

Apart from the likelihood ratio test that yields
a test statistic of 838.0 compared to model 1, corre-
sponding to p < 10−5, the figures show an extremely
accurate fit that even reproduces the plateau in the
time series of the phosphorylated STAT-5 between
10 and 30 mins. The estimated sojourn time of
STAT-5 in the nucleus is τ = 6.4 min. The estimates
of the parameters k3 and k4 are consistent with each
other in accordance with the expectation that nu-
clear influx and outflux should balance. Therefore
we identify the parameters in the following.

Again, we considered the possibility that
adding a back-reaction of the dimer to the monomer
in the cytoplasm might improve the fit (model 4).
The likelihood ratio resulted in 0.7, corresponding
to a p-value of 0.2 which indicated that this is not
a significant improvement of the fit. The resulting
fits are virtually nondiscriminatable from the fit of
model 3 and therefore not displayed.
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Fig. 5. Fit of model 3 (nuclearcytoplasmic cycling) to the
measured time series of phosphorylated and total STAT-5 in
the cytoplasm.

The assumption of a sharp sojourn time τ is
certainly a simplified view. Thus, we investigated
whether a distribution of delay times would signif-
icantly improve the fit (model 5). To render this
approach feasible in the frame of parameter esti-
mation, we assumed a Gaussian distribution of de-
lay times, resulting in one additional parameter,
the width of the distribution, for this generaliza-
tion. The resulting likelihood ratio was 0.55, corre-
sponding to p = 0.23, and states that this is not a
significant improvement of the model. The result-
ing fit is shown in Fig 6, supporting the statistical
analysis.

Finally, we investigated the description of the
dynamics of STAT-5 in the nucleus by an effec-
tive compartment (model 6) compared to the delay
model 3. Since these models are not nested, we ap-
plied the bootstrap procedure outlined in Sec. 3.3.
We used 200 bootstrap time series. Figure 7 dis-
plays the cumulative distributions of the bootstrap
test statistcs and the empirical value. Model 6 is
rejected with p = 0.007, model 3 is consistent with
the data (p = 0.33).
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Fig. 6. Fit of model 5 (nuclearcytoplasmic cycling with de-
lay distribution) to the measured time series of phosphory-
lated and total STAT-5 in the cytoplasm.
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Fig. 7. Bootstrap distributions of X = C
∗1

12 −C12 for model
3 (solid line) and model 6 (dashed line) and empirical value
(horizontal line).

4.2. Model validation

Statistical testing and visually convincing fits
should only be regarded as necessary criteria for
the judgement of a model. More challenging is
the description of independent measurements by a
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Fig. 8. Fit of independent data. Atypical activation of the
Epo-receptor and fit of model 3 to the time series of phos-
phorylated and total STAT-5 in the cytoplasm.

before-fitted model. Therefore, we used the fitted
model 3 from above and applied it to time series
from a new experiment which showed an atypical
activation of the Epo-receptor. Due to the atypi-
cal activation of the receptor the dynamics of the

system visits regions in the phase space that were
not seen during the previous optimization of the
parameters. Note, that application of the model to
data with a similar time course of the Epo-receptor
would not serve for a validation of the model.

The dynamical parameters k1–k4 and τ were
kept fixed and only the scaling parameters k5–k7

were estimated from the new data. Figure 8 dis-
plays the results that support the validity of our
fitted model.

5. Discussion

We presented the derivation of a dynamical model
for a cellular signalling pathway based on measured
time series. The procedure uses parameter estima-
tion given a certain model and statistical testing to
decide between different models. Parameter estima-
tion was performed by maximum likelihood estima-
tion. On the one hand this results in efficient esti-
mates [Cox & Hinkley, 1994], on the other it allows
for statistical testing by likelihood ratio tests which
are, at least asymptotically, maximal powerful.

For model selection we applied a forward selec-
tion strategy, i.e. starting with the simplest model
we searched for generalizations until the quality of
the fit did not increase furthermore. An alternative
strategy would be backward selection, i.e. starting
with the most general model and simplifying it until
the model became insufficient. Theoretical consid-
erations recommend the backward selection strat-
egy [Mantel, 1970]. Unfortunately, the most gen-
eral model in the present case would comprise so
many parameters that the model would be non-
identifiable. Therefore, we had to follow the forward
selection strategy.

In the first steps of the model selection pro-
cedure we showed that the established model of a
feed-forward cascade is not consistent with the mea-
sured time series and the feed-back that allows for
nuclearcytoplasmic cycling of STAT-5 should be in-
cluded in the model. A biological interpretation of
this finding is first that the cell has to perform an
optimal use of a limited pool of STAT-5 molecules.
A second reason might be that cycling allows for
a continuous monitoring of the receptor activity by
the nucleus.

The fact that statistical testing preferred mod-
eling of the nuclearcytoplasmic STAT-5 dynamics
by a delay term (model 3) to modeling by an or-
dinary differential equation (model 6) is consistent
with biochemical knowledge that STAT-5 binds for
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a minimum time to the DNA promotor region. For
model 6 there is no lower limit of the sojourn time
of STAT-5 in the nucleus which seems to be de-
tected by the statistical test. As in other cases of
modeling biological systems by delay differential
equations, e.g. the Mackey–Glass system [Mackey
& Glass, 1977], the choice of a fixed sojourn time of
STAT-5 in the nucleus is surely a rough simplifica-
tion. Although statistical testing does not advocate
a more complex model with a distribution of so-
journ times, we believe that this is mainly due to
the small amount of data and we expect that this
part of the model will have to be refined in the pres-
ence of more detailed future measurements.

The fitted model allows for in silico experi-
ments that predict the outcome of new biochemical
experiments or even for experiments that cannot be
performed biochemically. Such quantitative under-
standing of biochemical pathways opens the field
of clinical application. Apart from the discovery of
therapeutic targets [Nicholson, 2000] it can help
to understand clinical markers [Simpson & Dorow,
2001].

Here, we discussed the analysis of a signalling
pathway but the approach of data driven mod-
eling also applies to other biochemical systems,
e.g. metabolic pathways [Mendes & Kell, 1998].
This suggests that biochemistry offers interesting
phenomena to be explained by applied nonlinear
dynamics.
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