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We may obtain a more accurate expression forf�kg as follows,
as long asjkj is not too large. The Taylor expansion of sinc(t) about
the origin is

sinc(t) =
n�1

k=0

(�1)k�2k

(2k + 1)!
t
2k +

sinc(n)(�t)
n!

t
n
; 0 < � < 1: (4.9)

For a series expansion with an infinite number of terms, the radius
of convergence includes all finitet. Thus

�(t) = 2L=2
n�1

k=0

(�1)k�2k

(2k+ 1)!

1
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x
2k
�(2Lx� t) dx

+ 2L=2
1

�1

sinc(n)(�x)
n!

x
n
�(2Lx� t) dx: (4.10)

Thenth approximant to�(t) is the first term of (4.10) and is

�n(t) = 2L=2
n�1

k=0

(�1)k�2k

(2k+ 1)!
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x
2k
�(2Lx� t) dx (4.11)

for n � 1. It can therefore be readily shown that

�n(t) = 2�L=2
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:

(4.12)

Thus,�k � �n(k), provided thatn is big enough for the range of
k of interest. In other words, the approximation is good if we use
enough moments of�(t). The error term in (4.10) is the second term
and may be rewritten as

�n(t) =
1

n!
h
n+

n

r=0

n

r

�
1

�1

sinc(n)[h�(� + t)]� r�(�)d� t
n�r (4.13)

whereh = 2�L. We see that the useful range oft for which �n(t)
is a good approximation to�(t) is limited but that it increases when
n and/orL increase.
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Estimating Rate Constants in Hidden
Markov Models by the EM Algorithm

Steffen Michalek and Jens Timmer

Abstract—The EM algorithm, e.g., the Baum–Welch re-estimation,
is an important tool for parameter estimation in discrete-time hidden
Markov models. We present a direct re-estimation of rate constants for
applications in which the underlying Markov process is continuous in
time. Previous estimation of discrete-time transition probabilities is not
necessary.

Index Terms—Continuous-time hidden Markov model, EM algorithm,
maximum likelihood estimate, parameter estimation, parameterized hid-
den Markov model.

I. INTRODUCTION

Hidden Markov models (HMM’s) were successfully applied in
various fields of time series analysis, e.g., in speech recognition
[1] or ion channel analysis [2]–[4]. For discrete-time HMM’s, the
EM algorithm for maximum likelihood parameter estimation is well
known [1], [5]. In some fields, however, the formulation as a
discrete-time process does not appear to be completely adequate
for the dynamics to be described. In the analysis of ion channel
recordings, for example, the underlying biophysical process is the
molecular dynamics of proteins in the cell membrane. Their behavior
is described by a process of transitions between a few classes of
conformations called states. Since this process is continuous in time,
the transitions are more adequately described by transition rates then
by discrete-time probabilities for state changes [6].

For many applications, a parameterization of the rate constants
for the system’s state transitions is necessary since certain relations
between rate constants like identical values, distinct ratios, or func-
tional dependence from common underlying variables are needed
to express the dynamical behavior of a system, for example, to
consider physical mechanisms and combinatorics [7], [8], agonist
concentration [9], [10], multiple conductance sublevels [11], or
for multichannel recordings [12]–[14]. Sometimes, it is necessary
to set certain rates to zero, defining a special topology of the
directed graph of transitions. In either case, it is hardly possible to
formulate the recommended constraints in terms of discrete transition
probabilities since they arise from the nonlinear matrix exponentiation
operation [13].

Up to now, the EM algorithm as main tool in HMM estimation
[1], [5] is not formulated to deal directly with the parameters of the
underlying continuous-time process. This problem has been stated
frequently [3], [11], [15].

We present equations to perform EM re-estimation iterations for
such HMM’s in which the Markov process is described in terms
of rate constants and that are observed by discrete sampling. The
approach to this formulation is a generalization of parameterized
discrete-time hidden Markov models like that proposed in [14].
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This correspondence is organized as follows. Section II will outline
the EM algorithm for parameterized discrete-time hidden Markov
models. In Section III, the equations for direct re-estimation of
rate constants are derived. The Appendix gives further details on
calculation as well as re-estimation formulae for other parameters in
parameterized HMM’s.

II. EM RE-ESTIMATION IN DISCRETE-TIME HMM’ S

Consider a parameterized discrete-time hidden Markov model
M( ) = (A; ;h) and the two related stochastic processesX =
(Xt)1�t�N and Y = (Yt)1�t�N . The background processX
of discrete-time transitions between them background states is
a homogeneous Markov process that is governed by them � m

stochastic matrixA of transition probabilitiesaij = P (Xt = j j
Xt�1 = i). Its initial distribution is given by�i = P (X1 = i). The
real-valued outputY is determined by the conditional distributions
ph(Yt = yt j Xt = i)1. The vectorh may, for example, contain
the means and variances ofm normal distributions. Assume the
model being parameterized by a parameter vectorcontaining
disjoint subsets A, , and h, which parameterizeA, , and
h, respectively.

In order to obtain maximum likelihood estimates for given
datay, the idea of the iterative EM algorithm is to maximize the
expectation value of the log-likelihood with respect to the (new)
parameter set 0, given the background pathsx distributed following
the (old) parameters . The information inequality [16] ensures that
the likelihood always increases with a step! 0 [17], [18]. The
basic EM equations as well as the reestimation of the parameters for
the output distributions and the initial distribution of parameterized
HMM’s are given in the Appendix.

For re-estimation of the parametersA of the background dynam-
ics, define

	ij(t;y; ) := P (Xt = i; Xt+1 = j j y) for 1 � t < T

and

	Tij(y; ) :=

T�1

t=1

	ij(t;y; )

which is computable efficiently using the so-called forward–backward
algorithm [1], [5]. The normalization conditions m

j=1 aij(
A) = 1

for 1 � i � m are considered by Lagrange multipliers.
Then, with#0� a component of A , the system of equations

0 =

m

i;j=1

@aij(
A )

@#0�

	Tij(y; )

aij( A )
+ �i

0 =

m

j=1

aij(
A )� 1

(1)

has to be solved for A with 1 � � � dim A; 1 � i � m.
In the special case ofA directly containing the transition prob-

abilities aij (trivial parameterization), the original Baum–Welch
re-estimation formulae [5] arise.

Without loss of generality, we assume a parameterizationaij(
A)

of the nondiagonal elementsaij for i 6= j, and obtain the diagonal
elements from the normalizationaii( A) := 1 �

j 6=i aij(
A)

ensuring thatA is a stochastic matrix.

1Small letters related to random variables denote realizations, i.e., elements
of their image set.

With this convention and keeping in mind that@a ( )
@#

=
j 6=i

(�
@a ( )

@#
), the number of equations forA reduces to dim A

0 =

m

i;j=1
i6=j

@aij(
A )

@#0�

	Tij(y; )

aij( A )
�

	Tii(y; )

aii( A )
: (2)

In general, it is not possible to give an analytical solution for the
re-estimated A since theaij(�) are almost arbitrary functions.

III. RE-ESTIMATION OF RATE CONSTANTS

Up to now, we dealt with the discrete-time transition probabilities
only. However, it is possible to describe the dynamics by rate
constants in order to reflect thatX is the sampled version of a
continuous-time process with infinitesimal generatorQ. We consider
the relation between the matrixQ of rate constants and the stochastic
matrix A

A(Q) = exp(Q�)

with A = faijg; Q = fqijg; f = 1
�

as the sampling rate. This
relation is now interpreted as a special parameterization of theaij .
Furthermore, if the rate matrixQ is parameterized itself, then

A( A) = faij(
A)g = exp(Q( A)�)

whereas by analog convention,A parameterizes the off-diagonal
elements ofQ, ensuring thatQ is a generator matrix by normalization
qii(

A) := �
j 6=i qij(

A). This leads to

@aij(
A)

@#0�
=

m

r;s=1

@aij(Q( A))

@qrs

@qrs(
A)

@#0�

=

m

r;s=1
r 6=s

@qrs(
A)

@#0�

@aij(Q( A))

@qrs
�

@aij(Q( A))

@qrr
:

The resulting system of equations forA reads, with1 � � �
dim A

0=

m

i;j=1
i6=j

m

r;s=1

@qrs(
A)

@#0�

@aij(Q( A))

@qrs
�
@aij(Q( A))

@qrr

(�)

�
	Tij(y; )

aij( A )
�

	Tii(y; )

aii( A )
: (3)

Since (3) cannot be expected to be solved analytically forA ,
simultaneous root finding must be applied numerically.

An efficient method for calculating the marked terms(�) in (3)
is described in [19]. Assuming the detailed balance property of the
generator matrixQ, they can be determined analytically [20]. Both
methods are fast compared with the calculations necessary to obtain
the 	Tij .

Note that it is also possible within this framework to define constant
entries ofQ. Thus, with qij = 0 for some transitions, different
topologies for the directed graph of the permitted state transitions
can be defined easily.

IV. DISCUSSION

The parameterization of discrete-time transition probabilities by
rate constants is an adequate approach to deal with the discrete
sampled version of a process that is naturally described to be
continuous in time. The explicit continuous-time formulation with
continuous processes for both background and output [21] is not
applicable in the present case since the usual methods of discretization
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of stochastic integrals cannot be carried out with the recursion
equations [21] fora priori given sampling intervals.

Equations are given to generalize the EM algorithm for our
model. The generalization does not affect the structure of the EM
formalism. The resulting equations include the existing EM re-
estimation as a special case in which they can be solved analytically.
The same re-estimation method is applicable for the rate constants
themselves as well as for arbitrarily parameterized generator matrices
Q. Analogously, the re-estimation equations for any modified or
generalized discrete-time HMM, e.g., to deal with time correlated
output [22], could be changed to consider rate constants.

The presented method performs direct re-estimation of parameter-
ized rate constants without previous estimation of theAmatrix. Thus,
inference of theQ matrix from the discrete transition probabilities,
which is known to be problematical [3], [11], [15], is not necessary.

APPENDIX

RE-ESTIMATING THE OTHER PARAMETERS

OF A PARAMETERIZED MODEL

The EM iteration consists in finding the maximum of the following
function with respect to 0

Q( ;
0) :=

x2X

ln(P (x)p (y j x))P (x j y)

=

m

i=1

	i(1;y; ) ln�i( )

+

m

i;j=1

T�1

t=1

	ij(t;y; ) ln aij(
A )

+

m

i=1

T

t=1

	i(t;y; ) ln p (yt j Xt = i)

with X the set of all mN possible background paths, and
	i(t;y; ) = P (Xt = i j y) for 1 � t � T , obtainable from
the forward–backward algorithm.

A. Estimating Gaussian Output Parameters

Assume disjunct subsetsM and S of h parameterizing the
means�i and standard deviations�i of Gaussian output for1 �
i � m.

Then, with #0� a component of M , #0
 a component of
S , and with 	Ti (y; ) := T

t=1
	i(t;y; ); Y 1T

i (y; ) :=
T

t=1
yt	i(t;y; ), and Y 2T

i (y; ) := T

t=1
y2t	i(t;y; ),

respectively, the re-estimation formulae are, with1 � � � dim M;

1 � 
 � dim S
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�3i (
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2
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M )	Ti (y; )

+ Y
2T

i (y; )� 2�i(
M0

)Y 1T

i (y; ) :

B. Estimating the Parameters for the Initial State Distribution

Assume the initial probabilities parameterized by except for
one component, say,�i , that is obtained by normalization to unity.
Then, with#0� a component of , the re-estimation formulae are,
with 1 � � � dim

0 =

m

i=1
i6=i

@�i(
0)

@#0�

	i(1;y; )

�i(
0)

�
	i (1;y; )

�i ( 0)
:
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