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Estimating transition rates in aggregated
Markov models of ion channel gating with
loops and with nearly equal dwell times
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A typical task in the application of aggregated Markov models to ion channel data is the estimation of
the transition rates between the states. Realistic models for ion channel data often have one or more
loops. We show that the transition rates of a model with loops are not identifiable if the model has either
equal open or closed dwell times. This non-identifiability of the transition rates also has an effect on the
estimation of the transition rates for models which are not subject to the constraint of either equal open or
closed dwell times. If a model with loops has nearly equal dwell times, the Hessian matrix of its likelihood
function will be ill-conditioned and the standard deviations of the estimated transition rates become
extraordinarily large for a number of data points which are typically recorded in experiments.
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1. INTRODUCTION

The so-called patch-clamp technique allows the recording
of single ion channel currents (Neher & Sakmann 1976;
Hamill et al. 1981). The observed current switches rapidly
for most ion channels between two conductance levels
because an ion channel performs transitions among a
number of unobserved open and closed states. The
transitions among these states are usually described by a
Markov chain in continuous time due to the underlying
physics of the transitions (Colquhoun & Hawkes 1977).
For most ion channels, there are more than one open and
closed state, respectively, necessary to model adequately
the gating of the ion channel. Because it is only possible
to observe if the channel is either in an open or a closed
state, but not in which one, the observed ion current is an
aggregated image of the underlying process, which is
modelled by an aggregated Markov process (Colquhoun
& Hawkes 1981; Colquhoun & Sigworth 1995; Fredkin et
al. 1983). The transitions between the unobserved states
correspond to physiological processes such as changes in
the geometrical conformation of the channel protein or
the binding of ligand molecules to receptor sites on the
channel protein (Hille 1992). Therefore, not every transi-
tion between the states is possible, but a characteristic
gating scheme determines the dynamics of the ion
channel data. The gating scheme together with the transi-
tion rates between the allowed transitions parameterize
an aggregated Markov model.

For a given gating scheme, the transition rates have to
be estimated from the data. This can be achieved by the
maximum-likelihood method (Fredkin & Rice 1992
Albertsen & Hansen 1994; Machalek & Timmer 1999). It
was shown recently that under mild regularity conditions
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the maximume-likelihood estimator is asymptotically
normally distributed with a covariance matrix given by
the inverse of the limiting covariance matrix of the score
function (Bickel et al. 1998). In particular, the covariance
matrix of the maximume-likelihood estimator can be esti-
mated by the inverse of the Hessian matrix of the likeli-
hood function at the maximum-likelihood point.

Because of the aggregation of the states, the maximum
number of parameters which can be estimated from the
data is limited to twice the number of open states multi-
plied by the number of closed states (Fredkin et al. 1983;
Fredkin & Rice 1986). For instance, a three-state model
which is composed of one closed and two open states and
where all states are interconnected, has six parameters. It
always has the same observable outcome as a suitable
chosen three-state model with only four parameters,
where the states are ordered in a linear chain (Kienker
1989). Consequently, the transition rates in a three-state
gating scheme with a loop are not identifiable.

However, gating schemes with one or more loops are
often used to model realistic ion channel data (Horn &
Lange 1983; Ball & Sansom 1989; Bates et al. 1990;
Vandenberg & Bezanilla 1991). At least two open and two
closed states are necessary to obtain a gating scheme with
one loop and with all transition rates identifiable. The
simplest gating scheme fulfilling these requirements is
shown in figure 1. Any other gating scheme with two
open and two closed states is either equivalent to the
gating scheme shown in figure 1 or its transition rates are
not identifiable (see figure 2). The problem of non-
identifiable transition rates is aggravated if the analysis of
ion channel data is only based on the marginal distribu-
tions of the open times and the closed times, respectively
(Edeson et al. 1994).

The concept of aggregated Markov models can be gener-
alized to hidden Markov models which also incorporate the
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Figure 1. Loop-gating scheme: gating scheme with one loop

and four states. We denote an open and a closed state by ‘0’
and ‘C”, respectively.

noise on the data (Chung et al. 1990, 1991; Iredkin &
Rice 1997). Hidden Markov models can be further
extended by taking into account the perturbation of the
measured ion channel data caused by filtering (Venkatar-
amanan el al. 1998; Michalek et al. 1998, 1999).

This paper is organized as follows. In § 2 we show for a
simple four-state loop model that the transition rates are
not identifiable, if the model has either equal open or
equal closed times. In §3 we examine the consequence of
the non-identifiability for the estimation of the transition
rates in the case that the true model has only nearly
equal dwell times.

2. EQUAL DWELL TIMES

We examine a four-state aggregated Markov model with
equal open times and with a gating scheme given by figure
1, called the ‘loop-gating scheme’ in the following. The case
of equal closed times is analogous. The results derived for
this simple model are also valid for every more compli-
cated aggregated Markov model with loops which contains
the loop-gating scheme as a sub-model. Moreover, we
expect that for every other aggregated Markov model with
loops the results are also true but harder to prove.

In the following, we assume that the ion channel
current is observed at discretely sampled time points
resulting in a time-series of data points ¥;, i =1,.. ., N
where every ¥; can only take two values for the two
possible outcomes ‘open’ and ‘closed’. The parameter
vector of the aggregated Markov model is denoted by 6
For our analysis, we will use the likelihood function of the

observed time-series 17, . . ., ¥:
L}"],H.)K\,‘<0>:P9<T13”‘5 YA")- (1)
Py(Yy, ..., ¥Yy) is the joint probability distribution func-

tion of the data given the parameter vector 6. The
analysis of aggregated Markov models is often not based
on the likelihood function given by equation (1) but based
on the likelihood function of the observed series of
channel dwell times (Horn & Lange 1983; Iredkin et al.
1983; Kienker 1989; Ball & Sansom 1989; Colquhoun &
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Figure 2. Possible alternatives to the loop-gating scheme:
Gating scheme (a) is equivalent to the loop-gating scheme.
The transition rates of gating scheme () are not identifiable
because this gating scheme has exactly one gateway state (0,)

(Fredkin ez al. 1983).

Sigworth 1995). Tor the case of aggregated Markov
models, we can equally use both functions. However,
arguments which are based on the likelihood function of
the observed data points and not on the likelihood func-
tion of the observed series of dwell times are more easily
extended to the case of hidden Markov models. For prac-
tical purposes, artefacts caused by filtering have to be
considered. In the case of aggregated Markov models,
this can be achieved by taking into account a possible
time interval omission (Ball et al. 1993; Colquhoun et al.
1996); in the case of hidden Markov models the filter
artefacts can be incorporated in the signal model
(Michalek ez al. 1998, 1999).

In the following, we assume that an aggregated
Markov model with a generator matrix Q which is
compatible with the loop-gating scheme, is parameterized
In a way so as to impose no other constraint than
ensuring equal open times. The parameters of such an
aggregated Markov model are not identifiable in the
following sense: it is possible to perform a slight variation
of the parameters leading to a new generator matrix
which is also compatible with the loop-gating scheme and
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whose corresponding aggregated Markov model has the
same joint probability distribution as the original model.
Indistinguishable aggregated Markov models are charac-
terized by the following lemma (Kienker 1989).

Lemma 1 (Kienker 1989). Let Q' and Q. be the generator
matrices describing two regular Markov models. If the two

generator matrices Q and Q' are related by a similarity transfor-
mation: Q' = ST'QS where S is the form:

S()() O
( ol ) (2)

and each row of S sums to unity, then the joint probability distribu-
tions are the same_for both models.

We split the proof of the non-identifiability of the tran-
sition rates into two parts. In the first part, we show that
the Hessian matrix of the likelihood function is singular
at the maximum-likelihood point. This result will give us
an idea, which we will use in the second part, on how to
obtain a family of transformation matrices S(e) which
depends on a continuous parameter € and includes the
identity transformation for € =0 with the following
properties: the transformed generator matrices Q’(€)
= S(e)"'QS(e) are compatible with the loop-gating
scheme, and the corresponding aggregated Markov
models have the same joint probability distribution.

(a) A sufficient condition for the singularity of the
Hessian matrix

We formulate a sufficient condition for the Hessian
matrix of the likelihood function to be singular at the
maximum-likelihood point. In general, the likelihood
function L is a function of an arbitrary generator matrix
Q: L =L(Q)—the obvious dependency on the data is
omitted. The generator matrices of aggregated Markov
models which are compatible with a certain gating
scheme can be parameterized in an arbitrary manner for
lemma 2 by a parameter vector §: Q = Q (#). Most
commonly, the vector 6 contains a subset of the transition
rates of the aggregated Markov model.

Lemma 2. Let 0 be a maximum-likelihood point for a given
aggregated Markov model and given data. Now, consider the like-
lthood function as a _function of all entries of the generator matrix
Q: L= L(Q) wnstead of just the parameters 0. Assume the exis-
tence of a twice continuously differentiable matrix-valued function
g(€) depending on a real parameter € with the following properties:

i) gle=0)=0(0)

(i) g(€) = Q.(0) + €C, + 2Cy + O(€®), where C; and C,
denote some matrices with entries independent of e,

(i) Ligle)) = L(Q.(0))

(iv) There exists an interval [—€,,€] around zero so that for every
€ in_this interval the second-order approximation of g(€):
Q.(0) + €C, + €*Cy is a generator matrix which is compa-
tblewiththegating scheme of the given aggregated Markov model.

Then the Hessian matrix of the likelihood function L(0) is
singular at 6.

Lemma 2 is proven by substituting the Taylor expan-
sion of g into (ii1) and comparing coeflicients corre-
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sponding to the same power of €. Note that g(e) for € # 0
does not need to satisfy the constraints imposed by the
given parameterization; in fact, it does not even need to
be a generator matrix at all.

(b) The loop model with equal open times

In this section we will prove that the Hessian matrix of
a loop model with equal open times is singular at the
maximum-likelihood points by using lemma 2. It is
proven in lemma 1 that L(S7'Q S) = L(Q) for every
matrix S of the same form as in equation (2). We can
therefore fulfil assumption (iii) of lemma 2 by choosing
the matrix-valued function g(e€) as

gle) =57 (€)Q S(e), (3)

where §(€) is a transformation matrix for every € in the
sense of lemma 1.

By equation (3), the task to find a suitable function g(€) is
transfered to the problem to determine the transformation
matrices S(¢€). The further premises of lemma 2 require us to
consider the Taylor expansion of the function g(€). There-
fore, we will expand equation (3) step by step to higher
orders in the following. Because every order will pose
restrictions on S(€), we will start with the most general form
of the transformation matrix S(€) and take into account the
restrictions posed on S(¢€) for every order in the Taylor series.

To keep the calculations simple, it is useful to parame-
terize generator matrices compatible with the loop-gating
scheme and with equal open times in the following way:

— Q 00 Q oc )
Q ( Q(i() Q« cc

—qi3b 0 013 Qi3 —1)
_ 0 —qi3b 0 Q150
a g1 0 —q31 — (34 734
q41 aqs, 943 41 —Aq31 — q43

(4)

The g; terms and a are constrained to be positive; b has
to be greater than unity.

Because of condition (1) of lemma 2, the transformation
matrix §(e =0) must be the identity transformation.
Expanding $ to first order in €, we can approximate S as
follows: S(e) ~ I+ 7+ ..., where I denotes the identity
transformation and ¥ the first-order term in the Taylor
expansion. Accordingly, we can rewrite equation (3) for
small values of €,

ge)=Q0'~Q+Qj-jJQ+..... (9)
_—
Qi
It is a necessary condition to fulfil assumption (iv) in
lemma 2 that the first-order approximation Q + Q] must

be compatible with the loop-gating scheme. This is
ensured by choosing 7 as

—a€;  ag 0 0

(T ‘ 0y be, —bey | 0O 0
j(61:62) - ( 0 ‘ ]c - 0 0 —€ € 5

0 0 €& —6

(6)

depending on two real parameters €,€,.
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From lemma 1, 7 has four free parameters in general.
However, the requirement to be compatible with the
loop-gating scheme imposes four constraints, namely that
the entries ¢i9, ¢, ¢535 and g3 of the transformed
generator matrix Q' have to vanish. Therefore, one would
expect that 7 is fully determined or that even a matrix 7
which meets the constraints does not exist. However, in
the case of equal dwell times, the restrictions of vanishing
entries (1,2) and (2,1), respectively, are always fulfilled
because the sub-matrix @ ,, is proportional to the
2 x 2 identity matrix and therefore it commutes with 7.
Thus, the loop-gating scheme constraints reduce the
number of parameters in J only by two. The restrictions
given by the higher-order terms in the Taylor series equa-
tion (3) will reduce the number of parameters in j to
one, which will be shown in the following.

For the expansion of equation (3) to higher orders, we
use the following parameterization of the transformation
matrices S:

Splene) =f(J(€,6)), S(0)=1and/(0) =1, (7)

where f is an arbitrary analytical and invertible function
to be determined in the following. This approach has the
nice property that (Sfl(e],ez)QSf(el,eg))oo =0, for
arbitrary €,€, because

(Sfl(ﬁlaez)Q.S/‘(El;‘fQ))oo - (Jo) (—aqusbD)f(F,)

=/
=TS (o) Qoo
= Q()()' (8)

Expanding equation (3) to the second order using equa-
tion (7), we obtain

Q=0+07-70
—_———
Q)
QF - J0T+5 2=/ et O
Q0

where /7 denotes the second derivative of / at point 0.

0 + 0 + Q) must meet the constraints by the loop-
gating scheme to satisfy the assumption (iv) of lemma
2. This implies further restrictions on €, €, and on the
second-order coefficient f/” of the Taylor expansion of f.
The constraint that the sub-matrix (Q + Q1+ Q3),,
has to be of diagonal shape, is fulfilled for arbitrary e,
€ and f” applying the same arguments as in equation
(8). Therefore, the two remaining restrictions require
the entries (2,3) and (3,2) of Q + Q[+ Q5 to vanish.
These restrictions are given by the following pair of
equations:

f//

T2

1
5591362[( =" +af" +2—2a)e
+ (S " +2=2b)e] =0, (10)

1
5093161 {(_afﬁ - 2Q4_1+f”> €
q31

—(—f”+bf”+2—2b)ez] = 0. (11)
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They can be solved by the following two independent
solutions:

€] 5 <12)
f//_2’
62205
g 13)
g51(1 —a)

Using these solutions, we can build two independent
matrix-valued functions g, (€) and g, (€):

a(e) =fi(e) 7' Q fileh)
= Q+eQ i ~J1Q) +EQT = T1QT)+0(E),
@(€) =f(e72) 7 Q faledo) o
=Q+e<Q72—JQQ>+eQ(LQJ% - 7207,

g5 (1 —a)

+ (1 —L>]§Q> +0(), (15)
g (1 —a)
0O 010 0\

n=le o0 0| (16)
0 011 —1)
—a a 0 0\

2=l o 1] 7
0 0l 0 0)

where f; and f; denote some analytical functions, whose
first-order Taylor coefficient is unity and whose second-
order Taylor coefficient is given by equations (12) and (13),
respectively, and is otherwise arbitrary. Both functions
g1(€) and gy (€) fulfil all assumptions of lemma 2. Conse-
quently, the Hessian matrix of the likelihood function is
singular at the maximum-likelithood point.

For lemma 2 to be applicable, it is sufficient that only
the terms in the Taylor series up to order 2 are compatible
with the loop-gating scheme. Therefore, it is not neces-
sary to specify any higher-order Taylor coeflicients than
the second-order coefficient of the functions f, and f;.
Moreover, the functions g,(€) or go(€) need not be
generator matrices for any finite € values.

In the following section, we will show that is it possible
to find special functions f; and f, so that g;(€) and g,(€)
are generator matrices compatible with the loop-gating
scheme for small, but finite values of the parameter €.

(c) Non-identifiability

In §2(b) we proved the singularity of the Hessian
matrix of the likelihood function at a maximume-likelihood
point for the loop-gating scheme with equal open times.
We constructed two different families of transformation
matrices corresponding to the two solutions of equations
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(10) and (11). For the proof of the singularity of the
Hessian, it was sufficient that only the sum of the first three
terms in the Taylor expansion of equation (3) is compatible
with the loop-gating scheme, but not Q' (e) itself; Q' (e) is
not even required to be a generator matrix at all.

The transition rates of the loop-gating scheme are not
identifiable if we can find particular functions f; or f,
with the following properties: the transformed matrices
Q'(€) are generator matrices and compatible with the
loop-gating scheme. Therefore, it follows that the aggre-
gated Markov model with generator matrix Q’(€) accom-
plishes the assumptions of lemma 1 for every sufficiently
small value of e. Hence, it has the same joint probability
distribution as the aggregated Markov model with
generator matrix Q.

The functions f; and f, were not fully specified in
§2(b). In the following, we will exploit the freedom to
choose the higher-order Taylor coeflicients of the functions
J1 or f; to satisfy the constraints given by the loop-gating
scheme. Equation (3) can be written as

>(l)‘f\j1

QT

Q'(e) =/ (€]a)Q fuleTn) Z Z o

1+7

(18)

where a = 1,2, fa(]\ denotes the jth Taylor coefficient and
(£ denotes the ith Taylor coefficient of £ ', both
Taylor expansions are performed around the point zero.
Note that (f;7!)" is fully specified by the Taylor coeffi-
cients f3, j=0, ..., [ because f, is subject to the
constraint £, ! (x) £, (x) = 1. Because of relation (8), it need
only be shown that the entries (2,3) and (3,2) in the
transformed matrices Q’(€) vanish. This is the case if
these two entries vanish in every order 7,Q Fu. We will
show that one of these constraints is always satisfied by
the choice of the matrices f; and [,, respectively, in
equations (16) and (17); the other constraint will then
lead to recursion equations for the Taylor coefficients of
the functions f; and f;, respectively.

Case o =1. We examine the solution (12). After some
tedious algebra, we find that

<JiQ7€>m=<—1>f’+~fbf<—aq31>((1) —01> > 1.
(19)

By equation (19), it is shown that the entry (3,2) is
vanishing in every order of equation (18) independent of
the function f.

The constraint that the entry (2,3) is zero in the /th
order of equation (18) leads to the following condition for
the Taylor coefficients f1 :

) (0 (@) £0)
Ui >1b/+f—b+z m b= (20)

lj>|

Expression (20) is a recursion equation for ;. To solve
this equation, we consider the function

00
Sl =1—x""= "o for x|<1, (21)

=0
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with Taylor coefficients flw = [!. The Taylor coeflicients of
the inverse function f;' =14 x of order 2 and higher
vanish. Therefore, it 1is easily shown, that f(x)
= (1 —x)"" solves equation (20). The corresponding
transformation matrix is given by

Sife) = (1 — )™ (22)

Again after some tedious algebra, we can derive the
transformed matrix Q' (e):

Qi) =S7'(€)Q Sy (€)
qi3b 0 e e
0 —qi3b 0 q13b
ags (1 +¢)
4 1 + be B C
(23)
where
1
= T e (@amele+ 1)) +en = g5) + qu;,
—1
1 te (‘19216(1 + 6) -+ 6((]41 — 921>

— €(q31 + g34 — qa1 + Gus) — Qus),

-1
I +e€

C=

(agsi (1 +€) + €(gss + qa1 + qas) + qa1 + Gus3)-

0} (e) is a generator matrix and compatible with the loop-
gating scheme for all sufficiently small € values and Q) (€)
is related to Q by a similarity transformation satisfying the
assumptions of lemma 1. An aggregated Markov model
with generator matrix Q') (€) is therefore indistinguishable
from an aggregated Markov model with generator
matrix Q.

Case a= 2. We examine the solution (13). The calcula-
tions are similar to the previous case.

(]éQJ‘é)oc:(—l)”jlaiqls<_(l) (1)) >l (2

In contrast to the previous case, the entry (2,3) is
vanishing in every order of equation (18) independent of
the function f;.

We now obtain the following recursion equation for the
Taylor coefficients f2 due to the constraint that the entry
(3,2) 1s zero in the /th order of equation (18):
ULt B oo _gn = 5~ i U5 A

I I 431 i+j=1 U

ij =1

=0.

(25)

We are not aware of a solution of equation (25) which can
be expressed by elementary functions. The function f, is,
however, determined by equation (25), and there exists a
second family of transformation matrices Q(€)
=/5"'(e7,)0Q f>(€F5) which is compatible with the loop-
gating scheme and related to the generator matrix Q by a
similarity transformation in the sense of lemma 1. Again,
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an aggregated Markov model with generator matrix
Q/y(€) is indistinguishable from an aggregated Markov
model with generator matrix Q for every sufficiently
small value of e.

We have shown that for every aggregated Markov
model with equal open times and which is compatible to
the loop-gating scheme, we can find two families of
aggregated Markov models which depend continuously
on a parameter € and which are equivalent to the given
aggregated Markov model. Therefore, the transition rates
of such an aggregated Markov model can never be esti-
mated from the measured data because there is a choice
between an infinite number of models which could have
produced the data equally well. The parameters of an
aggregated Markov model with equal open times are only
identifiable if the dimension of the parameter space is
further reduced, for example some transition rates are
kept fixed or some transition rates are functions of the
other transition rates as in the case of imposing the prin-
ciple of detailed balance on the transition rates. There are
at least two constraints needed in addition to the condi-
tion of equal open times in order to obtain a parameteri-
zation whose parameters are all identifiable.

3. NEARLY EQUAL DWELL TIMES

In the following section, we consider the estimation of
the transition rates in the loop model. Therefore, we drop
the restriction of equal open times and we assume that all
transition rates of the loop-gating scheme are parameters
of an aggregated Markov model and that no further
constraints are imposed on the parameters.

Given data which are generated by an aggregated
Markov model with the loop-gating scheme and not with
equal, but almost equal, dwell times, all transition rates
are identifiable and the maximume-likelihood estimators
converge to the true transition rates for the number of data
points going to infinity. Furthermore, the maximum-
likelihood estimators are asymptotically normally distrib-
uted. In practice, only a limited number of data are avail-
able. Therefore, we have to study the finite sample
properties of the maximum-likelithood estimators. There
are two typical finite sample problems. First, there are not
enough data available to apply the asymptotic theory of
the maximum-likelihood estimator; second, the asymp-
totic theory is applicable, but the estimated standard
deviations of the estimated parameters are extremely large.
In this section, we demonstrate by simulation studies that
we encounter these problems for models with nearly equal
open times because the finite sample properties of the
maximum-likelihood estimators depend on the ratio of the
open times as a consequence of the non-identifiability of
the transition rates in the case of equal open times.

The Hessian matrix of the likelihood function at the
maximum-likelihood point plays a crucial role in the
asymptotic theory of the maximum-likelithood estimators,
because the covariance matrix can be estimated by the
inverse of the Hessian matrix (Bickel et al. 1998). The esti-
mated standard deviations of the parameters will thus
become large if the Hessian matrix is ill-conditioned.

The loop models with equal open times form a sub-
space in the parameter space of the loop models. Because
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we have shown in §2(a) that the transition rates in a loop
model are not identifiable if the model has equal open
times, the likelihood function is constant on a set of two-
dimensional (2D) manifolds in the parameter space
which corresponds to loop models with equal open times.
Thus, the Hessian matrix of the likelihood function is
singular on this set of 2D manifolds. Moreover, the
Hessian matrix i1s ill-conditioned in the neighbourhood of
these manifolds because the condition number of a
matrix depends continuously on its entries.

We therefore investigate the dependency of the stan-
dard deviation of the parameter estimator on the ratio of
the open times in a simulation study. The simulated data
were generated by the loop model with the following
generator matrix:

—100 0 25 75

0 _1/7—2 0 1/7_2
24 0 —44 20 (26)
147.6 25 41 —=213.6

All transition rates are given in Hertz. The closed dwell
times are 4.5ms and 25ms, the open dwell times are
10ms and 7,, where 7, is varying from 80 ms to 20 ms in
steps of bms. For each 7, we simulate 32 recordings of
length 420s with a sampling rate of 5kHz (2?' data
points), estimate the transition rates by the maximum-
likelihood method and estimate the covariance matrix by
the inverse of the Hessian matrix at the maximum-
likelihood point. The maximization of the likelihood
function is performed numerically by the EM algorithm
(Michalek & Timmer 1999) and a nonlinear maximiza-
tion routine based on a quasi-Newton method (NAG
1997). Tor the calculation of the first derivatives of likeli-
hood function, we use Fisher’s identity (Fisher 1925;
Jamshidian & Jenrich 1997) and the ‘sinch’-algorithm
described by Najfeld & Havel (1995) to evaluate the
derivatives of the matrix exponential. The Hessian matrix
1s calculated numerically by using the first derivatives of
the likelihood function (NAG 1997).

Figures 3 and 4 subsume the results of this simulation
study. Figure 3 shows the median of the condition
numbers of the Hessian matrix. The median absolute
deviations of the condition number about the median
condition numbers are plotted as error bars. The condi-
tion numbers are calculated in the l-norm (Golub &
VanLoan 1996, pp. 54—57). As an example, the estimated
relative error of the transition rate ¢} — C, is shown in
figure 4, we denote by ‘relative error’ the estimated stan-
dard deviation divided by the true value of the transition
rate. The error bars indicate the estimated standard
deviation of the error estimate. Both figures illustrate the
rise of the condition number and the estimated relative
error, respectively, towards smaller values of the open
time ratio as expected by the theoretical considerations.
Below an open time ratio of 2, the numerical optimiza-
tion of the likelihood function is not stable because of the
flatness of the likelihood function near the maximum-
likelihood point.

The magnitude of the estimated standard deviations
depends on the length of the time-series. Thus, we
examine the dependence of the estimated relative error
on the length of the data set in a second simulation study.



Estimating transition rates in aggregated Markov models

M. Wagner and others 1925

6000
o}
Ko}
IS
>
S 4000 r
c
=
%
5
© 2000 I
i
e s S T
0 L L L L L L L
1 2 3 4 5 6 7 8

T,IT,

Figure 3. Condition number of the Hessian matrix. The error
bars indicate the median absolute deviation of the condition
number about the median condition number. The condition
numbers are calculated using the 1-norm. For each 7 value
we simulated 32 recordings of length 420 s with a sampling
rate of 5 kHz (2! data points).
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Figure 4. Estimated relative errors of the transition rate

C; — (5. The error bars indicate the estimated standard
deviation of the error estimate. For each 7 we simulated 32
recordings of length 420 s with a sampling rate of 5 kHz (2
data points).

Using the same aggregated Markov model as in the first
simulations, the length of simulated data sets is varied
from 2'6 to 2%!. The open time ratio is set to 3. We simu-
late 32 recordings for each length. Figure 5 shows the
estimated relative error of the transition rate €, — C,
and figure 6 shows the median of the condition numbers.

For less than 2'% data points, corresponding to 105,
the transition rate ¢; — C, cannot be estimated reliably,
and the asymptotic result that the maximume-likelihood
estimators follow a Gaussian distribution, is not applic-
able.

The Hessian matrix scales asymptotically with unity
divided by the number of data points (Bickel et al. 1998).
Therefore, the condition number of the Hessian matrix is
asymptotically independent of the length of the
time-series. Figure 6 suggests that the Hessian matrix
already obeys this scaling law, although the maximum-
likelihood estimators still deviate from the Gaussian
distribution if the number of data points is less than 2'°.
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Figure 5. Estimated relative errors of the transition rate

C) — G, for different numbers of data points N. The error
bars indicate the estimated standard deviation of the error
estimate. The solid line shows the expected asymptotic scaling
behaviour 1/4/N of the error estimates. The ratio of the open
times is /71 = 3. Even though this transition rate is identifi-
able for 7 /7y # 1, the non-identifiability for 7 = 7, has an
effect on estimated error for 7, /7 # 1.
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Figure 6. Condition number of the Hessian matrix for
different numbers of data points N. The error bars indicate
the median absolute deviation of the condition number about
the median condition number. The condition numbers are
calculated using the 1-norm. The ratio of the open times is
Ty/T1 = 3. The simulation result is consistent with the
asymptotic independence of the condition number on the
number of data points V.

4. DISCUSSION

We have shown the non-identifiability of the transition
rates in models with the loop-gating scheme and with
equal dwell times. This non-identifiability has an effect on
the estimation of the transition rates in models with the
loop-gating scheme if the dwell times are nearly equal.
Moreover, the simulation studies indicate that an
unexpectedly large number of data points are sometimes
necessary to estimate the transition rates reliably.

The loop-gating scheme has served as the simplest
example for a model with loops, but the results based on
the loop-gating scheme can surely be carried over to
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more complicated aggregated Markov models with loops.
Moreover, this simple example demonstrates the impor-
tance of estimating the errors of transition rates when
analysing real data.

These consequences of the non-identifiability in models
with equal dwell times can be avoided only by putting
restrictions on the transition rates to be estimated and, so,
reducing the number of parameters in the model. Because
equations (10) and (11) have two solutions, at least two
constraints are needed to allow the identifiability of the
remaining parameters. A common constraint for models
with loops is the principle of detailed balance (Song &
Magleby 1994; Kienker 1989). In the case of the loop
model, however, detailed balance reduces the number of
parameters only by one, and a further constraint would
be necessary. Therefore, even a model which is subject to
the principle of detailed balance is not identifiable in the
case of equal open times.

The impact of non-identifiability in models with equal
dwell times on tests for detecting violations of detailed
balance will be further investigated.
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