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Summary

For independent data, non-parametric bootstrap is realised by resampling the data with replacement.
This approach fails for dependent data such as time series. If the data generating process is at least
stationary and mixing, the blockwise bootstrap by drawing subsamples or blocks of the data saves the
concept. For the blockwise bootstrap a blocklength has to be selected. We propose a method for select-
ing the optimal blocklength. To improve the finite size properties of the blockwise bootstrap, studen-
tised statistics is considered. If the statistic can be represented as a smooth function model this studenti-
sation can be approximated efficiently. The studentised blockwise bootstrap method is applied for
testing hypotheses on medical time series.
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1 Introduction

Since the introduction of the bootstrap, Efron (1979), methods based on resampling have been applied
on numerous statistical problems. The success of bootstrap may be explained by its easy implementa-
tion whenever the data are identical distributed and statistically independent. If time series of stochas-
tic processes are taken into account, the observations are in the most cases not independent. Then,
statistical inference using bootstrap methods becomes much more difficult and is often based on pro-
found model assumptions, see e.g. model based bootstrap, Davison and Hinkley (1997) or the sieve
bootstrap for ARMA-models, B�hlmann (1997).

If the model class or the model equations are unknown, a possible method of estimating the variance of
a statistic was proposed by Hall (1985) and Carlstein (1986). This non-parametric method is based on
building subsamples of the sequence of observations. Adapting this idea to the bootstrap methodology
leads to blockwise bootstrap, K�nsch (1989); Liu and Singh (1992). Here, the subsamples or data blocks
are resampled, instead of the data points itself. For establishing a consistent approximation of the distribu-
tion or variance of the statistic, structural assumptions on the underlying process has to be posed. These
assumptions are usually a-mixing and strong stationary. It is assumed that these basic conditions are valid
throughout this paper. The free parameter – blocklength l – has to be adjusted to each specific problem.
By minimising the mean squared error, Hall et al. (1995) showed that the optimal blocklength for a series
of length n is proportional to n

1
3 for bias or variance approximation, n

1
4 for the approximation of one-sided

distribution functions and n
1
5 for the approximation of two-sided distribution functions. The constant of

proportionality depends on the process and on the statistic. In the following a method to select this con-
stant is described. We show that this method gives appropriate estimates for the blocklength.

The second issue deals with the studentisation of the blockwise bootstrap method. If the statistic Tn

can be described by a smooth function of means, the variance of Tn can be approximated by its first
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order Taylor expansion. A more general approach is to estimate this variance by linearising the statis-
tic using the empirical influence function Hampel et al. (1986); Huber (1980). These two methods
differ only by the way the statistic is linearised and therefore it is sufficient to regard only the smooth
function model.

By using a formal Edgeworth expansion, it can be shown that the rate of convergence of e.g. confi-
dence intervals increases if the statistic is studentised, Davison and Hall (1993); G�tze and K�nsch
(1996); Hall (1988); Hall and Wilson (1991); Hall (1992), Fisher and Hall (1990). Note that for the
validity of an Edgeworth expansion (see e.g. Bhattacharya and Ghosh (1978) for independent observa-
tions) in case of time dependent observations, the mixing coefficient has to decay exponentially, moment
conditions have to be satisfied and a conditional Cram�r condition has to be fulfilled, G�tze and Hipp
(1983). We conjecture that the convergence of bootstrap is increased even if there is no valid Edgeworth
expansion, which might result from the scale correcting nature of the studentisation.

Recent contributions on blockwise bootstrap are mostly found in the econometric sector, such as
Paparoditis and Politis (2003, 2001); Fitzenberger (1996). In case of biometrics, the contributions are
rather sparse. For demonstrating the practical significance of the blockwise bootstrap in the area of
medical statistics, a suitable application is discussed in Section 7.

2 Blockwise Bootstrap

Let X1; . . . ; Xn be an observed sample from a strongly stationary, a-mixing, p-variate sequence
ðXtÞt2Z. The real-valued statistics Tn ¼ TnðX1; . . . ; XnÞ is assumed to be invariant under permutations
of the observations.

For the blockwise bootstrap, b subsamples or blocks of length l are formed from the observations.
We further assume, without loss of generality, that n=l 2 N (otherwise, the data sample is truncated
until n=l 2 N holds). In the framework of blockwise bootstrap, two kinds of building subsamples are
predominating, the overlapping blocks and the non-overlapping blocks. The overlapping blocks are
defined by

Yi ¼ ðXi; . . . ; XiþlÞ i ¼ 1; . . . ; b ¼ n� l� 1 ; ð1Þ
and non-overlapping are defined as follows:

Yi ¼ ðXði�1Þlþ1; . . . ; XilÞ i ¼ 1; . . . ; b ¼ n
l
: ð2Þ

It turns out that the blockwise bootstrap gives quite comparable results if either overlapping or non-
overlapping blocks are used, K�nsch (1989); Hall et al. (1995). Unless otherwise mentioned, the re-
sults of this paper remain the same whether overlapping or non-overlapping blocks are used.

Blockwise bootstrap is realised by resampling the blocks Yi and gluing them together to form a
kind of surrogate time series of length n. Finally, the statistic is applied on each bootstrapped series to
estimate quantities like distribution functions, bias or variance. The algorithmic representation of this
procedure is:

1. Drawing blocks with replacement from fY1; . . . ; Ybg and forming Y*1; . . . ; Y*b by gluing the
drawn blocks together.

2. Repeat 1. B times to generate B bootstrap samples X*1; . . . ; X*B.
3. Calculate T*n; k ¼ TnðX*1; k; . . . ; X*n; kÞ; k ¼ 1; . . . ; B:
4. Finally, determine the bootstrap approximation of e.g.:

– the distribution function F*ðxÞ ¼ B�1 PB
k¼1

q x� T*n; k
� �

– the bias Bias* ¼ B�1PB
k¼1

T*n; k � TnðX1; . . . ; XnÞ

– the variance s2* ¼ B�1PB
k¼1

T*n; k � B�1PB
j¼1

T*n; j

 !2

,

where qð�Þ is the step function.

Biometrical Journal 47 (2005) 3 347

# 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Some remarks on the consistency of the described blockwise bootstrap: Only demanding strong
stationarity and that the mixing coefficient aðtÞ vanishes with respect to the time lag t is too weak for
a valid bootstrap approximation. The consistency can for example be achieved, as Naik-Nimbalkar
and Rajarshi (1994) have shown, if

�
P1
i¼0
ðiþ 1Þ7 aðiÞ1=2�t <1; for t 2 ð0; 1

2Þ
� Xi has a continuous distribution function on R

� l ¼ lðnÞ ¼ Oðn1=2�EÞ; with 0 < E < 1
2

� the statistic Tn has to be Hadamard or compactly differentiable within a sufficient space of dis-
tributions (see also Gill (1989)).

For the choice of the blocklength l, we assume that the mixing coefficient decays exponentially with
respect to the time lag. This also assures under mild moment conditions and under some kind of Cram�r
condition the validity of the Edgeworth expansion, G�tze and Hipp (1983). Here again, the compact differ-
entiability cannot be dropped. The described smooth function model is always compact differentiable.

3 Studentising the Blockwise Bootstrap

3.1 Smooth function model

Suppose an i.i.d. sample of p-variate random vectors, W1; . . . ; Wn. Let m ¼ E½W i� and
�WW ¼ n�1Pn

i¼1
W i. A function A is called a smooth function model if

A : R
p ! D � R ; A 2 C1 R

p; Dð Þ and AðmÞ ¼ 0 : ð3Þ
This concept can be applied on statistical problems in which the statistic can be expressed by a
smooth function g such as Tn ¼ gð �WWÞ. The associated smooth function model then yields:
AðwÞ ¼ gðwÞ � gðmÞ. The main advantage of the smooth function model is that the variance of the
statistic Tn can be well approximated. Additionally, by using the chain rule, the existence of the
Fr�chet derivative with respect to the distribution is proven. In the following the i-th component of a
vector, say Y, is denoted by YðiÞ. To approximate the variance of Tn let

Z ¼ n
1
2 �WW � mð Þ ; ai ¼

@AðwÞ
@wðiÞ

����
w¼m

bij ¼
@2AðwÞ
@wðiÞ @wðjÞ

����
w¼m

and Cij ¼ E½ðW1 � mÞðiÞ ðW1 � mÞðjÞ� :

Because of the independence of the W i’s, E½ZðiÞ� ¼ 0 and E½ZðiÞZðjÞ� ¼ Cij. Now, Taylor-expanding the
function Sn ¼ n

1
2 Að �WWÞ at w ¼ m, leads to:

Sn ¼
Pp
i¼1

aiZ
ðiÞ þ n�

1
2
1
2

Pp
i; j¼1

bijZ
ðiÞZðjÞ þ Opðn�1Þ :

And therefore the expectations E Sn½ � and E S2
n

� �
are given by:

E Sn½ � ¼ n�
1
2
1
2

Pp
i; j¼1

bijCij þ Oðn�1Þ ;

E S2
n

� �
¼
Pp

i; j¼1
aiajCij þ Oðn�1Þ :

Using Var Tnð Þ ¼ n�1 Var Snð Þ ¼ n�1ðE½S2
n� � ðE½Sn�Þ2Þ þ Oðn�2Þ gives the approximative variance of Tn:

Var ðTnÞ ¼ n�1 Pp
i; j¼1

aiajCij þ Oðn�2Þ : ð4Þ
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Finally, the estimators âai ¼
@AðwÞ
@wðiÞ

����
w¼ �WW

and ĈCij ¼ n�1 Pn
k¼1

Wk � �WWð ÞðiÞ Wk � �WWð ÞðjÞ are plugged into

Eq. (9) to estimate the variance:

ŝs2
n ¼dVarVar ðTnÞ ¼ n�1 Pp

i; j¼1
âaiâajĈCij : ð5Þ

Extending these results to blockwise defined statistics leads to variance estimators which are sufficient
for studentising the described bootstrap method.

3.2 The procedure of studentising blockwise bootstrap

Since Eq. (5) does not give consistent results if the observation W i are not i.i.d., a modification of the
smooth function A is needed before applying these results on time series. To approximate the variance
of Tn under conditions outlined in Section 2, the observations Xi are transformed into a new series W i

in which Tn ¼ gð �WWÞ, as in Section 3.1. Again, the series W i is not i.i.d.. To incorporate the depen-
dence structure into ŝs2

n, the blocking scheme is implemented into the statistic. For this purpose define

~WWi ¼ ðW ð1Þði�1Þ lþ1; . . . ; W ð1Þil ; . . . ; W ðpÞði�1Þ lþ1; . . . ; W ðpÞil Þ ; i ¼ 1; . . . ;
n
l

for non-overlapping blocks and for overlapping blocks

~WWi ¼ ðW ð1Þi ; . . . ; W ð1Þiþl ; . . . ; W ðpÞi ; . . . ; W ðpÞiþlÞ ; i ¼ 1; . . . ; n� l� 1 :

The statistic is then rewritten into

Tn ¼ ~gg b�1 Pb
i¼1

~WWi

� �
;

where ~ggðwÞ ¼ g l�1 Pl

i¼1
ðwðiÞ; . . . ; wððp�1Þ lþiÞÞ

� �
. And hence again, AðwÞ ¼ ~ggðwÞ � ~ggðmÞ. Suppose that

the blocklength is adequately chosen and therefore the blocks are approximately independent, such
that the approximation in Eq. (5) can be used.

To give an example of the described procedure, let Tn be the sample variance

Tn ¼ n�1Pn
i¼1

X2
i � n�1Pn

i¼1
Xi

� �2

. Then

ŝs2
n ¼ n�1l�24 ÊE½X1�

� �2
lĝg1ð0Þ þ 2

Pl�1

i¼1
ðl� iÞ ĝg1ðiÞ

� �
þ lĝg2ð0Þ þ 2

Pl�1

i¼1
ðl� iÞ ĝg2ðiÞ

�
þ 2ÊE½X1� lĝg3ð0Þ þ 2

Pl�1

i¼1
ðl� iÞ ĝg3ðiÞ þ lĝg4ð0Þ þ 2

Pl�1

i¼1
ðl� iÞ ĝg4ðiÞ

� �	
;

where

ÊE½X1� ¼ �XX ¼ n�1 Pn
i¼1

Xi ;

ĝg1ðtÞ ¼
1

n� t

Pn�t

i¼1
Xi � �XXð Þ Xiþt � �XXð Þ ; ĝg2ðtÞ ¼

1
n� t

Pn�t

i¼1
X2

i � ~XX2
� �

X2
iþt � ~XX2

� �
;

ĝg3ðtÞ ¼
1

n� t

Pn�t

i¼1
Xi � �XXð Þ X2

iþt � ~XX2
� �

; ĝg4ðtÞ ¼
1

n� t

Pn�t

i¼1
X2

i � ~XX2
� �

Xiþt � �XXð Þ ;

and ~XX2 ¼ n�1Pn
i¼1

X2
i :
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Studentised bootstrap is realised by studentising each bootstrap sample T*stud; n ¼
T*n � Tn

ŝs*n
. The boot-

strap approximation of the studentised statistic is now determined similar to Section 2 and can be used
e.g. to approximate confidence intervals of level a

ÎIa ¼ ½t� � ŝsn þ Tn; tþ � ŝsn þ Tn� ;
where

t� ¼ sup
x2R

a

2


 �
� F*studðxÞ

n o
and tþ ¼ inf

x2R
1� a

2


 �
� F*studðxÞ

n o
:

The distribution function F*studðxÞ has to be calculated as in Section 2. The only difference is that T*n
is replaced by its studentised bootstrap samples T*stud; n.

4 Blocklength Selection

The success of the method depends on the choice of the blocklength l. Taking the mean squared error
as objective measure to be minimised, the blocklength selection is similar to the choice of the smooth-
ing parameter in non-parametric function estimation, Peifer et al. (2003); Hall et al. (1995). In both
cases a tradeoff between bias and variance is present. For the sample mean, the mean squared error
can be calculated and is in case of the bootstrap variance approximation, Hall et al. (1995),

MSE ðlÞ ¼ E½ðVar* ð �XXÞ � Var ð �XXÞÞ2� � 1
n2l2

C1 þ
l

n3
C2 ; ð6Þ

where

C1 ¼
P1

k¼�1
jkj gðkÞ

� �2

; C2 ¼
2

P1
k¼�1

gðkÞ
� �2

for non-overlapping blocks

4
3

P1
k¼�1

gðkÞ
� �2

for overlapping blocks .

8>>><>>>:
Here, gðkÞ is the auto-covariance function of the process. The optimal blocklength is therefore given
by lopt ¼ ð2C1=C2Þ1=3n1=3. To generalise this concept, the statistic Tn is linearised before, using either
the smooth function model or the empirical influence function. The constants C1 and C2 are then
determined by the covariance structure of the linearised statistic. A first idea to estimate the block-
length is to plug-in the empirical auto-covariance function into C1 and C2. Since the correlated errors

of the estimated auto-covariance function are amplified by the factor jkj in C1 ¼
P1

k¼�1
jkj gðkÞ

� �2

this method fails. To avoid this problem, the global behaviour of the auto-covariance function is para-
meterised and fitted to the empirical auto-covariance function. For this, it is assumed that the mixing
coefficient decays exponentially and hence the auto-covariance function decays in maximum exponen-
tially, too. In making use of this extra assumption, some points of the correlation function are esti-
mated: ĝgðkÞ; k ¼ 0; . . . ; m < n, and the function f ðkÞ ¼ fk; 0 � f < 1 is fitted to the envelope of
ĝgðkÞ. Then the estimated parameter f contains the characteristic time scale of the process and the
blocklength is finally estimated by replacing gðkÞ in C1;C2 with fk. The procedure of selecting the
blocklength is therefore the following:

� Linearise the statistic Tn by transforming the data points to Vi such that

Tn ¼ gð �WWÞ � n�1 Pn
i¼1

Pp
j¼1

@gðwÞ
@wðjÞ

����
w¼�W

W ðjÞi ¼ n�1 Pn
i¼1

Vi ) Vi ¼
Pp
j¼1

@gðwÞ
@wðjÞ

����
w¼�W

W ðjÞi for the smooth

function model of Section 3.1. Or alternatively linearise the statistic using the influence function
approach, Hampel et al. (1986); Huber (1980).

� Estimate the auto-covariance function of the transformed series Vi.
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� Determine the envelope of the estimated auto-covariance function. In case of oscillatory pro-
cesses we propose using the Hilbert transform, Oppenheim and Schafer (1975). This method
gives reliable results if the auto-covariance function ĝgðkÞ of Vi is having a narrow frequency band
or equivalently, if the power-spectrum of process Vi is having pronounced peaks, Gabor (1946);
Boashash (1992). The Hilbert transform for the discrete signal ĝgðkÞ is then carried out by

~ggðkÞ ¼ F�1 2qðwÞ Ffĝgg ðwÞf g ðkÞ ;
where F ;F�1 denotes the discrete Fourier transformation and its reverse transformation. Again,
qð�Þ is the step function, truncating the negative frequencies of the signal. Since ~ggðkÞ 2 C, the
signal can be decomposed into ~ggðkÞ ¼ AðkÞ eijðkÞ, in which AðkÞ is interpreted as envelope of the
original signal ĝg.

� Fit f ðkÞ ¼ fk to the envelope by using well elaborated methods such as the Levenberg-Marquardt
algorithm, Press et al. (1992).

� The blocklength l̂l is then:

l̂l ¼
4v

f

1� f
þ f2

ð1� fÞ2

 !2

1þ 2
f

1� f

� �2 n

0BBBBB@

1CCCCCA

1
3

; ð7Þ

where v ¼ 1 for non-overlapping and v ¼ 3=2 for overlapping blocks.

For a AR[1]-process, the parameter f asymptotically coincides the process parameter in
Xt�1 ¼ fXt þ Et, where Et is Gaussian white noise. It should be remarked that the formula determining
the blocklength, Eq. (7), slightly differs from the formula derived in Carlstein (1986). This is due to
the chosen resampling scheme, whereas Carlstein straightly uses the subsamples to estimate the var-
iance of the regarded statistic. In general, due to the calculation of the envelope of the auto-covariance
function the proposed approach differs from fitting a single autoregressive process of order 1 to the
process and determining the blocklength from the process parameter. Such a procedure was e.g. stu-
died in Sherman (1998) within the class of autoregressive-moving average processes. In the following,
a simulation study is performed to investigate the proposed blocklength selection method and the
effect of the studentisation.

5 Simulations

To investigate the effect of studentisation and the choice of the blocklength, three different data gen-
erating processes are chosen:

� Autoregressive process of order 1 (AR[1]), Xt ¼ a1Xt�1 þ sEt, a1 ¼ exp ð�1=tÞ, t > 0 and ðEtÞt2Z

i.i.d. sequence of Nð0; 1Þ random variables.
� Autoregressive process of order 2 (AR[2]), Xt ¼ a1Xt�1 þ a2Xt�2 þ sEt, where

a1 ¼ 2 exp ð�1=tÞ cos
2p

T

� �
, a2 ¼ �exp ð�2=tÞ, t; T > 0 and ðEtÞt2Z i.i.d. sequence of Nð0; 1Þ

random variables.
� Stochastic van der Pol oscillator (SVDP), given by the stochastic differential equation

dX1 ¼ X2 dt

dX2 ¼ mð1� X2
1Þ X2 � X1

� 

dt þ s dBt ; m > 0 ;

where dBt is the increment of the Brownian motion.

The motivation of these three processes is the following: The two autoregressive processes are linear
but their dynamical behaviour is different – whereas the AR[1]-process can be seen as a stochastically
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driven relaxator with relaxation time t. Since this process is non-oscillatory, the calculation of the
envelope for selecting the blocklength is skipped for each simulation concerning the AR[1]. The
AR[2]-process can be interpreted as a stochastically driven, damped oscillator with relaxation time t
and period T . Finally, the SVDP shows non-linear oscillating behaviour with a mean period of ap-
proximately 9, Kurrer and Schulten (1991); Leung (1995).

Throughout the simulation the variance s was set equal one. For the AR[1]-process the parameter
was chosen t ¼ 5 and for the AR[2]-process t ¼ 10, T ¼ 5. The stochastic differential equation of the
SVDP was integrated by an Euler integration scheme, where m ¼ 3, the integration step size
dt ¼ 0:001 and the sampling time was chosen to be Dt ¼ 0:5. More details and the theoretical justifi-
cation of the chosen parameters for the SVDP can be found in Timmer (2000).

Beside the data generating processes, a specific statistic has to be chosen. Motivated by the applica-
tion, Section 7, the sample variance is used throughout this section. In order to give a measure of the
accuracy for the following bootstrap approximations, two-sided equally tailed 95%-confidence inter-
vals are calculated. The coverage-error of the confidence intervals is then estimated by the relative
frequency, in which the variance of the process is falling into the interval over 1000 independent runs.
The sign of the coverage error was chosen to be negative for conservative and positive for anti-con-
servative confidence intervals. Since the variance of the SVDP is not known theoretically, rather long
datasets of 105 data points are used to approximate the variance.

The results of the simulations are shown in Figure 1, where the coverage error is determined in depen-
dence on the amount of data. This is done for either studentised or non-studentised blockwise bootstrap,
in which the blocklength is selected by the described method of Section 4. For both, the AR[1]-process
and the AR[2]-process the asymptotic coverage is approached for only 1500 data points, when the stu-
dentised method is used. In contrast to the non-studentised method, which is still showing a small cover-
age-error at n ¼ 5000 data points. The situation is different for the SVDP, where the blockwise bootstrap
shows a slight conservative behaviour, which is independent of studentisation. We therefore propose
using the studentised bootstrap to enhance the rate of convergence, which is in accordance of many
theoretical results concerning the blockwise bootstrap and the “ordinary” bootstrap, see e.g. Davison and
Hall (1993); G�tze and K�nsch (1996); Beran (1987); Hall and Martin (1988); Hall (1992); Hall and
Wilson (1991); Fisher and Hall (1990); Timmer et al. (1999).
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To compare the estimated blocklength l̂l, according to Section 4, with the optimal lopt, realisations
having 1000, 3000 and 5000 data points are regarded for each exemplary process. The selected block-
lengths are averaged over an ensemble of 1000 of such realisations. In case of the AR[1]-process, the
optimal blocklength can be calculated analytically. For the AR[2]-process and the SVDP the optimal
blocklength is determined by averaging the the auto-covariance function up to time lag 100 over
10000 independent realisations. The results are shown in Table 1. As expected, the estimated block-
lengths coincides perfectly for the AR[1]-process. For the AR[2]-process, the estimated blocklengths
are slightly larger than the optimal, but the calculated mean-squared-errors are nearly identical. In
case of the SVDP the estimated blocklengths are substantially smaller than the optimal and again, the
mean-squared-errors are roughly matching. This indicates that the minimum of the MSE is very broad
for the SVDP. The proposed method for selecting the blocklength therefore yielded reliable block-
lengths within the given simulations. Furthermore, inspecting the variance of the estimated block-
lengths reveals a decrease while increasing the amount of data which must be satisfied because of the
consistency of the auto-covariance estimation under the assumed properties of the process.

6 Alternative Methods for Selecting the Blocklength

Hall et al. (1995) have used a kind of cross-validation to estimate the optimal blocklength. They form
subsamples from the observed realisation to approximate the mean-squared-error for a given block-
length. Then, the blocklength is varied such that the approximated mean-squared-error is minimised.
Finally, the known scaling law is used to extrapolate the calculated blocklength to the original number
of data points. The main disadvantage of this procedure is the immense expense of computation time,
which makes this method almost non-applicable for large datasets.

The second alternative is due to B�hlmann and K�nsch (1999). This method is quite similar to the
proposed method. The main difference is that the sums in Eq. (6) are calculated by using spectral
methods, in contrast to the time domain approach we use.

To compare the distribution of the selected blocklength for the three methods, the moving average
process

Xi ¼ qþ Yiþ1 þ Yiþ2ð Þ 2�
1
2 ;

Yi 	 c2
1 i.i.d. and q 2 R, also given in Hall et al. (1995); B�hlmann and K�nsch (1999), is considered.

The distribution of the blocklength is estimated by the relative frequency over 1000 independent rea-
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Table 1 Comparison of the selected blocklength l̂l with its optimal value lopt minimising the MSE.
The estimated blocklength is averaged over 1000 independent realisations of the three exemplary
processes. For getting an impression of the distribution of the selected blocklength, the standard devia-
tion of l̂l is calculated. Additionally, the MSE of the selected blocklength is compared with the optimal
mean-squared-error MSEopt:

l̂l MSE lopt MSEopt

AR[1] n ¼ 1000 18:02
 2:71 0.079 18 0.078
n ¼ 3000 26:33
 2:26 0.028 26 0.028
n ¼ 5000 31:19
 2:20 0.017 31 0.017

AR[2] n ¼ 1000 25:18
 3:24 0.090 21 0.085
n ¼ 3000 35:88
 2:91 0.032 30 0.031
n ¼ 5000 42:42
 2:71 0.020 35 0.019

SVDP n ¼ 1000 30:04
 2:67 0.0017 73 0.0016
n ¼ 3000 42:28
 2:15 0.0006 104 0.0005
n ¼ 5000 49:87
 1:91 0.0004 124 0.0003
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lisations, where the statistic Tn is now the sample mean. The results are shown in Table 2. Since the
theoretically optimal blocklength is lopt ¼ 3, our method tends to have slightly larger blocklength than
the others but has in contrast no mass at l̂l < lopt. We therefore conclude that the results of our method
are comparable within this simulation.

7 Application

The proposed method is applied to test a time of the day (TOD) dependency in the variance of phy-
siological (healthy) hand tremor. For each data set the recorded time series are of length 30000 data
points and are sampled with 1 kHz. The proband reported not to have drunken any coffee or alcohol,
and there was no medication for a period of 24 hours before the recordings. At 4 different time of the
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Table 2 Distributions of the empirically chosen blocklength, calculated by the relative frequencies of
1000 simulations. All time series are of length 100 and are generated according to the moving average
process in Sec. 6. The distributions of the alternative methods are due to Hall et al. (1995), B�hlmann
and K�nsch (1999) and the theoretically optimal blocklength is lopt ¼ 3.

l 1 2 3 4 5 6 7 8 10 11 13

Hall et al. 0.00 0.27 0.52 0.00 0.06 0.07 0.00 0.02 0.02 0.02 0.02
B�hlm et al. 0.08 0.08 0.45 0.31 0.07 0.01 0.00 0.00 0.00 0.00 0.00
l̂l 0.00 0.00 0.10 0.48 0.30 0.09 0.03 0.00 0.00 0.00 0.00
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Figure 2 To detect a possible time of day dependency of the healthy hand tremor, the
left hand acceleration was recorded at 4 different times. At each time, 3 repeated mea-
surements were recorded whereas one measurement at 13.30 was excluded because of
the presence of a drift. The 95%-confidence intervals of the variance suggests a time of
day dependency and the consistency of the repeated measurements. The temporal dis-
tance of the repeated measurements are stretched for sake of clarity.
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day, 9.00, 11.15, 13.30 and 15.30 the tremor of the outstretched left hand was recorded. For each
TOD, 3 data sets were recorded to test the consistency of the measurements. The recording at 13.30
was excluded from the analysis because of the presence of a drift, which is due to a slow hand move-
ment.

For a first inspection, 95%-confidence intervals of the sample variance for all datasets are estimated
using the studentised blockwise bootstrap method. The results, Figure 2, clearly show a TOD depen-
dence. The confidence intervals further suggest, that the repeated measurements are consistent.

For testing the hypothesis of the TOD dependence and the consistency of the repeated measure-
ments statistically, we choose to parameterise the bootstrap distributions of the variance estimators by
c2-distributions. The degrees of freedom of the c2-distributions are estimated by minimising the Kol-
mogorov distance. This parameterisation is motivated by the asymptotic behaviour of the variance
estimator, when having an i.i.d. sample. Note, that there is no practicable statistical test procedure for
testing the goodness of the chosen parametrisation, e.g. Kolmogorov-Smirnov test. Since the underly-
ing bootstrap distribution is itself approximative and the amount of data is the chosen number of boot-
strap samples, the test result can be controlled. Nevertheless, to demonstrate the usefulness of the
chosen parametrisation, a comparison of the bootstrap distribution function and its fitted c2-distribu-
tion for the dataset having the largest Kolmogorov distance is given in Figure 3.

Finally, the parameterised distributions are log-transformed to yield a Gaussian error-model in good
approximation. Now, a two factorial ANOVA has been carried out to test the hypotheses:

� No over-all-effect is present.
� There is no TOD dependence.
� The repeated measurements are consistent.

Choosing a level of significance of 1%, we can infer that an over-all-effect is present, which is the
TOD dependence (both having p-values less than 10�5). The hypothesis of the consistency of the
repeated measurements cannot be rejected. Hence, the test results are in perfect accordance of the
intuition imparted by the visual inspection of the confidence intervals shown in Figure 2.

8 Discussion and Conclusion

The problem of estimating distributions of real valued statistics when the observed data are statisti-
cally dependent rises in many areas of applied statistics. It is often not possible to derive a suitable

Biometrical Journal 47 (2005) 3 355

 0

 0.2

 0.4

 0.6

 0.8

 1

 800  1000  1200  1400  1600  1800  2000  2200  2400

cu
m

m
u

la
ti

ve
 p

ro
b

ab
ili

ty

variance

bootstrap-distribution
χ2-distribution

Figure 3 Comparison of the bootstrap-distribution (solid line) and its fitted c2-distri-
bution (dashed line) for the dataset having the largest Kolmogrov-distance.
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model of the data generating process. In these cases non-parametric methods like bootstrap are widely
used.

The proposed blockwise bootstrap is such a method, which can cope with the dependence structure
of the observations. But some structural assumptions has to be fulfilled to achieve consistent results.
Beside these assumptions, the free parameter of the blocklength has to be adjusted in order to mini-
mise the bias and the variance of the approximation. The discussed method for selecting the block-
length is easy to apply and fast to compute. On three exemplary processes, the simulation study shows
that the chosen blocklength gives suitable approximations. In comparing our blocklength selection
method with existing alternatives by Hall et al. (1995) and by B�hlmann and K�nsch (1999), we
conclude that all methods are giving quite comparable results, whereby the distribution of the selected
blocklength is sharper for proposed method.

The effect of studentising the statistic has also been studied. It turns out to use the studentised
blockwise bootstrap is highly recommended to enhance the convergence rate. This result is in accor-
dance with many past investigations of the bootstrap method.

To show the practical significance of the proposed method, we gave an application, in which a
time-of-day dependence of the human hand tremor is tested. The test clearly confirms this dependence
for the investigated subject. The discussed method seems to be appropriate for further studies in this
area.
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