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Abstract

Chronic liver diseases are worldwide on the rise. Due to the rapidly
increasing incidence, in particular in Western countries, metabolic
dysfunction-associated steatotic liver disease (MASLD) is gaining
importance as the disease can develop into hepatocellular carci-
noma. Lipid accumulation in hepatocytes has been identified as
the characteristic structural change in MASLD development,
but molecular mechanisms responsible for disease progression
remained unresolved. Here, we uncover in primary hepatocytes
from a preclinical model fed with a Western diet (WD) an
increased basal MET phosphorylation and a strong downregulation
of the PI3K-AKT pathway. Dynamic pathway modeling of hepato-
cyte growth factor (HGF) signal transduction combined with global
proteomics identifies that an elevated basal MET phosphorylation
rate is the main driver of altered signaling leading to increased
proliferation of WD-hepatocytes. Model-adaptation to patient-
derived hepatocytes reveal patient-specific variability in basal MET
phosphorylation, which correlates with patient outcome after liver
surgery. Thus, dysregulated basal MET phosphorylation could be
an indicator for the health status of the liver and thereby inform on
the risk of a patient to suffer from liver failure after surgery.
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Introduction

Chronic liver disease is a frequent pathology with increasing
mortality rates. Hepatocytes, the most abundant cell type in the
liver, play a central role in metabolism and for example store and
degrade glycogen to ensure a constant supply of glucose in the
blood. High caloric intake can disrupt this process and result
in fatty liver disease (Riazi et al, 2022), a metabolic disorder
characterized by the accumulation of lipid droplets in hepatocytes.
If no secondary causes such as alcohol abuse or medication
are identified, steatotic liver disease is categorized as metabolic
dysfunction-associated steatotic liver disease (MASLD). In the past
decades the incidence of MASLD has steadily increased. If
sustained for a long period of time, MASLD can develop into
metabolic dysfunction-associated steatotic steatohepatitis (MASH),
fibrosis, cirrhosis and even hepatocellular carcinoma (Huang et al,
2021). These developments highlight that an understanding of the
underlying mechanisms of disease development and progression is
pivotal. Metabolic changes in different liver disease stages have
been extensively characterized (Jia et al, 2014; Puri et al, 2007),
whereas alterations in information processing of hepatocytes
driven by high caloric diets have not yet been investigated in
depth. Previous observations (Oe et al, 2005; Paranjpe et al, 2016;
Tekkesin et al, 2011) suggest that hepatocyte growth factor (HGF)
might play a central role in hepatic pathologies. HGF binds to the
receptor tyrosine kinase MET on hepatocytes and triggers the
activation of proliferative signal transduction by the mitogen
activated kinase pathway (MAPK) and the phosphoinositide 3
kinase (PI3K)/AKT pathway. Through the negative feedback loop
between S6K (MAPK) and IRS1 (PI3K/AKT), MET stimulation
can affect the metabolic functions of the liver during regeneration
(Hall et al, 2021). Furthermore, we utilized dynamic pathway
modeling to disentangle the cross talk of the MAPK and PI3K/
AKT pathways in these cells (D’Alessandro et al, 2015) and showed
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that both, ERK phosphorylation and PI3K activation, are required
for proliferation of primary mouse hepatocytes (Mueller et al,
2015). As most liver pathologies are driven by increasing damage
of the liver, consideration of HGF-induced signal transduction in
hepatocytes, which is essential for liver regeneration, could be
informative to predict patient outcome upon liver surgery.
Currently, only postoperative descriptive scores such as the
Clavien Dindo score (Dindo et al, 2004) or the comprehensive
complication index (Slankamenac et al, 2013) are documented and
so far no correlations with preoperative metrices could be
established. The implementation of complex patient datasets for
clinical decisions remains challenging and requires the develop-
ment of comprehensive tools. A suitable approach could be the use
of mechanism-based dynamic pathway models to integrate and
exploit complex datasets (D’Alessandro et al, 2022; Kok et al, 2020;
Oppelt et al, 2018) in order to guide clinical decisions.

In this work, we utilized the Western diet (WD) mouse as a
preclinical model to study alterations in HGF-induced signal
transduction occurring in liver disease. Data generated from
primary murine hepatocytes of healthy and WD mice and
from patient-derived primary human hepatocytes were used to
calibrate a dynamic pathway model of HGF-induced signal
transduction, which allowed us to resolve the molecular mechan-
ism resulting in reduced AKT phosphorylation in WD hepatocytes.
A patient-adapted mathematical model correlated the basal MET
phosphorylation with patient outcome after liver surgery and thus
suggests MET phosphorylation as an indicator for liver disease
burden.

Results

Characterization of proteomic alterations in Western
Diet (WD) primary hepatocytes identifies
dysregulated pathways

The development of metabolic dysfunction-associated steatotic
liver disease (MASLD) is characterized by the gradual accumula-
tion of lipid droplets in hepatocytes. We hypothesized that these
major structural changes have an impact on information proces-
sing and metabolic regulation in these cells. To induce a fatty liver-
like phenotype, 8 weeks old C57BL/6N mice were fed with a high
sugar high fat Western diet (WD) for up to 13 weeks. Age-matched
mice fed with a standard diet (SD) served as controls. As expected,
WD mice showed with a median weight of 39.4 g a significant
increase in body weight, while SD mice remained at a median body
weight of 29.7 g, (Fig. 1A). Bright-field microscopy of primary
mouse hepatocytes isolated from these mice (Fig. 1B) revealed
that lipid accumulation characterized by the formation of
lipid droplets was indeed evident in the primary hepatocytes of
the WD mice, but absent in those of the SD mice (Fig. 1C, black
arrows). To characterize the diet-induced changes in the protein
composition of steatotic hepatocytes, we analyzed the proteome of
both SD and WD primary hepatocytes by mass spectrometry
(N = 9 mice per condition) employing data independent acquisi-
tion (DIA). In total 4317 proteins were identified and a
multidimensional scaling analysis provided evidence for major
differences in the respective proteomes (Fig. 1D). Data analysis
utilizing limma (Ritchie et al, 2015), identified 301 proteins as

differentially upregulated and 255 proteins as differentially down-
regulated in WD primary hepatocytes. To determine which
pathways are primarily affected by feeding the WD, we performed
an Ingenuity pathway analysis (Krämer et al, 2014) using
significantly changed proteins as input (Benjamini and Hochberg
adjusted p value < 0.05 and log2 fold change <−0.5 or >0.5). In
Fig. 1F, the enriched categories of canonical pathways with top 10
highest and lowest z-score are displayed. In line with previous
studies (Greco et al, 2008; Puri et al, 2007) the majority of the
identified pathways were connected to metabolism, including
glucose, fatty acids and cholesterol metabolism. However, surpris-
ingly the top most upregulated pathway was kinetochore
metaphase signaling. The kinetochore is a complex of proteins
responsible for anchoring the spindle fibers to duplicating
chromatids and pulling sister chromatids during the metaphase
of the cell cycle apart. Detected members of the kinetochore
metaphase signaling pathways (Fig. 1E) upregulated in WD
primary hepatocytes were Macroh2a, H2ac20, H2az1 and H2ax,
all linked to the nucleosome, and Zwint and Zw10, linked to
kinetochore and mitosis, while Ppp1r10, a protein of the PTW/PP1
phosphatase complex controlling progression from mitosis to
interphase, was downregulated. The HIF1α signaling pathway
ranked second. The HIF1 α transcription factor has been linked in
the context of the liver to lipid metabolism and vascular regulation
during liver regeneration (Seo et al, 2020) and to enhanced
proliferation of liver cancer cell lines (Tajima et al, 2009).
Interestingly, the third most upregulated pathway in WD primary
hepatocytes was ERK/MAPK signal transduction, a key pathway
controlling proliferative responses. In sum, these proteomic
alterations indicate that in steatotic hepatocytes the intricate
network of metabolism and signal transduction controlling cell
proliferation is dysregulated.

Alterations in basal MET phosphorylation and AKT
phosphorylation are characteristic features of WD
primary hepatocytes

Hepatocytes in the liver are usually in a quiescent state and rarely
proliferate in the absence of growth factors (Bottaro et al, 1991).
The key growth factor controlling hepatocyte proliferation is HGF
that binds to the receptor tyrosine kinase MET and triggers
phosphorylation of Tyr 1232 and Tyr 1233 on the murine MET
receptor (Tyr 1234 and Tyr 1235 on human MET). This enables
the activation of PI3 kinase and MAP kinase signal transduction.
To examine whether the uncovered proteomic alterations give rise
to changes in the dynamics of HGF-induced signal transduction in
WD primary hepatocytes, we designed based on our previous
knowledge of the cross-talk of MAPK- and PI3K/AKT-pathways
(D’Alessandro et al, 2015) and the link to proliferation (Mueller
et al, 2015), dose- and time-resolved experiments to delineate by
quantitative immunoblotting the differences in HGF-induced
responses in WD and SD primary hepatocytes (Fig. 2A). The
HGF dose response experiments showed that in SD hepatocytes the
HGF-induced phosphorylation of MET (double phosphorylation
on Tyr 1232 and Tyr 1233) increased with higher doses and
reached saturation at 40 ng/ml HGF (Fig. 2B). Accordingly, the
peak of HGF-induced phosphorylation of ERK (double phosphor-
ylation on Thr 202 and Tyr 204 of ERK1/MAPK3 and on Thr 185
and Tyr 187 of ERK2/MAPK1) and of AKT (phosphorylation on
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Thr 308, referred as pAKT Thr 308 and phosphorylation in both
Thr 308 and Ser 473, referred as ppAKT Ser 473 as the employed
antibody detects exclusively the second phosphorylation of AKT)
reached saturation at 40 ng/ml HGF. In WD primary hepatocytes
at high HGF doses, a similar extent of MET and ERK
phosphorylation was observed. In contrast, the phosphorylation
at basal level and the phosphorylation of MET upon low doses of
HGF were higher in WD primary hepatocytes when compared to
SD primary hepatocytes. Even more strikingly, at all HGF doses
higher than 1 ng/ml, AKT phosphorylation was significantly
reduced in WD primary hepatocytes. The comparison of the
dynamics of HGF-induced signal transduction in SD and WD
primary hepatocytes (Fig. 2C) revealed that the peak amplitude of
the tyrosine kinase receptor MET was higher in SD primary
hepatocytes, while the basal amount of phosphorylated MET was

elevated in WD primary hepatocytes. In line with the notion that
ligand mediated activation of MET induces its internalization and
degradation (Jeffers et al, 1997), we observed a decline of total
MET after HGF stimulation in SD primary hepatocytes, but this
decline was reduced in WD hepatocytes. As expected, the
phosphorylation of ERK correlated in SD and WD primary
hepatocytes with the respective phosphorylation dynamics of MET.
Interestingly, although the total amount of AKT was comparable
between SD and WD primary hepatocytes, in line with the results
obtained in the dose response experiment (Fig. 2B), HGF-induced
phosphorylation of AKT was much reduced in WD primary
hepatocytes compared to those from SD mice (Fig. 2C). In
conclusion, our results suggested that exposure of hepatocytes to a
high sugar and high fat diet results in a dysregulation of HGF-
induced proliferative signal transduction.
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Figure 1. Western diet-induced proteome alterations.

(A) Schematic representation of the experimental setup. Mice were fed with standard diet (SD) for eight weeks and then switched to Western diet (WD) for 12–13 weeks
or continued to receive SD as control. The body weight of SD mice is shown as boxplot with the center line indicating median (29.65 g); box limits indicate 25th (28.58 g)
to 75th percentile (30.33 g). The lower and upper whiskers extend from the hinge to the smallest (28.0 g) or largest value (32.0) at most 1.5× interquartile range of the
hinge. The body weight of WD mice is shown as boxplot with the center line indicating median (39.35 g); box limits indicate 25th (37.48 g) to 75th percentile (40.45 g).
The lower and upper whiskers extend from the hinge to the smallest (36.3 g) or largest value (40.8) at most 1.5× interquartile range of the hinge. The dots represent data
of single mice (n= 9 per diet). 20*: mice have an age of 20 or 21 weeks. (B) Primary mouse hepatocytes from SD and WD mice were isolated by liver perfusion, cultivated
and characterized employing mass spectrometry and bright field imaging. (C) Exemplary bright field images from isolated primary mouse hepatocytes depict lipid droplet
formation in hepatocytes derived from WD-fed mice, but not SD-fed mice. Arrows point to lipid droplets. (D) Multidimensional scaling analysis of the mass spectrometry-
based hepatocyte proteome derived from SD and WD mice. Each dot represents the sample from one mouse (n= 9 per diet). (E) Up- and downregulated proteins in
primary mouse hepatocytes derived from SD and WD mice were identified using the limma package by log fold change calculation and analysis of the adjusted p value
(limma-voom (Law et al, 2014)) as depicted in the volcano plot. Proteins with fold change <−0.5 and adjusted p value <0.05, describing a downregulation in WD, are
indicated in blue, proteins with fold change >0.5 and adjusted p value < 0.05, representing an upregulation in WD, are indicated in red (n= 9 per diet). (F) The top 10 up-
and downregulated pathways in WD primary mouse hepatocytes in comparison to SD primary mouse hepatocytes are depicted as identified by Ingenuity pathway analysis
(Krämer et al, 2014). Source data are available online for this figure.
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Dynamic pathway model-based analysis identifies basal
MET phosphorylation and protein abundances as
dysregulated in primary mouse hepatocytes

To unravel the molecular mechanism leading to decreased
HGF-induced AKT phosphorylation in WD primary hepatocytes,
we developed a mechanistic mathematical model of HGF-
induced signal transduction including the nutrient sensor mTOR
that modulates MAPK and PI3K/AKT signal transduction as a
function of the available metabolites. We hypothesized that the
high sugar and high fat diet affects mTOR signal transduction and
as a consequence impacts the activation of the pro-mitogenic
ribosomal protein S6 as well as the phosphorylation of ATK
(Fig. 3A).

The dynamic pathway model is based on coupled ordinary
differential equations (ODEs) and describes the interconnection
between HGF-induced signal transduction and mTOR. In the
mathematical model, MET is subject to constant production
and degradation, while phosphorylated MET is degraded with
a different rate. The signal emanating from the activated
MET receptor is propagated by two distinct signal transduction
pathways, MAPK and PI3K/AKT. In the MAPK cascade,
phosphorylated MET leads to MEK phosphorylation, which in
turn phosphorylates ERK. In the PI3K pathway, phosphorylated
MET recruits PI3K, which induces the first phosphorylation of
AKT, at Thr 308 (pAKT). Both phosphorylated ERK and AKT
phosphorylated on Thr 308 can inactivate the TSC complex by
phosphorylating TSC2, which allows mTORC1 formation and
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Figure 2. HGF-induced activation of signal transduction in SD and WD hepatocytes.

(A) Experimental design of HGF stimulation experiments in primary mouse hepatocytes. Isolated cells were seeded and stimulated with hepatocyte growth factor (HGF).
HGF-induced signal transduction was analyzed by quantitative immunoblotting. (B) HGF dose dependency of MET, ERK and AKT phosphorylation in SD and WD primary
mouse hepatocytes. Cells were stimulated with indicated doses of HGF and phosphorylation of MET, ERK and AKT was quantified by immunoblotting after 10min. Signal is
shown in arbitrary units (a.u.). Data points are displayed as dots with error bars representing 1σ confidence interval estimated from biological replicates (n= 3–9 per diet
and dose) using a combined scaling and error model. Dashed curves represent linear interpolations. The dose of 40 ng/ml HGF is indicated as a vertical dashed line. (C)
Time course measurements of HGF-induced signal transduction in primary mouse hepatocytes of SD and WD mice. Cells were stimulated with 40 ng/ml HGF for up to 4 h
and the phosphorylation as well as the abundance of MET, ERK and AKT was quantified by immunoblotting. Signal is shown in arbitrary units (a.u.). Data points are
displayed as dots with error bars representing 1σ confidence interval estimated from biological replicates (n= 3–9 per diet and time point) using a combined scaling and
error model. Dashed curves represent linear interpolations. Horizontal dashed lines indicate basal and peak signal levels. The 10 min time point is indicated by a vertical
dashed line. Source data are available online for this figure.
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activation. Active mTORC1 phosphorylates S6K that in turn
activates the pro-mitogenic ribosomal protein S6. Additionally,
activated PI3K induces mTORC2 complex formation, which leads
to phosphorylation of AKT on the second phosphorylation site Ser
473 resulting in AKT phosphorylated on Thr 308 and Ser 473
(ppAKT) and serving as a readout for the activation of the

mTORC2 complex. Two negative feedback loops originating from
phosphorylated S6K are represented in the mathematical model in
a condensed manner (Fig. 3A, dashed lines). First, activated
S6K leads to the inhibition of the mTORC2 complex. Second,
activated S6K phosphorylates and inhibits IRS1, which prevents
activation of PI3K. In sum, our mathematical model includes 26

*** *
**

*

Figure 3. Modeling WD-induced alterations in HGF signal transduction.

(A) The structure of the mathematical model capturing HGF-induced signal transduction via the MAPK cascade (blue), the PI3K pathway (red) and mTOR signaling
(green) is displayed according to Systems Biology Graphical Notation (Le Novere et al, 2009). All parameter values were implemented as identical for WD and SD
hepatocytes except for the basal MET phosphorylation rate, indicated by the red box, and protein abundances. (B) Measurements of protein abundances derived from
primary mouse hepatocytes. Lysates of unstimulated hepatocytes were subjected to data-independent mass spectrometry analysis. Resulting data was LFQ normalized
and represented as boxplot: center line indicates median; box limits indicate 25th to 75th percentiles. The lower and upper whiskers extend from the hinge to the smallest
or largest value at most 1.5× interquartile range of the hinge. Dots represent data of single mice (n= 9 per diet). p values were calculated using two-tailed t test (MET
***0.0002, TSC *0.01, SIN1 **0.006, S6 *0.01). (C) Impact of the DIA data on parameter identifiability and convergence of the mathematical model. The identifiability of
the twelve dysregulated parameters increases from 25% to 100% upon DIA data incorporation, while the convergence to the global optimum during optimization
increases from 9% to 66%. (D) Model calibration with time-resolved immunoblot measurements for MET, ERK, S6 and AKT phosphorylation and MET abundance upon
stimulation with 40 ng/ml HGF. Data points are displayed as dots along with error bars representing 1σ confidence interval estimated from biological replicates (n= 3–9
per diet and time point) using a combined scaling and error model. Model trajectories are depicted as solid lines.
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ordinary differential equations (for model reactions and observa-
tion functions, see Dataset EV1 and Dataset EV2) and 23 different
model states.

To capture the dynamic properties of the system, the
parameters of the mathematical model were calibrated based on
the quantitative dose- and time-resolved immunoblot data shown
in Fig. 2. Additionally, we generated data on the HGF dose-
dependent phosphorylation of AKT on the phosphorylation site
Thr 308 (pAKT) as well as on the amount of total MET, total AKT
and total ERK (Fig. EV1A, data points). Further, the time-resolved
dynamics of AKT phosphorylation on Thr 308 and of pS6 (Fig. 3D,
data points) and of total S6 (Fig. EV1B, data points) were recorded.
In total, 491 data points generated under 22 experimental
conditions were employed for the calibration of our mathematical
model. Since previous model-based investigations revealed that
differences in the basal protein abundance greatly affect the
dynamics of information processing (Adlung et al, 2017), we
assumed as a start that all basal protein levels were different in SD
and WD primary hepatocytes, and thus were considered as
dysregulated parameters. To investigate if, in addition, dynamic
parameters such as phosphorylation rates were affected by the
Western diet, we performed a comparison of different model
hypotheses by evaluating the resulting model fits based on the
Bayesian information criterion (BIC) (Fig. EV1C). Interestingly,
our analysis revealed that all but one dynamic parameter could be
assumed as identical retaining a good fit to the data of SD and WD
primary hepatocytes. For the accurate model-based representation
of the data for both conditions it is necessary and sufficient if only
the dynamic parameter for the basal (HGF-independent) phos-
phorylation rate of MET is increased in WD primary hepatocytes
(Fig. 3A, reaction marked in red). To evaluate, whether the
abundance of total MET could serve as an indicator for the levels
of phosphorylated MET, we examined their correlation. The results
displayed in Fig. EV1D showed that differences in the abundance
of total MET do not allow to conclude on the levels of basal
phosphorylated MET.

Thus, twelve dysregulated parameters appear to be required to
describe the altered HGF-induced signal transduction in primary
mouse hepatocytes induced by the Western diet, comprising the
basal phosphorylation rate of MET and differences in the
abundance of eleven proteins. To assess the identifiability of these
twelve dysregulated parameters, we calculated profile likelihood-
based confidence intervals (Raue et al, 2009) for each parameter
(Fig. EV2A). This analysis showed that only three of these
parameters where identifiable for both conditions, i.e., had defined
confidence intervals (Fig. 3C). Based on previous experience
(Adlung et al, 2017), we reasoned that inclusion of the basal
abundance of all key protein species would improve parameter
identifiability. Therefore, total protein lysates of SD and WD
primary hepatocytes were examined by global proteomics employ-
ing mass spectrometric analysis operated in the data independent
acquisition (DIA) mode that facilitated reproducible coverage and
reliable quantification. These determinations revealed a significant
decrease in the intensity of MET, SIN1 and S6 and a significant
increase of TSC in the WD primary hepatocytes, while the
intensity of the other protein species was comparable between SD
and WD primary hepatocytes, respectively (Fig. 3B). Since the
relative amount, which is based on the intensity determined by
global proteomics, scales with the concentration of the examined

proteins, we exemplarily determined the abundance of AKT in the
SD and WD primary hepatocytes with quantitative immunoblot-
ting (Fig. EV3A). These quantifications and the knowledge of the
average protein content of the primary hepatocytes allowed us to
estimate the number of AKT molecules per cell, which was
included as additional information in the mathematical model. By
linking the relative amount of AKT protein determined as intensity
by our mass spectrometry-based DIA measurements with the
corresponding absolute amount of AKT molecules per cell
determined by quantitative immunoblotting, the model could infer
the corresponding protein concentrations for all proteins of
interest. With this additional information the mathematical model
was able to estimate all twelve dysregulated parameters with
narrow confidence intervals in both conditions (Fig. EV2B).
Importantly, the inclusion of the absolute values for the protein
abundance of SD and WD primary hepatocytes increased the
identifiability of the dysregulated parameters from 25% to 100%
and the convergence to the global optimum from 9% to 66%
(Figs. 3C and EV2C,D). As a result, the final mathematical
model, which included only one diet-specific dynamic parameter,
the basal MET phosphorylation rate, and 11 diet-specific
parameters for protein abundance, was able to explain the
increased basal phosphorylation and reduced maximal induction
of pMET, pERK and pS6 as well as the reduced phosphorylation of
AKT in response to HGF stimulation in WD hepatocytes (Fig. 3D).
Further, the model trajectories were in agreement with the
experimentally observed HGF dose-dependent dynamics of pMET,
pERK, pAKT (Thr 308) and ppAKT (Thr 308, Ser 473) in WD and
SD primary hepatocytes (Fig. EV1A). The final mathematical
model was capable of capturing the dynamics of total MET
(Fig. 3D) as well as the differences in the total protein amounts
of the analyzed proteins (Fig. EV1A,B) and was in line with
the protein concentrations determined by mass spectrometry-
based DIA measurements in SD and WD primary hepatocytes
(Fig. EV3B).

The development of the mathematical model pointed to an
important role of the mTOR pathway in regulating AKT
phosphorylation in WD primary hepatocytes. Therefore, we
utilized our global proteome data of SD and WD primary
hepatocytes and tested if hallmark genes encoding proteins of
mTORC1 signal transduction as listed in GSEA are differentially
regulated in WD primary hepatocytes compared to SD hepato-
cytes. Of the 200 genes listed, 129 proteins were detected across all
samples. The expression values were scaled per protein and
compared between primary hepatocytes from 9 WD mice and 9 SD
mice. As shown in Fig. EV3C, the clustering of the data showed
that based on the hallmarks of mTORC1 signal transduction,
SD and WD mice separate from each other, confirming our
observation.

In sum, we established a mathematical model of HGF-signal
transduction that was able to explain the alterations in HGF-
induced MET and AKT phosphorylation dynamics in WD primary
hepatocytes (for estimated parameter values, see Dataset EV3 and
Dataset EV4). Importantly, the inclusion of the metabolite sensing
pathway mTOR, in form of a negative feedback loop between
mTORC1 and mTORC2, proved to be essential to gain insights
into the molecular mechanisms causing the reduced AKT
phosphorylation in WD hepatocytes: The increased basal MET
phosphorylation in WD hepatocytes results in an increased basal
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phosphorylation of S6K via mTORC1, which in turn inhibits
mTORC2 and PI3K activation and as a consequence, results in
reduced AKT phosphorylation.

The basal phosphorylation rate parameter of MET is
sufficient to explain altered HGF-induced signal
transduction in WD hepatocytes

To investigate the individual impact of the twelve diet-specific
parameters on WD-specific changes in the dynamics of HGF-
induced signal transduction, we utilized our mathematical model to
perform a simulation analysis. As a starting point, all model
parameters were set to the estimates for SD primary hepatocytes,
which allowed to capture the dynamics of HGF signal transduction
in these hepatocytes (Fig. 4A, 1. Starting point). Subsequently, we
gradually (20% intervals) changed only one dysregulated parameter
at a time until it reached the parameter value estimated for WD
hepatocytes (Fig. 4A, 2. Simulation). We performed this analysis
with all twelve parameters, which allowed us to assess the
individual impact of each specific parameter by comparing the
simulation results to the dynamics in WD primary hepatocytes
(Fig. 4A, 3. Comparison). Since we identified the increased
basal phosphorylation of MET and ERK and the decreased

area under the curve (AUC) of ppAKT upon HGF stimulation
as main features differing between SD and WD primary
hepatocytes, we simulated the trajectories of pMET, pERK and
ppAKT (Thr 308, Ser 473). The model simulations (Figs. 4B and
EV4) showed the largest effects when altering the basal protein
abundance of MET (ktotal MET), MEK (ktotal MEK) and S6K (ktotal S6K)
as well as the basal phosphorylation rate of MET (kbasal p-rate MET).
However, most of the parameters could not reproduce the
features observed for WD primary hepatocytes. For example, a
shift of ktotal S6K to the WD estimate resulted in a decrease in AKT
phosphorylation but had no effect on the basal MET and ERK
phosphorylation levels. Interestingly, when shifting the value of
kbasal p-rate MET to the estimated value for WD primary hepatocytes,
all three features observed in WD primary hepatocytes were
reproduced. Thus, only kbasal p-rate MET was essential to reproduce
all three features observed for WD primary hepatocytes.

To quantitatively asses how accurately these three features could
be reproduced by the described parameter tuning, we performed an
optimization analysis. During the analysis the mathematical model
can choose an arbitrary value between the values in SD and WD for
the analyzed parameter maximizing the reproducibility of the true
WD features. In line with the results obtained by the simulation
analysis, the only parameter that quantitatively reproduced the

Figure 4. Influence of dysregulated parameters on protein dynamics.

(A) Schematic overview of the simulation analysis for diet-specific parameters. 1. All parameters were fixed to the estimates for SD hepatocytes. 2. Step-wise tuning of
one dysregulated parameter at a time until it reached the value estimated for WD hepatocytes. 3. Model simulations were compared to the WD signaling dynamics.
(B) Individual parameter scan of one dysregulated parameter at a time (ktotal MET, ktotal MEK, ktotal S6K, kbasal p-rate MET). The value for the indicated parameter was gradually
shifted from the SD estimate (purple) to the WD estimate (light gray) as described in (A). The model simulations for the phosphorylation dynamics of MET, ERK and AKT
are displayed in molecules/cell. Solid lines indicate model trajectories after HGF stimulation and dashed lines indicate basal levels. (C) Quantitative analysis of the ability
of dysregulated parameters to reproduce WD-specific features (basal pMET, basal ppERK, AUC ppAKT). We reoptimized each dysregulated parameter individually in the
range between SD and WD estimates to determine the best fit for the three features. Colored bars represent the feature value as determined from the original model fit for
SD and WD. Gray bars indicate the optimized feature value for dysregulated parameters. Source data are available online for this figure.
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WD-specific features was the basal MET phosphorylation rate
(Fig. 4C), supporting our hypothesis of its key role as driver for the
WD-specific alterations in HGF-induced signal transduction.

WD primary hepatocytes show an increased
proliferative behavior

As a consequence of the increased basal MET phosphorylation rate,
we observed an elevated basal phosphorylation of the pro-
mitogenic ribosomal protein S6 in WD primary hepatocytes.
Therefore, we hypothesized that these changes might influence
proliferative responses in the presence and absence of HGF. To
explore this hypothesis, we fed 8 week old mice expressing the
Fluorescent Ubiquitination-based Cell Cycle Indicator (Fucci2)
(Abe et al, 2013) with either SD or WD for 12 weeks and isolated
primary murine hepatocytes (Fig. 5A). For each condition, we
monitored ten individual primary hepatocytes derived from three
SD and three WD mice, respectively, by live cell microscopy and
acquired time-resolved data on the changes in fluorescence
intensities of the FUCCI system for up to 65 hours (Fig. 5B). To
quantify the cell cycle entries as a measure for proliferative
behavior, we performed single-cell tracking and counted cell cycle
entries of each hepatocyte defined as the transition from G1/S to
G2/M phase (Fig. 5C). For 13 out of 30 WD primary hepatocytes
(43%) cell cycle entry was observed within the observation time,
whereas only 7 out of 30 SD primary hepatocytes (23%) showed
such a response. This observation indicates that already in the
absence of HGF there is a marked increase in cell cycle entries in
WD compared to SD primary hepatocytes. Upon HGF stimulation,
all tracked SD and WD primary hepatocytes showed cell cycle
progression, confirming that growth factor responsiveness was
maintained in WD primary hepatocytes. Importantly, in response
to HGF stimulation 28 out of 30 WD primary hepatocytes (94%)
underwent two to four rounds of cell cycle progression within the
observation time. In contrast, only 11 out of 30 SD primary
hepatocytes (36%) showed two or three rounds of cell cycle
progression. To corroborate these findings, we utilized the
fluorescent dye SYBR Green, which binds to double-stranded
DNA, to quantify the DNA content in SD and WD primary
hepatocytes left unstimulated or stimulated with HGF. In agree-
ment with the results obtained with the FUCCI mouse derived
primary hepatocytes, WD primary hepatocytes showed an increase
in DNA content even in the absence of HGF, indicating that these
primary hepatocytes were able to proliferate independently of HGF
stimulation (Fig. 5D). Taken together, these results revealed that
proliferative responses are enhanced in WD primary hepatocytes
even in the absence of HGF. These observations imply that the
identified increase in basal MET phosphorylation in WD primary
hepatocytes is an indicator of altered signal transduction enabling
HGF-independent proliferation.

Basal MET phosphorylation is indicative for liver disease
burden in patient-derived primary hepatocytes

Our observation that basal MET acts as an integrator of structural
and metabolic alterations during the progression of chronic liver
disease in mice, let us to propose that basal MET phosphorylation
could be a useful indicator for the burden of liver disease in
humans. To test this hypothesis, we first examined in primary

hepatocytes of three patients with 0%, 15% or 40% steatosis the
levels of basal phosphorylated MET and total MET by quantitative
immunoblotting (Fig. EV5). The quantification of the results
showed that in relation to the levels of total MET there was indeed
a significant increase in phosphorylated MET in the highly steatotic
patient hepatocytes (Fig. EV5A), strikingly resembling the findings
in the WD primary hepatocytes. Likewise, the phosphorylation of
AKT after HGF stimulation was significantly reduced in the highly
steatotic primary hepatocytes (Fig. EV5B) suggesting that the
effects we uncovered in the preclinical mouse model also occurred
in patients. To further dissect the underlying mechanism and the
relation to clinical outcome, we analyzed HGF-induced signal
transduction in patient-derived primary human hepatocytes
isolated from tumor-free tissue of seven patients with different
liver pathologies that underwent partial liver hepatectomy (see
Dataset EV5 for patient anamnesis). The primary human
hepatocytes were stimulated with HGF and cellular lysates taken
at time points up to 120 min were analyzed by quantitative
immunoblotting to generate time-resolved information on the
dynamics of HGF-induced signal transduction in the hepatocytes of
the individual patients (Fig. 6A) In addition, the proliferation
behavior was also determined (Fig. EV6A). We examined the HGF-
induced phosphorylation dynamics of MET (Tyr 1234 and Tyr
1235), ERK (Thr 202 and Tyr 204 on ERK1, Thr 185 and Tyr 187
on ERK2), AKT (Ser 473) (Fig. 6A, data points) and S6K (Thr 389)
in the patient-derived hepatocytes (Fig. EV6B). Likewise, the total
amounts of MET, ERK, AKT and S6K were determined by
quantitative immunoblotting (Fig. EV6B) and complemented by
protein abundances quantified by DIA-based mass spectrometry
(Fig. EV6C, box plots). Our dynamic pathway model for HGF-
induced signal transduction developed for murine SD and WD-
derived primary hepatocytes was adapted to analyze the time-
resolved data obtained for the patient-derived hepatocytes. The
majority of the model parameters was kept as estimated for the
murine system. The model parameters identified as dysregulated in
the primary hepatocytes from WD mice, comprising protein
abundances and the basal MET phosphorylation rate, were adapted
to the conditions in the hepatocytes of individual patients.
However, this model was yet insufficient to adequately describe
the human data (98 parameters, BIC = 805). Therefore, we included
in addition as human-specific parameters the HGF-induced MET
phosphorylation rate as well as the degradation rate of the activated
MET receptor (100 parameters, BIC = 564). These findings are
supported by previous observations reporting a difference in the
binding affinity of HGF to MET between mice and humans
(Bussolino et al, 1992), which affects HGF binding to the receptor
and as a consequence receptor phosphorylation and degradation of
the ligand-receptor complex. In total 852 data points were used for
the calibration of 100 human- and patient-specific parameters (see
Dataset EV6 for estimated model parameters of primary human
hepatocytes). The calibrated dynamic pathway model of HGF
signal transduction in primary human hepatocytes was able to
capture the basal (Figs. 6A and EV6B, dashed lines) as well as the
HGF-induced patient-specific dynamics (Figs. 6A and EV6B, solid
lines) of all pathway components. The patient data (displayed in log
scale) was more heterogenous but overall resembled the dynamic
behavior observed in the primary hepatocytes of the inbred mouse
model. Further, the model fits for total protein abundances were in
line with the global proteome measurements acquired by DIA-mass
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spectrometry (Fig. EV6C, points). Both experimental data and
model trajectories revealed a patient-to-patient difference in the
basal MET phosphorylation levels of untreated primary human
hepatocytes (Fig. 6A). Since our model-based analyses of HGF
signal transduction in hepatocytes of mice with WD-induced
chronic liver disease suggested a relation between the basal MET

phosphorylation level and disease burden, we investigated the
information encoded in the dynamics of HGF-induced signal
transduction in patients. To this aim, we utilized our mathematical
model calibrated for the patient-derived primary hepatocytes
(Fig. 6A) to calculate the patient-specific basal MET phosphoryla-
tion rate, the AUC of ppAKT and the MET abundance. In addition,
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we introduced ratios of these characteristic features accounting for
interconnected complexity. We also included the quantification of
the HGF-induced proliferation of the patient-derived human
hepatocytes as a proxy for the proliferation potential at the organ
level. To test how informative the model-based characteristics and
these calculated ratios and quantifications are, we correlated them
to several patient-specific clinical parameters (Dataset EV7), which
we divided in three subgroups: (i) Pre- and post-operative blood
metrics: hepatocyte growth factor (HGF), Interleukin 6 (IL6),
Interleukin 8 (IL8), Platelet-derived growth factor (PDGF);
(ii) patient features, such as the age, the body mass index (BMI),
the Fibrosis score and the Charlson Comorbidity Index (CCI); and
(iii) the patient outcome after hepatectomy including intensive care
and hospitalization days, the Clavien Dindo score and the
complication index (Fig. 6B). Surprisingly, the ex-vivo proliferation
of hepatocytes did not correlate with the patient outcome,
emphasizing the complexity of the proliferative response in
the liver. The AUC of ppAKT as well as the corresponding ratio
kbasal p-rate MET/AUC ppAKT did not correlate with the patient
outcome but to the post-operative concentrations of HGF and IL8.
However, the basal MET phosphorylation rate, kbasal p-rate MET,
showed a significant correlation with three of four patient
outcome measures. This correlation was also present for the ratio
kbasal p-rate MET/k total MET, but to a smaller extend. Of the four blood
metrix factors, HGF, IL6, IL8 and PDGF that were determined in
longitudinal blood samples, only PDGF showed an anticorrelation with
kbasal p-rate MET at all time points. Lastly, we corrected for patient specific
features by performing a partial correlation to remove effects of
confounding factors. After correction for the confounding factors age,
BMI, fibrosis and CCI, the correlation of patient outcome with
proliferation and k total MET increased, albeit not to a significant extent.
Importantly, the significant correlation between kbasal p-rate MET

and basal p-rate MET/k total MET with complication index and
hospitalization days was maintained. Taken together our results
suggested that kbasal p-rate MET and kbasal p-rate MET/k total MET might
provide suitable measures to predict patient outcome.

As the parameter estimation of kbasal p-rate MET cannot be easily
introduced in a clinical setup, we tested if the basal phosphorylation
of MET, which was used to parametrize the mathematical model,
could describe the patient outcome. In Fig. 6C, the patients were
sorted by the model-derived estimates of the basal MET
phosphorylation rate regarding potential clinical outcome. The
values of pMET that were experimentally determined by quanti-
tative immunoblotting for each patient, corroborated with the
order of the patients based on the basal MET phosphorylation rate.
In line with the correlation analysis, Clavien Dindo score,
complication index and especially hospitalization time directly

correlated with both model-derived basal MET phosphorylation
rate and experimentally measured basal pMET levels. In conclu-
sion, our results identified the basal phosphorylation of MET as key
node integrating alterations in hepatocytes and suggest it as an
informative metric (Fig. 6D) for liver disease burden and patient
recovery after liver surgery.

Discussion

In this study, we characterize Western diet-induced phenotypic
changes in murine hepatocytes and employ dynamic pathway
modeling to resolve the underlying molecular mechanisms resulting
in altered intracellular signal transduction and enhanced proliferation
of WD hepatocytes. A key observation was that the basal MET
phosphorylation is increased in WD mice after 12 weeks of WD-
feeding, while conversely the amplitude of the MET phosphorylation
dynamic is reduced. These insights required the generation of high-
quality quantitative data on the dynamics of HGF signal transduction
and thus shed new light on the complex regulation of MET in
MASLD, while MET was so far primarily studied in the context of
liver regeneration or cancer (Bottaro et al, 1991; Paranjpe et al, 2016).
With our mathematical modeling approach, we resolve that the
elevated levels of basal MET phosphorylation result in surprisingly
strong inhibition of AKT phosphorylation in WD hepatocytes.
Conversely, it was reported in the context of type II diabetes and
fatty liver disease that increased phosphorylation of AKT was an
indicator of insulin response and consequently a good prognostic
marker for reduced steatosis (Vivero et al, 2021). In this context, it is
relevant to mention that others have presented evidence for a
heterodimeric interaction between insulin receptor and MET (Fafalios
et al, 2011), which could be involved in the HGF independent basal
phosphorylation of MET in WD mice. This heterodimer and the
known interactions between MET and the insulin receptor substrate 1
and 2 (IRS1 and IRS2) (Fafalios et al, 2011) (DeAngelis et al, 2010)
have not been explicitly included in our model, but could be integrated
in the future to further elucidate effects resulting in the observed
downregulation of AKT as IRS1 is a target protein of the negative
feedback regulation via S6K (Tremblay et al, 2007; Zhang et al, 2008).

The development of mechanistic models provides a tool to
understand complex biological questions and to gain insights into
molecular mechanisms regulating dynamic behavior. Accordingly,
based on mathematical modeling of the HGF signal transduction
pathway cross-talk, we dissected dependencies of MAP kinase and
PI3 kinase signal transduction in primary hepatocytes and
established the link to the regulation of cell cycle progression
(D’Alessandro et al, 2015; Mueller et al, 2015). Further, Dalla Pezze

Figure 5. Altered proliferation of WD hepatocytes.

(A) SD and WD mice carrying the Fucci2 cell cycle reporter were used to track cell cycle entries of primary mouse hepatocytes via live cell imaging. Cells were transduced
with adeno-associated viral vectors encoding Histone2B–mCerulean. The FUCCI signal indicates the cell cycle phase of a cell at a given time and enables tracking of cell
cycle entry. (B) Primary mouse hepatocytes of mice carrying the Fucci2 cell cycle reporter were stimulated with 40 ng/ml HGF or left untreated. Live cell microscopy of
hepatocytes from SD and WD mice was performed with sampling rate of 15 min for up to 65 h. Ten exemplary hepatocytes of three SD and three WD mice each were
tracked. The time course of cell cycle phases G1, G1/S, and G2/M and early G1 are displayed for each cell. (C) Quantification of cell cycle entries per cell. A cell cycle entry
was considered if cells transited from S to G2-phase as indicated in (B). Shown are the number of cell cycle entries as a histogram indicating the number of cells that
underwent a certain amount of cell cycle entries in each condition. (D) Primary mouse hepatocytes from SD and WD wildtype mice were stimulated with 40 ng/ml HGF or
left untreated. Using SYBR Green I Assay, the DNA content of cells was measured at 0 h and after 24 h and 48 h. The DNA content as fold-change (FC) to 0 h is displayed
as a boxplot: center line indicates median; box limits indicate 25th to 75th percentiles. The lower and upper whiskers extend from the hinge to the smallest or largest value
at most 1.5× interquartile range of the hinge. Dots represent data of single mice (n= 9 for SD and n= 6 for WD). Source data are available online for this figure.
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et al resolved the interactions of the mTOR pathway upon insulin
stimulation (Dalle Pezze et al, 2012). Based on these findings, we
included in our model mTOR as a metabolic gateway in the liver
(Jia et al, 2014) to capture the Western diet-induced alterations in
HGF-dependent signal transduction in primary hepatocytes.
Interestingly, the only reaction rate, which we identified with our

mathematical modeling approach as dysregulated in this disease
scenario, was the basal phosphorylation of the MET receptor.
Further analysis of the mathematical model showed that the
reaction rate of basal MET phosphorylation was sufficient to
describe the observed diet-induced changes in AKT phosphoryla-
tion and MAPK signal transduction. These results disentangle the
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complex interrelations of the impact of metabolic alterations and
proliferative signal transduction in hepatocytes and thus shed
new light on molecular dysregulation in the context of chronic
liver diseases. So far, the analysis of HGF-induced signal
transduction in the liver has primarily focused on its role in
repair of liver damage and regeneration (Oe et al, 2005), whereas
the impact of metabolic alterations, which could be critical at early
stages of chronic liver diseases, has not yet been considered.
Importantly, we uncover that the exposure to the Western diet
increases not only the levels of basal MET phosphorylation but also
results in an increased ex-vivo proliferation of primary hepato-
cytes. These insights suggest that although the early steatotic
phenotype in liver disease may be reversible, the metabolic state of
the hepatocytes and their capacity to interpret external signals has
shifted. We have not directly addressed the molecular mechanism
driving the increased basal phosphorylation of MET, but
hypothesize that the diet-induced changes in the cell surface
membrane of hepatocytes may alter the dimerization rate of MET
receptors and change the heterodimerization capabilities of MET
rendering the receptor a central integrator of metabolic changes. In
support of this hypothesis, it has been reported that a high fat diet
decreased the cholesterol content of the plasma membrane of
hepatocytes and reduced the affinity of the insulin receptor to
insulin (Sabapathy et al, 2022). In line with this report, our analysis
of canonical pathways showed that cholesterol biosynthesis was
downregulated in WD-derived hepatocytes. Since HGF has been
identified as modulator of liver fibrosis, which develops as
sustained liver disease (Kwiecinski et al, 2011; Tekkesin et al,
2011), we propose that HGF-induced signal transduction deter-
mines the fate of hepatocytes and based on our results the extent of
basal MET phosphorylation could be a central indicator facilitating
the quantification of the alterations.

The liver is organized in hexagonal liver lobules consisting of plates
of hepatocytes interspersed by small capillaries, the liver sinusoids.
Blood enters the hexagonal lobules through portal veins and drains
towards a central vein, establishing a gradient of nutrients, metabolites
and oxygen that correlates with distinct enzymatic equipment of
hepatocytes and results in metabolic zonation of the liver lobule. As
steatosis primarily affects the pericentral zone it is conceivable that
susceptibility to metabolic insults might differ. We attempted to
address the distribution of basal phosphorylated MET by histological
stainings, but so far, the results remained inconclusive and require
further optimization.

Previous reports indicated that liver steatosis affects the
regenerative capacity of the liver (Allaire and Gilgenkrantz, 2018;
Ghanemi et al, 2020). Therefore, our observations could be of

relevance for patients undergoing liver surgery. To assess this, we
analyzed primary hepatocytes isolated from seven patients under-
going liver hepatectomy to adapt our dynamic pathway model of
HGF signal transduction to the human situation. In line with our
previous studies (Dehlke et al, 2022; Murtha-Lemekhova et al,
2021), we observed little correlation (p > 0.01) of HGF, IL6, IL8,
PDGF, age, BMI, and fibrosis with the patient outcome, which was
assessed by Clavien Dindo score, complication index and
hospitalization days. In contrast, we uncovered that the basal
phosphorylation rate of MET strongly correlated with the patient
outcome. The importance of the basal MET phosphorylation rate
in this context was further supported by the immunoblot based
quantifications of the pMET level in the patient-derived hepato-
cytes that followed the trend of the basal MET phosphorylation
rate and the clinical outcome. Furthermore, it has been reported
that hepatocytes undergo metabolic reprogramming during liver
proliferation (Chembazhi et al, 2021). It was proposed that since
proliferating hepatocytes cannot sustain liver-specific metabolic
functions, other hepatocytes shift into a hyperactive metabolic
state. These notions could explain why patients, with higher basal
MET phosphorylation, undergoing hepatectomy are less capable to
compensate the metabolic function in the liver and show higher
risk of hepatic failure. Nevertheless, we acknowledge that a cohort
of seven patients is very limited and our observations should be
interpreted with caution.

In conclusion, our model-based insights identify the basal
phosphorylation rate of MET as an indicator of alterations in the
metabolic state of hepatocytes and its impact on proliferative signal
transduction. Interestingly, we uncover a strong correlation of the
model parameter of the basal MET phosphorylation rate and the
clinical outcome upon liver surgery. Since the extent of basal MET
phosphorylation is a similarly good predictor of the clinical
outcome as the estimated rate, the quantification of MET
phosphorylation in surgical liver samples might provide a readily
accessible readout to predict the clinical outcome. Taken together,
patient-specific pMET levels could be exploited to assess the health
status of the liver and to estimate the risk of a patient to suffer from
liver failure after surgery.

Methods

Mouse housing and feeding

Standard diet control mice: Male C57BL/6N (Charles River, RRID
MGI:2159965) control mice were housed at the German Cancer

Figure 6. Basal pMET levels in primary human hepatocytes correlate to patient outcome.

(A) Time-resolved immunoblot measurements and model fits for pMET, pERK and ppAKT in primary human hepatocytes derived from seven patients. Cells were
stimulated with 40 ng/ml HGF or left untreated. Signal is shown in log10 arbitrary units (a.u.). Data points are displayed as dots along with error bars representing 1σ
confidence interval estimated from technical replicates (n= 1–3 per patient) using a combined scaling and error model. Model trajectories are depicted as lines. (B)
Spearman correlation of hepatocyte proliferation and model features with post-operative blood metrics, patient-specific features and outcome. Significance levels were
calculated using the algorithm AS89 (Best and Roberts, 1975) and are indicated as *p < 0.05, **p < 0.01, ***p < 0.001. BMI body mass index, CCI Charlson comorbidity
index. In addition, partial correlation coefficients were calculated for the patient outcome correcting for the confounding factors age, BMI, fibrosis and CCI. (C) The
patient-specific basal phosphorylation rate of MET as estimated by the model is depicted in comparison to the experimentally measured basal pMET levels, obtained as
mean of all unstimulated pMET measurements per patient in arbitrary units (a.u.). In comparison, the clinical metrics Clavien Dindo, complication index and hospitalization
are shown. Patients are sorted by the basal phosphorylation rate of MET, colors indicate patient number. Error bars represent the standard deviation of 7–9 replicates. (D)
The basal phosphorylation of MET as an informative metric in patients for liver disease burden and patient recovery after liver surgery. The proposed use as risk index
gives an informed approach to patient-specific pre- and post-operative measures. Source data are available online for this figure.
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Research Center (DKFZ) animal facility under a constant light/dark
cycle and allowed ad libitum access to water and food and
maintained on a standard mouse diet (KLIBA NAFAG 3437). The
experiments were approved by the governmental review committee
on animal care of the state Baden-Württemberg, Germany
(reference number G-14/17 and G-33/17).

Western diet-fed mice: Male C57BL/6N mice (Charles River,
RRID MGI:2159965) of 8 weeks of age were housed at the Leibniz-
Institut für Arbeitsforschung an der Technischen Universität
Dortmund (IfaDo) under a constant light/dark cycle and
allowed ad libitum access to water and food and maintained on a
Western diet (Research Diet Inc., D09100301, including trans fats)
containing 40% kcal fat, 40% kcal carbohydrates and 2% weight
cholesterol for 12 or 13 weeks. The experiments were approved
by the governmental review committee of animal care of the
state Nordrhein-Westfalen, Germany (reference number 84-
02.04.2017.A177).

Transgenic R26p-Fucci2 mice: R26p-Fucci2 mice were obtained
from RIKEN Center for Developmental Biology (CDB, RRID
MGI:5491593) and recovered by embryo transfer. The mice were
housed at the German Cancer Research Center (DKFZ) animal
facility under a constant light/dark cycle and allowed ad libitum
access to water and food. Heterozygous R26p-Fucci2 mice were
bred with wild type C57BL/6N mice to maintain the line. Only male
animals were used for the performed analyses. Animals were either
maintained on a standard mouse diet (KLIBA NAFAG 3437) or
switched to a Western diet (WD, Research Diet Inc., D16022301,
no trans fats) at the age of 8 weeks and fed with WD for 12 weeks.
The experiments were approved by the governmental review
committee of animal care of the state Baden-Württemberg,
Germany (reference number A24/10, G-14/17, G-33/17).

Isolation of primary mouse hepatocytes

Mice of final age of 20–21 weeks were used for primary mouse
hepatocyte isolation. Hepatocytes were isolated according to a
standardized procedure with adaptations to improve yields for
WD-fed mice (Mueller et al, 2015). Anesthesia was carried out by
intraperitoneal injection of 11.25 mg per 100 mg body weight
ketamine hydrochloride (100 mg/ml, zoetis), 1.6 mg per 100 mg
body weight xylazine hydrochloride (2% (w/v), Bayer HealthCare)
and 1.5 mg per 100 mg acepromazine (cp-pharma). The abdominal
cavity was opened and the vena cava inferior or portal vein was
cannulated with a 24 G venous catheter to enable perfusion of the
liver. The liver was perfused with EGTA-containing buffer (0.6%
(w/v) glucose, 105 mM NaCl, 2.4 mM KCl, 1.2 mM KH2PO4,
26 mM Hepes, 490 M L-glutamine (Gibco), 512 μM EGTA, 15%
(v/v) amino acid solution (270 mg/l L-alanine, 140 mg/l L-aspartic
acid, 400 mg/l L-asparagine, 270 mg/l L-citrulline, 140 g/l
L-cysteine hydrochloride monohydrate, 1 g/l L-histidine monohy-
drochloride monohydrate, 1 g/l L-glutamic acid, 1 g/l L-glycine,
400 mg/l L-isoleucine, 800 mg/l L-leucine, 1.3 g/l L-lysine mono-
hydrochloride, 550 mg/l L-methionine, 650 mg/l L-ornithine
monohydrochloride, 550 mg/l L-phenylalanine, 550 mg/l L-proline,
650 mg/l L-serine, 1.35 g/l L-threonine, 650 mg/l L- tryptophane,
550 mg/l L-tyrosine, and 800 mg/l L-valine; pH 7.6) ; pH 8.3) for
5 min and collagenase-containing buffer (0.6% (w/v) glucose,
105 mM NaCl, 2.3 mM KCl, 1.2 mM KH2PO4, 25 mM Hepes,
490 μM L-glutamine (Gibco), 5.3 mM CaCl2, 12% (v/v) amino acid

solution, 444 μg/ml collagenase type 1-A; pH 8.3) for up to 10 min
at a flow rate of 8 ml/min. The portal vein or vena cava inferior was
incised to allow sufficient buffer outflow. Following perfusion, the
liver was withdrawn and transferred into suspension buffer
(0.6% (w/v) glucose, 105 mM NaCl, 2.4 mM KCl, 1.2 mM
KH2PO4, 26 mM Hepes, 1 mM CaCl2, 0.4 mM MgSO4, 0.2%
(w/v) BSA, 490 μM L-glutamine (Gibco), 15% (v/v) amino acid
solution; pH 7.6). Hepatocytes were isolated by disrupting the liver
capsule and filtering the resulting cell suspension through a 100 µm
cell strainer. Cells were washed by centrifugation at 50 × g for 5 min
at 4 °C or twice at 50 × g for 2 min at room temperature and
resuspended in adhesion medium (phenol red-free Williams E
medium (PAN Biotech) supplemented with 10% (v/v) FCS (Gibco),
0.1 μM dexamethasone, 0.1% (v/v) insulin, 2 mM L-glutamine,
1% (v/v) penicillin/streptomycin (Gibco)). Cell yield and vitality
were determined by Trypan Blue staining using a Neubauer
counting chamber. Preparations with vitality greater than 70% were
employed for experiments. For each experiment, cells from a single
mouse were used, or if necessary, cells were pooled from up to
three mice.

Collection of patient tissue samples

Primary human hepatocytes were isolated from samples taken from
the specimen of patients undergoing major hepatectomy at the
Department of General, Visceral, and Transplantation Surgery of
Heidelberg University Hospital. All patients were screened for
eligibility irrespective of the indication for major hepatectomy and
included provided they have signed the valid informed consent
form. Informed consent of the patients for the use of tissue for
research purposes was obtained corresponding to the ethical
guidelines of University Hospital Heidelberg (reference number
S-557/2017). A non-tumor tissue sample with intact Glisson’s
capsule, weighing approximately 20 g was collected and immedi-
ately transported in William’s E medium (PAN Biotech) to the
laboratory for further processing.

Isolation of primary human hepatocytes

Cell isolation took place under a fume hood in sterile conditions
using a standardized protocol adapted from Kegel et al (2016).
Three-to-8 cannulas were placed in the vessels of the non-capsuled
surface of the liver sample. The cannulas were fixed with Histoacryl
tissue glow and the blood was flushed from the tissue. The liver
tissue was perfused with 500 ml 39 °C 1× Perfusion Solution
(142 mM NaCl, 6.7 mM KCl, 10 mM HEPES 12.5 mM EGTA, 6.25
mM N-acetyl-L-cystein) using a flow rate of 60–70% for 20–30 min
until the liver tissue became light yellow. Afterwards the perfusion
fluid was changed to 39 °C digestion solution (33.5 mM NaCl,
3.35 mM KCl, 50 mM HEPES, 0.25% BSA, 10% FCS, 1 mg/ml
Collagenase P) for 15 min. To stop the digestion the liver sample
was rinsed with ice-cold Stop Solution (20% FCS in DPBS (PAN
Biotech)). After removing the cannulas, a scalpel was used to open
the liver tissue. By flushing with Stop Solution and shaking the
tissue gently, the cells were released from the tissue. The cell
suspension was collected and filtered through a 100 µm cell strainer
to 50 ml plastic falcons. The cell suspension was centrifuged at
50 × g, 5 min, 4 °C. The cell pellet was washed with DPBS (PAN
Biotech) followed by another round of centrifugation. Afterwards,

Sebastian Burbano de Lara et al Molecular Systems Biology

© The Author(s) Molecular Systems Biology Volume 20 | Issue 3 | March 2024 | 187 – 216 199

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on M

arch 5, 2024 from
 IP 132.230.196.70.

http://www.informatics.jax.org/marker/MGI:2159965
http://www.informatics.jax.org/marker/MGI:5491593


the pellet was resuspended in adhesion medium. Cell yield and
vitality were determined by Trypan Blue staining using a Neubauer
counting chamber.

Collection of human blood samples and
plasma extraction

The blood of the patients was taken at the University Hospital
Heidelberg one day before and 1, 3 and 7 days after surgery.
Informed consent of the patients for the use of blood for research
purposes was obtained corresponding to the ethical guidelines of
University Hospital Heidelberg (reference number S-557/2017). For
collecting blood, a vein in the arm bend was punctured, after a two-
time disinfection with an alcoholic skin antiseptic. The blood was
collected in EDTA 2.7 ml (Sarstedt). To receive the blood plasma
the blood samples were centrifuged at full speed briefly and the
supernatant was collected and frozen in −80 °C until further use.

Analysis of patient plasma cytokines

To analyze the preoperatively and postoperatively collected blood
plasma samples of the patients, Bio-Plex Pro Cytokine, Chemokine,
and Growth Factor Assay (Biorad) and the Bio-Plex Pro TGFβ
Assay (Biorad) was used for multiplexing according to the
standardized protocol established by Biorad. For multiplexing,
HGF, IL6, IL8, PDGF, TGFβ1 and TNFα were analyzed. The blood
plasma was thawed on ice and centrifuged twice (1000 × g, 15 min
at 4 °C). The samples were diluted 1:4 using Bio-Plex sample
diluent. 50 µl coupled beads mix were pipetted to each well of the
assay plate after vortexing for 30 s at medium speed. Then the beads
were washed twice with the Bio-Plex wash buffer. After vortexing,
50 µl of the pre-diluted standards and samples were added. Samples
and standards were assayed in technical duplicates. The plate was
covered with sealing tape to protect from light and incubated on a
shaker for 30 min at 850 ± 50 rpm. After the incubation, the beads
were washed three times with washing buffer before 25 µl of the
detection antibody mix was added. The plate was covered with
sealing tape and incubated for a second time on the shaker for
30 min at 850 ± 50 rpm at room temperature. The incubation was
followed by three more washing steps and the addition of 50 µl SA-
PE, which was incubated for 10 min at 850 ± 50 rpm for 10 min.
After the final three washing steps the beads were re-suspended in
125 µl assay buffer and were shaken at 850 ± 50 rpm for 30 s at
room temperature and then measured with a Bio-Plex 200 reader.

For the TGFβ kit, after a 15 min centrifugation at 1000 × g and
10 min at 10,000 × g both at 4 °C, acid (1 M HCl) and samples were
added in 1:5 proportions and incubated at room temperature for
10 min. The samples were neutralized by adding 1 volume of base
(1.2 M NaOH/0.5 M HEPES) and vortexing. The (untreated)
sample was in total diluted 1:16 with Bio-Plex sample diluent.
After adding 50 µl of magnetic beads, washing two times, and
pipetting 50 µl of standards and samples the plate was covered with
sealing tape and incubated on a shaker at 850 ± 50 rpm for 2 h at
room temperature. The incubation was followed by three more
washing steps and the addition of 25 µl antibodies, which were
incubated for 1 h at 850 ± 50 rpm at room temperature. The
samples were washed three times and incubated with 50 µl of SA-
PE for 30 min at 850 ± 50 rpm at room temperature. After washing
three times again the beads were re-suspended in 125 µl assay

buffer at each well and incubated for 30 s at 850 ± 50 rpm before the
plate was measured with a Bio-Plex 200 reader.

Collection of patient characteristics

Patient data (Dataset EV5) were prospectively collected by
extraction from the electronic patient record system of the
Heidelberg University Hospital. The collected information included
clinic demographic data, preoperative clinical course, laboratory
values, intraoperative variables, complications, time to event data,
diagnose-related information, pre-operative treatment and histo-
pathology reports. From this data, the following scores were
obtained: Clavien Dindo score (Dindo et al, 2004), Charlson
comorbidity index (Charlson et al, 1987) and comprehensive
complication index (Slankamenac et al, 2013).

Cultivation and stimulation of primary hepatocytes

Isolated primary hepatocytes were plated on collagen I-coated cell
ware in adhesion medium. Using primary mouse hepatocytes, for
the dose response and time course experiments 2 × 106 cells were
seeded per 6 cm dish. For live cell imaging, 7.5 × 103 primary mouse
hepatocytes were seeded per well of a 96-well plate. For time course
experiments with primary human hepatocytes, 2.5 × 106 cells were
seeded per 6 cm dish. For proliferation experiments, 150,000 cells
per well were seeded on 6-well plates. Following plating, cells were
allowed to adhere for 4 h (SD mouse hepatocytes) or 4–6.5 h (WD
mouse hepatocytes and human hepatocytes). Subsequently, hepa-
tocytes were washed, twice vigorously and once gently, with PBS
(PAN Biotech) to remove unattached cells and cultured in serum-
free medium overnight. During all incubation times, the cells were
cultured at 37 °C, 5% CO2 and 95% relative humidity.

For dose response and time course experiments, cells were
washed gently three times and supplied with serum- and
dexamethasone-free medium for 6 h. Primary mouse hepatocytes
were stimulated with 0.1, 1, 2, 4, 10, 20, 40, 80, 100 and 120 ng/ml
of recombinant mouse HGF (rmHGF, R&D systems) for 10 min for
dose response experiments and with 40 ng/ml HGF for 5, 10, 20, 40,
60, 120, 180, and 240 min for time course experiments. Unstimu-
lated control plates were taken out of the incubator together with
stimulated plates and a zero dose / time point was taken in
addition.

Primary human hepatocytes were stimulated with 40 ng/ml
recombinant human HGF (R&D systems) for 1, 3, 5, 10, 20, 40, 60,
and 120 min. Unstimulated control plates were taken out of the
incubator together with stimulated plates and a zero time point was
taken in addition.

Live cell imaging of the cell cycle progression in primary
mouse hepatocytes

Seeded primary mouse hepatocytes from R26p-Fucci2 transgenic
mice were supplemented with purified AAV encoding Histone2B-
mCerulean produced using a triple transfection protocol by Dirk
Grimm (Heidelberg University) (Grimm, 2002) for the duration of
cell adhesion. Following adhesion, cells were washed twice with
serum-free medium and incubated in serum-free medium for 24 h
before stimulation. Shortly before time-lapse microscopy, media
were changed to 100 µl fresh serum-free medium supplemented

Molecular Systems Biology Sebastian Burbano de Lara et al

200 Molecular Systems Biology Volume 20 | Issue 3 | March 2024 | 187 – 216 © The Author(s)

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on M

arch 5, 2024 from
 IP 132.230.196.70.



with 40 ng/ml HGF. Hepatocytes were imaged with a Nikon Eclipse
Ti Fluorescence microscope controlled with NIS-Elements soft-
ware. Temperature (37 °C), CO2 (5%) and humidity were held
constant by an incubation chamber enclosing the microscope and a
96-well plate stage insert. Four channels were acquired: brightfield
channel, CFP channel (Histone2B-mCerulean), RFP channel
(mCherry-hCdt1), and YFP channel (mVenus-hGeminin). Time
lapse microscopy was performed for up to 65 h with a sampling rate
of 20 min.

Image analysis was performed using the Fiji software. Back-
ground subtraction was performed with rolling ball method. CFP
channel was used for segmentation of nuclei using a standard
threshold-based algorithm. Mean RFP and YFP intensity was
quantified for all segmented nuclei at each time frame.

Snapshot population analysis of Fucci2 data

The programming language R was used to perform subpopulation
analysis of Fucci2 data. All segmented nuclei within a specified
time window between 42 and 54 h were displayed as a scatter plot
to quantify percentage of subpopulations in a given cell
cycle phase. Four subpopulations were defined using arbitrary
thresholds for mCherry and mVenus signals based on unstimu-
lated condition as a reference. The four compartments were
defined as RFPhigh/YFPlow (G1-phase, red), RFPhigh/YFPhigh
(S-phase, orange), RFPlow/YFPhigh (G2-phase, green), RFPlow/
YFPlow (M-phase, gray).

Time-resolved analysis of cell cycle progression
in single cells

Manual segmentation and tracking were performed to obtain single
cell tracks. To perform reliable quantification of cell cycle duration
and cell cycle entries, only cells that were present in the field of view
for the whole duration of the time lapse were considered. A region
of interest (ROI) was defined in individual nuclei in the image of
the CFP channel (Histone2B-mCerulean) for each frame. At the
event of cell division, only one of the daughter cells was followed
until the end of the whole time-lapse experiment. The obtained set
of ROIs was applied to the RFP (mCherry-hCdt1) and YFP
(mVenus-hGeminin) channels to extract the RFP and YFP mean
intensity values after background subtraction by rolling ball
method. The two thresholds for the RFP and YFP channels defined
in the snapshot analysis were applied to assign cells to the four cell
cycle phases, represented as the respective color in the heatmap. To
account for fluctuations in the expression of the Fucci2 fluorescent
probes, cell cycle entries were considered as transition from S to
G2-phase.

Cell lysis

Cells were lysed in 500 µl (mouse hepatocytes) or 300 µl (human
hepatocytes) RIPA buffer (50 mM Tris pH 7.4, 150 mM NaCl,
1 mM EDTA, 1 mg/ml Deoxycholic acid, 0.5 mM Na3VO4, 2.5 mM
NaF, 1% NP40, 0.1% AEBSF, 0.1% AP) on ice, incubated while
rotating at 4 °C for 20 min and were sonicated for 30 s (Amplitude:
80%, 0.1 on, 0.5 off) (human hepatocytes only) followed by
centrifugation at 4 °C for 10 min at 20 817 × g. The supernatant
representing protein lysates were stored at −80 °C. Pierce BCA

Protein Assay Kit (Thermo Fisher) was used to determine the
protein concentration in the total cell lysates.

Quantitative immunoblotting

Target Species
Dilution
used Manufacturer

Catalog
number

For primary mouse hepatocyte experiments

pMET Tyr1234/
1235

Rabbit 1:2000 Cell Signaling #3077

MET Mouse 1:500 Santa Cruz #8057

pAKT Thr308 Rabbit 1:2000 Cell Signaling #4056

pAKT Ser473 Rabbit 1:2000 Cell Signaling #4058

AKT Rabbit 1:2000 Cell Signaling #9272

pERK Thr202/
Tyr204

Rabbit 1:10,000 Cell Signaling #9101

ERK Rabbit 1:5000 Cell Signaling #9102

pS6 Ser235/236 Rabbit 1:5000 Cell Signaling #2211

S6 Mouse 1:2000 Cell Signaling #2317

For primary human hepatocyte experiments

pMET Rabbit 1:2000 Cell Signaling #3129

MET Mouse 1:2000 Cell Signaling #3148

pAKT Rabbit 1:1000 Cell Signaling #4058

AKT Rabbit 1:2000 Cell Signaling #9272

pERK Rabbit 1:1000 Cell Signaling #9101

ERK Rabbit 1:1000 Cell Signaling #9102

pS6K Thr 389 Rabbit 1:2000 Cell Signaling #9234

pS6K Rabbit 1:2000 Cell Signaling #2708

Secondary antibodies

HRP anti Rabbit Goat 1:10,000 Jackson
ImmunoResearch

111-035-144

HRP anti Mouse Goat 1:10,000 Jackson
ImmunoResearch

115-035-146

For total cell lysate analysis 30 µg protein (mouse hepatocytes)
or 20 to 30 µg (human hepatocytes) was filled up to 25 µl total
volume with RIPA buffer, mixed with 25 µl 2× sample buffer (4%
SDS, 100 mM tris-HCl pH 7.4, 20% glycerol, 200 mM DTT,
bromophenol blue, 10% β-mercaptoethanol), incubated for
3–5 min at 95 °C and used for quantitative immunoblotting. Total
cell lysates and immunoprecipitation samples were loaded on 10%
polyacrylamide gels in a randomized order to avoid correlated
blotting errors (Schilling et al, 2005). Magic Marker (Invitrogen)
and Precision Plus Protein Standard (Biorad) were loaded in
addition. The proteins were separated by discontinuous gel
electrophoresis (SDS-PAGE) (40 mA per gel for 3 h) covered with
Laemmli Buffer (192 mM glycin, 25 mM Tris, 0.1% SDS). The
separated proteins were transferred in a semi-dry system onto
PVDF membranes (Immobilon P, Merck Millipore) using transfer
buffer (192 mM glycine, 25 mM Tris, 0.075% SDS, 0.5 mM
Na3VO4, 15% EtOH) (Hoefer TE77 semi-dry transfer system
(250 mA per blot for 1 h)). The membrane was blocked by drying
after being soaked in ethanol followed by a 10 min reactivation in
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TBS-T (10 mM Tris pH 7.4, 150 mM NaCl, 0.2% Tween-20). The
membranes were incubated with primary antibodies (against MET
(Sanza Cruz and Cell Signaling), pMET Tyr 1234/1235, pAKT Thr
308, pAKT Ser 473, AKT, pERK Thr 202/Tyr 204, ERK, pS6K Thr
389, S6K, pS6 Ser 235/236, S6 (all Cell Signaling)) in 2.5% BSA in
TBS-T overnight at 4 °C.

The membranes were washed twice with TBS-T for 5 min
followed by a 1 h incubation with secondary Antibody (HRP Goat
Anti-Rabbit (Dharmacon) or HRP Goat Anti-Mouse (Dharmacon),
1:10 000 in 2.5% BSA in TBS-T). After two additional washing steps
with TBS-T and one with TBS the blots were developed by
incubation with Amersham ECL Western Blotting Detection
Reagents (GE Healthcare) for 2 min and detected on an
ImageQuant (GE Healthcare). The proteins were quantified using
ImageQuant TL software (GE Healthcare, version 7.0). For further
detection, the blots were treated with stripping buffer (62.5 mM
Tris pH 6.8, 2% SDS, 0.7% β-mercaptoethanol) for 20 min at 65 °C
to remove the bound antibodies. After washing with double-
distilled water, blocking by drying, and reactivation by shaking in
TBS-T, membranes were employed for further antibody binding.
Alternatively, the secondary antibody was inactivated using 30%
H2O2 for 15 min at 37 °C followed by three washing steps in
double-distilled water for 5 min each and reactivation in TBS-T.

Proliferation assay

At time point 0 h, primary human hepatocytes were washed with
PBS twice. For proliferation, primary human hepatocytes were
stimulated by adding new serum and dexamethasone-free medium
containing 40 ng/ml recombinant human HGF. Medium without
HGF was used for control cells. After 48 h the hepatocytes were
washed once with PBS and the plates were frozen at −20 °C.
Control cells were washed with DPBS twice at time point 0 h and
frozen at −20 °C. For DNA content measurement, staining with
SybrGreen I (Invitrogen, S7563) was performed. The frozen cells
were treated with 2 ml SybrGreen I working solution (PBS, 1:100
Triton X 100, 1:2500 SybrGreen I) per well, incubated protected
from light for 1 h. Signal emission was measured at 485 nm
excitation using a Tecan Infinite Pro 200 reader. The optimal gain
was determined with the plate for which the highest signal was
expected and this value was used for all further measurements.

Proteomics sample preparation

Lysates of unstimulated primary mouse hepatocytes were used for
proteome analysis. Protein concentrations were determined by
employing the BCA Protein Assay Kit (Pierce,Thermo Fisher). In
total, 20 µg of protein per sample was used for further processing.
The disulfide bonds of proteins were reduced with 40 mM Tris(2-
carboxyethyl) phosphine (TCEP) and then alkylated with 10 mM
chloroacetamide (CAA) for 60 min at 37 °C. Protein digestion and
clean-up were performed using an adapted version of the
automated paramagnetic bead-based single-pot, solid-phase-
enhanced sample-preparation (Auto-SP3) protocol (Muller et al,
2020) on the Bravo liquid handling platform (Agilent). Briefly, for
bead preparation, Sera-Mag Speed Beads A and B (Ge Healthcare)
were vortexed until the pellet was dissolved. The suspension was
placed on a magnetic rack, and after one minute, the supernatant
was removed. The beads were taken off the magnetic rack and

suspended in water. This procedure was repeated three times. A
total of 10 µl of bead A was combined with 10 µl of bead B, and the
final volume was corrected to 100 µl with H2O. To each sample, a
total of 5 µl of A+ B beads were added. To induce the binding of
the proteins to the beads, ethanol was added to each sample to a
final 50% concentration (v/v). Samples were then incubated for
15 min at room temperature and 800 rpm. After the incubation
step, samples were placed again on a magnetic rack, and after one
minute, the supernatant was removed. Samples were taken off the
magnetic rack and suspended in 80% ethanol. This procedure was
repeated three times. Finally, samples were reconstituted in
100 mM TEAB buffer containing trypsin (enzyme/protein ratio of
1:25) and digested overnight on a shaker at 37 °C and 1000 rpm.
After digestion, the recovered peptides were dried by vacuum
centrifugation and stored at -80 °C until use.

LC-MS/MS analysis

Nano-flow LC-MS/MS was performed by coupling an Ultimate
3000 HPLC (Thermo Fisher Scientific, USA) to a Orbitrap Exploris
mass spectrometer (Thermo Fisher Scientific, Germany). Peptide
samples were dissolved in 15 µl loading buffer (0.1% formic acid
(FA), 2% ACN in MS-compatible H2O), and 2 µl were injected for
each analysis. The samples were loaded onto a pre-column (trap) at
higher flow rates (PEPMAP 100 C18 5 µm 0.3 mm × 5 mm, Thermo
Scientific), using a loading pump and then a valve was switched to
delivered to an analytical column (75 µm × 30 cm, packed in-house
with Reprosil-Pur 120 C18-AQ, 1.9 µm resin, Dr. Maisch) at a flow
rate of 3 µl/min in 98% buffer A (0.1% FA in MS-compatible H2O).
After loading, peptides were separated using a 120 min gradient
from 2% to 38% of buffer B (0.1% FA, 80% ACN in MS-compatible
H2O) at 350 nl/min flow rate. The Orbitrap Exploris 480 was
operated in data-independent (DIA) mode, with a m/z range of
350–1400. Full scan spectra were acquired in the Orbitrap at
120,000 resolution after accumulation to the set target value of
300% (100% = 1e6) and maximum injection time of 45 ms. The full
scans were followed by DIA scans. A total of 47 isolation windows
were defined, with a m/z range of 406–986. DIA scan spectra were
acquired at 30,000 resolution after accumulation to the set target
value of 1000% (100% = 1e5) and maximum injection time of
54 ms. Normalized collision energy (NCE) was set to 28%.

Database search and data analysis

All DIA–MS data files were analyzed with a directDIA workflow
using Spectronaut 15.5 (Biognosys, Zurich, Switzerland). For the
Pulsar search, the UniProt human-reviewed canonical reference
proteome (20,593 entries, UP000005640 downloaded on December
7th, 2022) and the UniProt mouse-reviewed canonical reference
proteome (20,404 entries, downloaded on December 7, 2022) were
used. The default settings for database match include: full specificity
trypsin digestion, peptide length of between 7 and 52 amino acids and
maximum missed cleavage of 2. N-terminal methionine was removed
during preprocessing of the protein database. Carbamidomethylation
at cysteine was used as a fixed modification, protein N-terminal
acetylation and methionine oxidation were set as variable modifica-
tions. The false discovery rates (FDRs) were set as 0.01 for the peptide-
spectrum match (PSM), peptide and protein identification. Other
Spectronaut parameters for identification included maximum intensity
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as MZ extraction strategy, 0.01 Precursor Qvalue Cutoff, 0.2 Precursor
PEP Cutoff, stripped sequence as single hit definition. For quantifica-
tion, identified (Qvalue) was set for precursor filtering, MaxLFQ as
protein LFQ method and MS2 quantification with area as quantity
type. For further analysis, only those proteins without missing values
were considered. For the analysis of the proteome data the public
server at usegalaxy.org was used (Afgan et al, 2016). Analysis was
based on the R package limma (Ritchie et al, 2015). Statistical testing of
significance was performed using the voom function from Biocon-
ductor (Law et al, 2014). Significance was considered with adjusted p
value < 0.05. Functional annotation of canonical pathways was
performed with the use of Ingenuity Pathway Analysis (Krämer
et al, 2014) by QIAGEN. Thresholds were set to an adjusted p value of
0.05 and a log2 fold change <−0.5 or >0.5.

Data processing and estimation of uncertainties

Immunoblot data from individual experiments were scaled and
thereby aligned for each target using the R package blotIt (Kemmer
et al, 2022). Uncertainties, corresponding to 1σ confidence
intervals, were estimated along with scaling factors for each
experiment using the scaling model Yij � yi

sj
with measurements

Yij, scaling factors sj and scaled values yi, combined with a relative
error model σij � erel � yisj with error parameter erel and estimated
errors σij. The biological effects i were distinguished for individual
targets, measurements time points, mouse diets and HGF stimula-
tion doses. Scaling effects j were distinguished per experiment and
target. For the mouse model 4466 raw data points were aligned by
blotIt to obtain 772 data points with confidence intervals that
served for calibration of the mouse model. In addition, 209 raw
data points for protein abundances obtained from DIA measure-
ments were log2 transformed and averaged to obtain 22 data points
with calculated standard deviations. Finally, the number of
molecules per cell of AKT determined by quantitative immuno-
blotting was also utilized for model calibration. For patient-derived
primary human hepatocytes, 2443 raw data points were aligned by
blotIt to obtain 1106 data points with confidence intervals that
served for calibration of the human model. In addition, 112 raw
data points for protein abundances obtained from DIA measure-
ments were log2 transformed and averaged to obtain 56 data points
with calculated standard deviations.

Parameter estimation and model development for
primary mouse hepatocytes

The mathematical modeling was performed in the R package dMod,
which provides an environment for the development of ODE
models, parameter estimation and uncertainty analysis (Kaschek
et al, 2019). The final ODE model was composed of 23 species and
26 reactions derived from the law of mass-action (Dataset EV1).
Measurements were mapped to model states by means of
observables as displayed in Dataset EV2. The estimated parameter
set corresponding to the global optimum along with profile-
likelihood based confidence intervals is listed in Dataset EV3. Log-
transformation of parameters was used to ensure positivity and
numerical stability. A set of parameter transformations (Dataset
EV4) was used to incorporate the calculation of analytical steady-
state expressions (Rosenblatt et al, 2016) and reformulations
necessary for model reduction (Maiwald et al, 2016). Parameter

values were estimated using the maximum likelihood method,
performing a deterministic multi-start optimization with the trust
region optimizer (R package trust) and starting from 250 randomly
chosen parameter sets. Results of the optimization run for the final
model are displayed as waterfall plot (Raue et al, 2013) in Fig.
EV2D. The global optimum was found in 164 out of the 250 starts
for the final model. The profile likelihood (Raue et al, 2009) was
used to assess the identifiability of parameters and determine
confidence intervals for the estimated values of 22 initial protein
concentrations, 13 scaling and offset parameters, and 27 dynamical
parameters of the mouse model. For the identification of
mechanistic differences in the signal transduction of SD and WD
hepatocytes models differing in their number and the selection of
diet-specific parameters were compared using the Bayesian
information criterion (Schwarz, 1978).

Application of the mouse model to primary
human hepatocytes

The calibrated mouse model was used for the analysis of
measurements derived from primary human hepatocyte. The
parameter values were fixed to the estimates obtained for the
mouse data except for a parameter subset that was identified by
model comparison based on the Bayesian information criterion.
These human-specific parameters comprise the basal MET
phosphorylation rate and protein abundances, which were
estimated as patient-specific, scaling and offset parameters, as well
as the HGF-induced MET phosphorylation rate and the pMET
degradation rate, which were implemented as human-specific
parameters identical for all patients. These non-fixed parameters
were re-estimated using the maximum likelihood method. The
resulting parameter estimates are summarized in Dataset EV6.

Correlation of model-based characteristics and patient-
specific clinical features

The calibrated human model was used to simulate patient-specific
characteristics such as the basal MET phosphorylation rate, the
AUC of ppAKT, the total MET abundance and respective ratios.
These characteristics were correlated to patient-specific clinical
features calculating the Spearman correlation coefficients and
respective p values. In addition, partial Spearman correlations were
calculated for a subset of patient features correcting for the
confounding factors age, BMI, fibrosis and CCI (Kim, 2015).

Data availability

The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium through the PRIDE partner repo-
sitory (Vizcaino et al, 2014) with the data set identifier PXD043007
(human) and PXD041563 (mouse). The ODE models developed for
the mouse and the human setting are available on BioModels
(Malik-Sheriff et al, 2020) in SBML and PEtab (Schmiester et al,
2021) formats under the identifier MODEL2306280002. The Source
data of the figures is available on BioStudies.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-023-00007-4.
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Expanded View Figures

Figure EV1. Quantitative data for calibration of the mouse model.

(A) Model calibration with HGF dose-resolved signal transduction measurements in primary mouse hepatocytes of SD and WD mice. Cells were stimulated with indicated
doses of HGF for 10 min and phosphorylation of MET, ERK and AKT was quantified by immunoblotting. Signal is shown in arbitrary units (a.u.). Data points are displayed as
dots with error bars representing 1σ confidence interval estimated from biological replicates (n= 3–9 per diet and dose) using a combined scaling and error model. Model
trajectories are represented by solid lines. (B) Model calibration with HGF time-resolved signal transduction measurements in primary mouse hepatocytes of SD and WD
mice. Immunoblot measurements for ERK, AKT and S6 abundance upon stimulation with 40 ng/ml HGF. Data points are displayed as dots along with error bars
representing 1σ confidence interval estimated from biological replicates (n= 3–9 per diet and time point) using a combined scaling and error model. Model trajectories are
depicted as solid lines. (C) A Bayesian information criterion (BIC) analysis was performed to determine the diet-specific parameters needed to describe the experimental
data. The threshold for rejection was set to ΔBIC= 10 as suggested (Lorah and Womack, 2019). H0 including 64 parameters could be reduced to H2.1.2 including 61
parameters, suggesting that only the basal phosphorylation rate of the HGF receptor MET was dysregulated between diets. (D) Correlation of basal MET phosphorylation
and MET abundance at time point 0 h. Dots display the respective values for each mouse (n= 9 per diet). Correlation coefficient and p value were calculated using a
simple linear regression (p value= 0.19).
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Figure EV2. Impact of the DIA data on identifiability and convergence.

(A) The profile likelihood as a measure of parameter identifiability (Raue et al, 2009) is depicted for all dysregulated parameters before implementation of the DIA data. If
the negative log likelihood reaches a statistical threshold in both directions, the parameter has defined confidence bounds and is therefore called identifiable. If this limit is
not reached on both sides, the parameter is classified as unidentifiable. Solid lines indicate the profile likelihood of dysregulated parameters for SD (purple) and WD
(orange) along with the optimal parameter values as dots. Dashed lines depict thresholds for the confidence interval assessment. (B) The profile likelihood as a measure of
parameter identifiability is depicted for all dysregulated parameters after implementation of the DIA data. (C) The convergence of the optimization before implementation
of the DIA data is assessed based on a waterfall plot (Raue et al, 2013). This plot depicts the results of 250 optimization runs starting from randomly selected parameter
sets sorted by the negative log likelihood. The global optimum, indicated in blue, was reached in 22 of the 250 cases. (D) The convergence of the optimization after
implementation of the DIA data is assessed based on a waterfall plot. The global optimum, indicated in blue, was reached in 164 out of 250 cases.
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Figure EV3. Absolute quantification of AKT and model-based estimations of total protein abundance.

(A) Absolute number of molecules of AKT per primary mouse hepatocyte was determined by quantitative immunoblotting. Based on a dilution curve of recombinant AKT,
the number of molecules of AKT in 1 µg lysate was determined. This value was converted with the total protein content per primary mouse hepatocyte into the number of
molecules of AKT per cell. (B) Measurements of protein abundances derived from primary mouse hepatocytes were implemented in model calibration. Lysates of
unstimulated hepatocytes were subjected to data-independent mass spectrometry analysis. Resulting data was LFQ normalized and represented as boxplot: center line
indicates median; box limits indicate 25th to 75th percentiles. The lower and upper whiskers extend from the hinge to the smallest or largest value at most 1.5×
interquartile range of the hinge. Dots represent the model fit (n= 9 per diet). (C) A list of Hallmark mTORC1 signaling genes was downloaded from Gene Set Enrichment
Analysis (GSEA) and used to filter full proteomes of SD and WD mice. Out of 200 listed proteins, 129 were quantified in all samples and used to cluster samples based on
protein abundance using the R package pheatmap.
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Figure EV4. Influence of dysregulated parameters on protein dynamics.

Individual parameter scan of one dysregulated parameter at a time as explained in Fig. 4A. The value for the indicated parameter was gradually shifted from the SD
estimate (purple) to the WD estimate (light gray). The model simulations for the phosphorylation dynamics of MET, ERK and AKT are displayed in molecules/cell. Solid
lines indicate model trajectories after HGF stimulation and dashed lines indicate basal levels.
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Figure EV5. Signal transduction in primary human hepatocytes from steatotic patients.

(A) Isolated primary human hepatocytes from patients with different levels of steatosis were analyzed using quantitative immunoblotting. The ratio of basal MET
phosphorylation to MET abundance without HGF stimulation was quantified. Error bars represent one standard deviation (n= 3). (B) Primary human hepatocytes from
patients with different levels of steatosis were stimulated with 40 ng/ml HGF. Phosphorylation of AKT was quantified by immunoblotting after 10 min. p values were
calculated using a two-tailed t test (pMET/tMET *0.011, AKT *0.018). Error bars represent one standard deviation (n= 3).
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Figure EV6. Quantitative data for calibration of the human model.

(A) Proliferation measurements in isolated primary human hepatocytes from patients. Cells were stimulated with 40 ng/ml HGF. DNA content was measured at time
point 0 h and after 48 h by staining with SYBRGreen I. (B) Time-resolved immunoblot measurements and model fits for pS6K as well as MET, AKT, ERK and S6K
abundance in primary human hepatocytes derived from seven patients. Cells were stimulated with 40 ng/ml HGF or left untreated. Signal is shown in log10 arbitrary units
(a.u.). Data points are displayed as dots along with error bars representing 1σ confidence interval estimated from technical replicates (n= 1–3 per patient) using a
combined scaling and error model. Model trajectories are depicted as lines. (C) Measurements for protein abundances derived from primary patient hepatocytes were
included as additional data for model calibration. Lysates of unstimulated hepatocytes were subjected to data-independent mass spectrometry analysis (n= 1–3 per
patient). Resulting data was normalized using label-free quantification and represented as boxplot: center line indicates the patient median; box limits are defined as 1σ,
calculated based on the mean spread of the cohort per protein. The lower and upper whiskers extend from the center line by 3σ. Model fits are represented as black dots.
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