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We analyze the variability in the x-ray lightcurves of the black hole candidate CygnusX-1 by linear and
nonlinear time series analysis methods. While a linear model describes the overall second order properties of
the observed data well, surrogate data analysis reveals a significant deviation from linearity. We discuss the
relation between shot noise models usually applied to analyze these data and linear stochastic autoregressive
models. We debate statistical and interpretational issues of surrogate data testing for the present context.
Finally, we suggest a combination of tools from linear and nonlinear time series analysis methods as a
procedure to test the predictions of astrophysical models on observed data.

PACS number~s!: 05.40.2a, 02.50.Wp, 97.80.Jp

I. INTRODUCTION

CygnusX-1 is one of the best established black hole can-
didates. Mass accretion from its primary HDE 226868 leads
to x-ray emission which exhibits a variability on time scales
of tenths of seconds@1# up to months@2#. The short-time
variability is assumed to be caused by instabilities of the
accretion disk and is usually formally described by shot
noise models@3–5# which are a specific kind of point pro-
cesses. These models are inspired by hypotheses about the
physics of the accretion process and the processing of x-rays
by Comptonization in the neighborhood of the black hole.
Free parameters of these models, like morphology and dis-
tribution of the shots, are usually tuned to fit the observed
energy or power spectra.

On the other hand, starting from the observed data and
characterizing the dynamical structure of this observed vari-
ability by time series analysis methods might yield valuable
constraints on astrophysical models. This characterization
can be, for example, a fit of an explicit model to the data or
the extraction of a feature which captures some typical struc-
ture of the dynamics. Such a characterization could either
inspire new astrophysical models or could be used for addi-
tional tests of the predictions of existing models. Of course,
there is no direct way for a characterization, either by mod-
eling or by feature extraction, of observed data to an astro-
physical model: On the one hand, although the goodness-
of-fit of a diagnostic model can be evaluated by statistical
tests, these tests might have low diagnostic power to detect a
misspecification of the model. On the other hand, a certain
feature discovered in the data might be generated by many
different types of dynamics. Therefore, before drawing con-
clusions about the underlying process from data analysis,
different independent approaches should be used and the
plausibility of a fitted model or an extracted feature should
be judged in the light of astrophysical knowledge.

The first step of nonlinear time series analysis is usually
to study the structure of a possible underlying attractor.
However, methods from nonlinear dynamics did not succeed
in establishing a low-dimensional attractor for x-ray light-
curves of CygnusX-1 @6#. It is also important to mention that
time series analysis methods usually assume that the under-
lying process presents a dynamical system in contrast to a
shot noise model.

As an alternative to the commonly applied shot noise
models, the linear state space model~LSSM! as a generali-
zation of dynamical linear autoregressive models including
the observational noise has been proposed to model the x-ray
variability of active galactic nuclei in Ref.@7#. Two attractive
properties of this approach are, first, that the LSSM can be
fitted to the data in the time domain and, second, that it
explicitly takes the observational noise covering the dynam-
ics into account. The state space model has been applied to
data from CygnusX-1 in its low state@8#. This analysis has
revealed that a first order autoregressive process describes
the dynamics of the x-ray variability well. This predicts a
shot noise model with an exponential decay and a very spe-
cific mode of excitation of these shots.

In this paper, we analyze x-ray lightcurves of CygnusX-1
from its low and intermediate state by the LSSM as well as
by a method which is able to capture deviations from linear-
ity. In accordance with Ref.@8#, a scalar LSSM results in a fit
that explains the linear correlations of the time series well.
However, the nonlinear analysis using a measure for time
reversibility of the process, reveals strong deviations from
linearity on exactly that dynamical time scale found by the
LSSM. To interpret this result consistently, we discuss the
mathematical and astrophysical implications of linear sto-
chastic and shot noise models.

Finally, we suggest a combination of tools from linear and
nonlinear time series analysis methods as a procedure to test
the predictions of astrophysical models on observed data.

The organization of the paper is as follows: In Sec. II we
introduce the data under investigation. In Sec. III we discuss
shot noise and linear stochastic models and their relation.*Electronic address: Juergen@agnld.Uni-Potsdam.de
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Furthermore, we explain how we use the method of surro-
gate data to test for time reversibility. Section IV presents the
results, which are discussed in Sec. V.

II. DATA

The data were recorded with the Proportional Counter Ar-
ray ~PCA! on board the Rossi X-ray Timing Explorer
~RXTE!. The x-ray activity of CygnusX-1 is classified as
low, intermediate, and high, depending on the mean count
rate@9#. Our analysis is based on two data sets: The first data
set was recorded on 22nd May 1996, 19:05:12–19:48:02,
while CygnusX-1 was in its intermediate state@9#. The en-
ergy range was 2.0–14.1 keV~channel range: 0–35!. The
sampling frequency was 256 Hz and the data set consists of
655 360 data points. The mean number of counts per bin was
38.3 with standard deviation 10.0. The second data set was
recorded on 12th February 1996, 9:37:20–10:03:06, while
CygnusX-1 was in its low state. The energy range was 2.0–
9.9 keV~channel range: 0–35!. The sampling frequency was
256 Hz and the data set consists of 394 752 data points. The
mean number of counts per bin was 18.7 with standard de-
viation 7.1. Figure 1 displays a 3 s segment of the first data
set. A part of the variability of the data is explained by the
fact that the recording process is a counting process. This
leads to additive uncorrelated observational noise which is
Poisson distributed. Due to the high mean count rate this
Poisson noise is well approximated by Gaussian noise.

III. METHODS

A. Shot noise processes

Shot noise processes are a specific type of point processes
@10#. Point processes are characterized by a probabilistic law
that some event happens at a certain time. For the simplest
form of a shot noise model the probabilistic law of occur-
rence of events follows a Poisson process and the event is an
exponential decay with initial valueM and decay timet. A
Poisson process is defined by the property that the probabil-
ity of an event to take place in a time interval (t,t1Dt) is
proportional toDt in the limit of small intervals:

lim
Dt→0

prob @Event in ~ t,t1Dt !#5rDt, ~1!

wherer denotes the intensity of the process. The sampled
time series consists of a superposition of the single shots at
timesT j whose occurrence follows Eq.~1!, i.e.,

x~ t i!5(
j

M Q~ t i2T j! e2(t i2T j)/t ~2!

with Q(z)51 if z>0, Q(z)50 if z,0. We call this process
the classical shot noise process.

The power spectrum of this process~2! is given by@11#

S~v !5

M 2 r

1/t2
1v2

, vÞ0. ~3!

The classical shot noise has already been proposed in Ref.
@3# to describe the observed variability of the lightcurves of
CygnusX-1. It consists of exponentially decaying shots with
a fixed initial value which occur in time with a constant rate
of probability. Several generalizations have been proposed:
Shots with a decay rate drawn from a certain distribution
have been suggested in Refs.@4,12,13#. A distribution for the
initial values of the shots was considered in Ref.@14#.
Vikhlinin et al. @15# introduced interactions between differ-
ent shots. Furthermore, the simple exponential form was re-
placed by more complicated time courses showing an initial
increase from zero to a maximum value followed by a decay
to zero@8#. These types of profiles are supported by Monte
Carlo simulations of astrophysical models of the x-ray pro-
cessing by spatially resolved Comptonization in a cloud of
hot electrons surrounding the accretion disk@16#.

For some generalized shot noise models the power spectra
can be calculated analytically@5,11#; otherwise they have to
be estimated from simulated data.

B. Linear stochastic dynamical systems

In contrast to shot noise processes given by Eqs.~1!,~2!,
continuous dynamical systems are given by a differential
equation

xẆ5 fW~xW ,eW !, ~4!

whereeW denotes random perturbations which might influence
the time evolution of the dynamics. An attractive feature of
modeling time series by dynamical systems is that the spe-
cific form of fW(xW ,eW ) might provide insight in the physics at
work, see Refs.@17,18# for two examples from physics and
Refs.@19,20# for application to physiological time series.

In the simplest case, iff (.) is linear inxW and the dynami-
cal noiseeW is Gaussian distributed and additive, the system
represents linear combinations of damped oscillators and re-
laxators that are driven by Gaussian noise. Since the model is
linear, all information about the model is captured by the
power spectrum. For a scalar dynamics

ẋ52ax1e, e;WN~0,s2!, ~5!

the spectrum is given by

FIG. 1. A 3 s segment of the intermediate state time series.
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S~v !5

s2

a2
1v2

. ~6!

It is important to emphasize that first order linear stochastic
dynamical systems have the samev dependence of the spec-
trum as the classical shot noise model, see Eq.~3!.

Most often, xW cannot be observed directly, but only a
scalar functiong(xW ). Furthermore, the observationy might
contain additive measurement noise, denoted byh:

y5g~xW !1h. ~7!

While the noiseeW in Eq. ~4! drives the dynamics, the mea-
surement noiseh in Eq. ~7! only disturbs the observation of
the system. For the case of a linear dynamical system, Eq.
~5!, with white additive observational noise of varianceR,
the spectrum reads

S~v !5

s2

a2
1v2

1R. ~8!

Since measured data are sampled, discrete time dynamical
models

xW~ t !5hW „xW~ t2Dt !,eW~ t !…, ~9!

are often used. If both the dynamical and the measurement
noise are Gaussian distributed, and the functionshW andg are
linear, i.e.,

xW~ t !5AxW~ t2Dt !1eW~ t !, eW~ t !;N~0,Q !,
~10!

y~ t !5CxW~ t !1h~ t !, h~ t !;N~0,R !,

the linear state space model~LSSM! as a generalization of
the well known autoregressive models results. They repre-
sent discrete time versions of the continuous time linear sto-
chastic models. The matrixA determines the dynamics of the
unobserved state vectorxW (t). Its dimension reflects the order
of the process. The vectorC maps the state vector to the
observation. In the case of scalar dynamics,A is related to
the relaxation time scalet by t521/loguAu. The mathemati-
cal formalism of the LSSM and procedures to estimate its
parameters are described in detail in Refs.@19,21#.

To test the consistency of a fitted model with the data, at
least three criteria should be applied.

~1! The variance of the prediction residuals does not de-
crease significantly for larger model dimensions.

~2! The spectra calculated from the fitted LSSM for larger
model dimensions coincide.

~3! An appropriate model should turn the correlations in
the data into prediction residuals consistent with white noise.
In the frequency domain this hypothesis can be tested by
comparing the periodogram of the residuals with the ex-
pected straight line in the case of white noise by the
Kolmogorov-Smirnov test@22#.

C. Noise reduction

Measured time series of natural systems often contain a
large amount of additive observational noise. The fitted
LSSM can be applied as a linear filter to perform a noise
reduction on the data even if it is misspecified as a dynamical
model of the underlying process. If the LSSM describes the
second order properties of the process correctly, the LSSM is
the optimal linear filter@21#.

Algorithmically the noise reduction is achieved by first
applying the Kalman filter, which yields an estimate ofxW (t)
based on the observed datay(1),y(2), . . . ,y(t). Then the
so-called smoothing filter is applied backwards in time to

obtain estimatesxŴ (t) based on the whole data set@21#. The
possibility to apply this smoothing filter relies on the prop-
erty of linear stochastic processes to be time reversible, see
Sec. III D. Multiplication of xW (t) by the estimatedC yields
an estimate of the noise-free scalar observabley(t).

The statistical properties of the estimatedŷ(t) can be un-
derstood in the frame of Bayesian estimation, see Ref.@23#
for a detailed discussion. The model with its fitted param-
eters represents a prior on the smoothness of the hiddenxW (t).
Conditioned on this prior a maximum likelihood estimate of
y(t) is obtained. The estimated time series is the most prob-
able one assuming the validity of the model, Eq.~10!.

It should be emphasized that the estimated time series
does not represent a typical realization of the fitted model
used as prior. Even if the fitted model is the true one, the
estimated time course is a slightly low-pass filtered version
of a typical realization. If the fitted model is, however, not
the true model, the estimated time series will show statistical
properties which, literally spoken, lie between those of the
process which generated the data and the model used as
prior. Especially, if the true process is nonlinear showing a
strong time irreversibility, this quantity might be reduced for
the estimated time series. Thus, the procedure does not lead
to false positive results.

D. The relation between linear models and shot noise models

Linear autoregressive and shot noise processes are both
stochastic processes. The randomness driving these pro-
cesses usually reflects the restricted knowledge about the dy-
namics at work. Often, the dynamics is exposed to numerous
influences that cannot be taken into account explicitly. Even
if these influences are deterministic in nature they effectively
act as random influences due to their large number. The char-
acteristic difference between autoregressive and shot noise
processes is the way the randomness enters the process:~i! In
dynamical processes it describes a random force that influ-
ences the dynamics in every instant of time.~ii ! In point
processes it acts as a trigger that generates a certain event
only at certain points in time.

However, there is a formal connection between the clas-
sical shot noise process and the scalar linear stochastic dy-
namical process. Formally, and ‘‘not in the spirit of point
processes’’@10#, one can transform Eq.~2! into

x~ t !5~12Dt/t ! x~ t2Dt !1e~ t !, ~11!

wheree(t) has the specific form:
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e~ t !5H 0 with probability 12rDt

M with probabilityrDt.
~12!

Thus, forrDt'1 andM following a Gaussian distribution,
there is a formal equivalence between the scalar linear au-
toregressive process and the classical shot noise process
which is characterized by its exponentially decaying shot
profile. In practiceDt corresponds to the sampling interval.
The conditionrDt'1 means that the process is highly un-
dersampled, since single shots are not resolved. The required
Gaussianity of the distribution of the initial values of the
shots does not meet the physical constraint of positivity in
the astrophysical context of x-ray bursts. In the limitrDt
'1 it might be an effective description resulting from the
superposition of the unresolved Poisson process.

In summary, scalar linear dynamical processes are a cer-
tain formal limiting case of shot noise models. Only in the
case of linearity, there is no interaction between the excita-
tions and time course of the shots. It should be noted that, in
general, nonlinear stochastic dynamical systems cannot be
formulated as a formal limit of shot noise models.

E. Beyond linear models: Time irreversibility

An important property of linear Gaussian processes is
time reversibility, i.e., the statistical properties of the process
are the same forward and backward in time@24#. An intuitive
explanation is that the statistical properties of these processes
are completely captured by the autocorrelation function,
which is by definition symmetric under time reversal. Shot
noise processes with nonsymmetric shot profiles are not time
reversible as are many nonlinear dynamical systems. The
Gaussianity of the noisee(t) of a linear autoregressive pro-
cess is crucial for time reversibility. Any deviation from
Gaussianity leads to time irreversibility even in the case of
linear dynamics@24#. This is of special interest in view of
Eq. ~12!. While time reversibility has been used to test for
nonlinearity in dynamical systems@25–28#, we will use it
here as an indicator for a shot noise model. A test for time
irreversibility in this context will be discussed in the next
section.

F. Nonlinear analysis: The method of surrogate data

The theory of nonlinear dynamical systems offers notions
to characterize processes beyond linearity, see Refs.@29,30#
for a review. Different quantities have been invented to re-
veal whether an observed time series is a realization of a
chaotic system; among others, the correlation dimension
@31#, Lyapunov exponents@32#, and nonlinear forecasting
errors@33#. It has been observed later that due to the finite
size of data, noise, and linear correlations, the algorithms to
calculate these quantities can give false positive results.

To test the reliability of the results, the method of surro-
gate data has been invented independently by different au-
thors, e.g.,@34–38#, but has been made most popular by Ref.
@25#. It has found wide applications in the analysis of astro-
physical @36,39–41#, geophysical@42–44#, and biophysical
@45–47# data.

The general idea is to simulate time series whose statisti-
cal properties are constrained to the null hypothesis one

wants to test for@48#. In testing for linearity this is achieved
by randomizing the phases of the Fourier transform of the
data and transforming the result back to the time domain. A
possible static nonlinearity in the observation,g(xW ) in Eq.
~7!, is known to produce spurious significant results@49#.
Therefore, a proper adjustment of the distribution of the time
series data is performed. For many realizations of time series
from this procedure, the same algorithm as to the original
data is applied leading to a distribution of the feature calcu-
lated by the algorithm assuming linearity. A significant dif-
ference between the distribution of the feature produced by
the algorithm for the surrogate data and the original data is
taken as an indication that the process underlying the original
is not a Gaussian, stationary, stochastic, linear one. A signifi-
cant result of the test does not necessarily indicate chaoticity
of the process, since this is only one possibility to violate the
null hypothesis.

Former analysis revealed that it is unlikely that the Cyg-
nusX-1 as well as other comparable x-ray sources represent
a low-dimensional chaotic system@6,50,51#. Therefore, we
apply the surrogate data test to look for deviations from the
null hypothesis in general.

The results of the surrogate data test for a featuref are
usually reported as significanceS:

S5

u f 2^ f &surru

ssurr
, ~13!

where ^ f &surr denotes the mean of the distribution of the
feature for the surrogates andssurr its standard deviation.
Assuming a Gaussian distribution for the feature a value of
S52.6 corresponds to a significance level ofa50.01.

We propose here a surrogate data analysis based on time
reversibility. Generalizing a suggestion of Weiss@24#, a
simple measure denoted byQ(m) for a deviation from re-
versibility for a certain time lagm was introduced in Ref.
@25#:

Q~m !5
^@x~ t1m !2x~ t !#3&

^@x~ t1m !2x~ t !#2&
. ~14!

More complex measures for time irreversibility based on
conditional, respectively joint probability distributions are
described in Refs.@26–28#.

Since it is not clear beforehand at which lagm a possible
deviation from the null hypothesis might result in a signifi-
cant Q(m) statistics, the significancesS(m) will be evalu-
ated for all lags up to a maximum lag. This leads to the
statistical problem of multiple testing. It is important to em-
phasize that this has an impact on the level of significancea,
i.e., the probability to reject the null hypothesis although it is
true. If the null hypothesis is tested inn independent tests at
the levela, the probability to reject the null hypothesis at
least once is given by

ã512~12a !n. ~15!

For example, fora50.01 andn510, the actual significance
level ã is 0.1, leading to a ten times higher probability for an
incorrect rejection of the null hypothesis than expected. A
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simple cure to this problem is the Bonferroni correction@52#.
Therefore, Eq.~15! is solved fora:

a512~12ã !1/n. ~16!

Sinceã!1, the right hand side of Eq.~16! can be approxi-
mated in first order, resulting in the simple rule

a5ã/n. ~17!

This procedure is known to be extremely conservative, i.e.,
while it guarantees that the significance level is correct, the
test loses its diagnostic power to detect a violation of the null
hypothesis. For some test statistics, procedures are known to
obtain tests that have the correct significance level as well as
a good diagnostic power, see, e.g., Refs.@52–54#. It is not
known to the authors how to apply an analogous strategy to
theQ(m) statistics. The main problem is that the correlations
in the time series produced by the underlying dynamics of
the process lead to correlations between theQ(m) statistics
for different lags. Thus, the only cure known to the authors is
to check whether the results of an analysis of one time series
can be reproduced by the analysis of independent measure-
ments. Therefore, we subdivide our time series into segments
of length 20 000 data points each and calculate the averaged
Q(m) statistics and its confidence interval.

To reveal the expected behavior of theQ(m) statistics for
shot noise processes, we simulate an exponential shot noise
process with intensityr50.1, t515, initial valuesM i drawn
from a uniform distribution in the interval@0,1#, and apply
the Q(m) statistics. Figure 2~a! shows a segment of the
simulated data. Figures 2~b! and 2~c! display theQ(m) sta-
tistics and the significancesS(m) for different lagsm based
on a realization of the process of length 20 000 data points.
The monotonically decaying behavior of theS(m) curve
does not depend on the intensity, the relaxation time, or the
distribution of the shot noise process. Of course, the quanti-
tative behavior does. Classical shot noise and first order lin-
ear stochastic dynamical systems cannot be discriminated by
linear methods since their spectra coincide. The simulation
shows that higher order statistical properties allow for a dis-
crimination. Next we apply this concept to the analysis of
measured data.

IV. RESULTS

We discuss the results for the time series of the interme-
diate state in detail. For the linear analysis, the results for the
intermediate and low state data are comparable. Differences
for the nonlinear analysis will be presented in more detail in
Sec. IV B.

A. Linear analysis by state space models

We fit linear state space models~LSSM!, Eq. ~10!, of
increasing dimension to segments of the intermediate state
time series of length 20,000. In accordance with the results
of Ref. @8# for the low state, the residual variance is constant
for all models of dimension larger than zero. Furthermore,
the analysis reveals an equal contribution of signal and noise
to the total variance of the time series.

Figure 3 displays the periodogram of the first segment and
the spectra calculated from fitted one- to three-dimensional
models on a log-linear and on a log-log scale. The spectrum
calculated from the fitted parameters well explains the over-
all periodogram of the data. Furthermore, there is no signifi-
cant difference between the spectra of fitted different dimen-
sional processes. The relaxation time of the scalar model is
14.2 sampling units corresponding to 55 ms. The
Kolmogorov-Smirnov test does not reject the hypothesis of
white noise residuals at the 1% level of confidence.

With respect to the dimension of the model, a fit of
LSSM’s of dimension one to three to the remaining 31 seg-
ments confirms the result for the first segment. For the pieces
of 20 000 data points as well as for the whole data set the
spectra calculated from the estimated parameters do not dif-
fer from the spectra of the scalar model. The estimated re-
laxation times range from 12.4 to 17.4 sampling units, cor-

FIG. 2. Analysis of a simulated shot noise process.~a! Segment
of a realization of an exponential shot noise process with intensity
r50.1 and decay timet515 sampling units.~b! The Q(m) statis-
tics, Eq.~14!. ~c! SignificancesS(m), Eq. ~13!.
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responding to 48 to 68 ms. For the data set from low state the
qualitative results of the linear analysis are the same as for
the intermediate state, but the relaxation times range from 40
to 56 sampling units, corresponding to 150 to 220 ms, in
accordance with the results reported in Ref.@8#.

Linear analysis methods, like spectral analysis, only cap-
ture the second order statistical properties of a process. For
linear processes the higher order properties are a function of
the second order correlations. This does not hold for nonlin-
ear processes. Therefore, it could be possible that there is
some nonlinear dynamics at work in the process under inves-
tigation which is invisible for linear analysis. If such nonlin-
ear dynamics can be described by Eq.~4!, it can be con-
cluded that its dimension is not larger than 1. Any higher-
dimensional continuous-time system would have led to a dif-
ference between the spectra of the one- and the higher-
dimensional LSSM’s, since it would produce linear correla-
tions for an order of at least the dimension of the process. In
the same line of argument, a nonlinear first order dynamical
process should have effected the higher order spectra. Thus,
the linear analysis strongly suggests a linear stochastic first
order process for a description of the data in the frame of
dynamical systems.

B. Nonlinear analysis

First, we apply the surrogate data based search for devia-
tions from linearity as described in Sec. III F to segments of

length 20 000 up to a maximum lag of 1000 sampling units
corresponding to 3.9 s of the observation. We use 100 sur-
rogate data sets to estimate the mean and the variance of the
Q(m) statistics, Eq.~14! for the null hypothesis of linearity
to calculate the significancesS(m), Eq. ~13!.

For the first segment, at above lag 800 the significance
S(m) of theQ(m) statistics for time reversibility results in a
value larger than 4@Fig. 4~a!#. This corresponds to a prob-
ability for the null hypothesis smaller than 1024. As dis-
cussed in Sec. III F, the results of the nonlinear analysis by
the surrogate data method using theQ(m) statistics has to be
based on the consistency of the results for independent mea-
surements due to the multiple testing problem. Figures 4~b!–
4~d! display the results for the following 20 000 data point
segments of the time series. There is no consistent deviation
from the null hypothesis for any lag.

Linear analysis reveals that the signal to noise ratio is
equal to 1 if measured in relative amplitudes. This large
amount of observational noise diminishes the diagnostic
power of the surrogate data test to detect a possible time
irreversibility. As discussed in Sec. III B, the LSSM can be
applied to estimate the noise-free dynamical time series
within a Bayesian framework. Figure 5 displays the results
for the Kalman~and smoothing!-filtered data based on the
one-dimensional LSSM analogous to Fig. 4. For large lags
no significant changes appear apart from a smoother behav-
ior of the curve which results from the low-pass filter prop-
erty of the estimation procedure as discussed on Sec. III B.
But for small lags the behavior of the curves changes: Figure
6 shows the significancesS(m) of theQ(m) statistics for the
first 100 lags. Consistently, a significant deviation from lin-
earity is found for exactly those lags up to the time scale of
approximately 15 sampling units that was found as typical
time scale by the linear analysis. Note that the resulting
S(m) curves for the Kalman-filtered data resemble the de-
caying curve expected for a shot noise model, Fig. 2, while
the raw data suggest a maximum at around ten sampling
units. The similarity of the results for larger time scales and
the differences for short time scales can be interpreted in the
frame of shot noise models. For lags much larger than the
relaxation time of the shots, the data are independent and the
Q(m) statistics is expected to vanish. The appearance of the
S(m) is determined by correlated fluctuations, as discussed
in Sec. III F. For time scales smaller than the relaxation time
of the shots, theQ(m) statistics are significantly different
from zero, see Fig. 2. The difference between the results for
the raw and the Kalman-filtered data is an effect of the lag
dependent signal to noise ratio. This is most pronounced for
the shortest lags, since the time course of each shot is con-
tinuous, but the observational noise is discontinuous, leading
to a decreasing signal to noise ratio for smaller lags. This is
the reason whyS(m) tends to zero for lags close to zero for
the raw data.

Since the Kalman filter is linear, it is not expected to lead
to artificial results. This has been confirmed in a simulation
study. We use the fitted one-dimensional LSSM to generate
data and calculated the significanceS(m) of the Q(m) sta-
tistics for these data and data obtained by the Kalman filter.
The results are displayed in Fig. 7 and show that the Kalman
filter does not produce spurious results for processes that are
time reversible. Simulation studies using shot noise pro-

FIG. 3. Periodogram of the data~dots! and spectra~solid lines!
calculated from the estimated parameters of the state space model
of dimension one to three in log-linear scale~top! and log-log scale
~bottom!. Note that the spectra are virtually indistinguishable.
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cesses with added observational noise show that the Kalman-
filtered data reproduce the behavior of theS(m) curve for
shot noise processes as displayed in Fig. 2. Thus, the signifi-
cant results are not due to the Bayesian estimation by the
Kalman filter ~Sec. III B!. This is reasonable since in the
worst case this linear filtering ‘‘pulls’’ the data in the direc-
tion of behaving more linearly. That means that an existing
time irreversibility would be decreased, but no spurious sig-
nificant effects are introduced.

Figure 8 shows the mean and 2s confidence region of the
significanceS(m) of the Q(m) statistics obtained from the
32 segments of length 20 000 based on the raw and the noise-
reduced time series from the intermediate state. Figure 9 dis-
plays the corresponding plot for the 19 segments from the
low state time series. For both data sets theS(m) curves for
the raw and the Kalman-filtered time series are statistically
indistinguishable for larger lags. Significant differences arise
only for small lags. Based on the analysis of the raw data,
any kind of shot noise model would be rejected. For the
analysis based on the Kalman-filtered data, theS(m) curve
for the low state time series suggests a classical shot noise
model by its decay for small lags and insignificant values for
larger lags, compare Fig. 2. For the intermediate state time
series, a significant maximum occurs at a lagm of 30 sam-
pling units, corresponding to 117 ms. This maximum cannot
be reproduced by a simple shot noise model and calls for
more complex processes discussed in Sec. III A.

For both time series, our analysis shows that the linear
state space model is not an appropriate model to describe the
data, since the significant time reversibilities calculated
based on the fitted models contradict the assumption of these
models. It is, however, important to note that the LSSM can
be used to perform an efficient noise reduction.

V. DISCUSSION

We have developed methods and have discussed how it is
possible to decide based on measured data whether a time
series that even comprises a large amount of additive obser-
vational noise has been produced by a scalar linear stochastic
dynamical system or a shot noise process. We have shown
that linear spectral analysis does not allow for discrimina-
tion. The nonlinear property of time irreversibility of shot
noise processes form the basis for a significant distinction. A
straightforward evaluation of this feature is hampered by the
statistical problem of multiple testing and effects of additive
observational noise. We have discussed how these problems
can be overcome.

We have applied methods from linear and nonlinear time
series analysis to two x-ray variability lightcurves of the
black hole candidate CygnusX-1. The first time series was
recorded while CygnusX-1 was in an intermediate state@9#,
the second represents the low state. Such data are usually
described by shot noise models, a specific kind of point pro-

FIG. 4. SignificancesS(m) of theQ(m) statistics for lags up to 1000.~a! First segment of the intermediate state data set.~b!–~d! Results
for the second to the fourth segment.
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cesses. Although point processes are fundamentally different
from dynamical systems, they share some properties with the
latter. First, the spectrum of the classical shot noise process
coincides with that of a scalar continuous time linear Gauss-
ian stochastic process. Second, most shot noise models share
the property of most nonlinear dynamical systems of being
time irreversible.

First, we have fitted linear state space models~LSSM’s!
of increasing dimension to segments of the data. The vari-
ance of the prediction residuals is not decreasing for models
of dimension larger than zero and the spectra calculated from
the fitted parameters of the different models coincide, sug-
gesting a scalar dynamical model. Testing the consistency of
the prediction residuals with white noise has revealed a good
overall fit. The linear analysis shows that if the process is a
dynamical system, it is linear and one-dimensional. Any
higher-dimensional or continuous-time nonlinear dynamical
systems would have led to differences between one- and
higher-dimensional LSSM’s with respect to the spectra cal-
culated from the fitted parameters and the variance of the
prediction residuals. Furthermore, the analysis suggests a
signal to noise ratio of 1.

Fitting a LSSM to data in the time domain is asymptoti-
cally equivalent to fitting its spectrum to the periodogram of
the data in the frequency domain@55#. The spectrum of the
classical shot noise process is identical with the spectrum of
a first order linear dynamical process. Thus, even if a
goodness-of-fit test in the frequency domain does not reject a

LSSM, no discriminating conclusions can be drawn with re-
spect to the question whether a dynamical system or a shot
noise process has generated the data. Therefore, astrophysi-
cal interpretations of the parameters of fitted LSSM’s
@8,56,57# should be treated with care.

Astrophysical studies indicate that the processes under in-
vestigation follow some kind of shot noise model
@3–5,8,13,16,58–60#. In general, shot noise models are not
reversible in time. Surrogate data testing for time irrevers-
ibility for different lags introduces the multiple testing prob-
lem. Therefore, we have investigated whether consistent re-
sults could be obtained from an analysis of segments of the
time series.

For the raw data of the low state time series, no significant
deviation from linearity has been detected. However, we
have found a double well behavior of theQ(m) statistics in
the case of the intermediate state data~Fig. 8!. Both results
contradict a simple shot noise model. This might have been
caused by the low signal to noise ratio. In the frame of Baye-
sian estimation based on a fitted LSSM, we have applied the
Kalman filter to get a noise-reduced time series. Based on
these noise-reduced data, we have found a significant devia-
tion from linearity at that time scale found by linear analysis
that are in accordance with results for simulated data from a
simple shot noise model. While the results for the low state
time series are in agreement with a simple shot noise model
with independently decaying shots, the intermediate state
time series shows a more complex behavior. Apart from the

FIG. 5. SignificancesS(m) analogous to Fig. 4. Dashed lines: Results for the raw data. Solid lines: Results for data after Kalman filtering.
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decay for small lags the significances show an additional
distinct maximum. Our results are based on the estimated
noise-reduced time series obtained by the LSSM. Any noise
reduction procedure imposes assumptions about the underly-
ing process and might lead to artifacts if the assumptions are
not met as in the present study. In the case considered here a

violation of the assumptions of the model, in the worst case,
leads to less significant results since the filter is linear. Thus,
the procedure is statistically conservative even if the model
is misspecified.

By its qualitative difference to the results for simple shot
noise models for the intermediate state time series, theQ(m)

FIG. 6. SignificancesS(m) of theQ(m) statistics for lags up to 100. Dashed lines: Results for the raw data. Solid lines: Results for data
after Kalman filtering.

FIG. 7. Results from a simulation study using the fitted LSSM.
The significancesS(m) of theQ(m) statistics are calculated for the
raw data~solid line! and the data after Kalman filtering~dashed
line!.

FIG. 8. SignificancesS(m) of the Q(m) statistics and 2s con-
fidence regions calculated from the 32 segments of length 20 000 of
intermediate state time series. Dashed line: Raw data. Solid line:
Kalman-filtered data.
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statistics as a measure for time irreversibility poses a con-
straint on astrophysical models for this phenomenon. It has
been shown that the classical shot noise model~1!–~3! does
not satisfactorily describe the process under consideration
@9#. Therefore, one has to search for more complex models.
For such models the significance of theQ(m) statistics~Fig.
8! provides an additional and independent test beyond the
usually applied energy and power spectra. For example, our
results exclude shot noise models with symmetrical rise and
decay of the shots as discussed in Ref.@58#, since such mod-
els would not lead to a violation of time reversibility. In
general, one has to Kalman-filter the data generated by the
proposed model in the same way as the observed data and
test the compatibility of the resultingS(m) curve statisti-
cally.

No explicit test to decide whether a dynamical system or
a shot noise process underlies a measured time series is
known to the authors. Summarizing the results from the lin-
ear and the nonlinear time series methods, the analysis
strongly suggests that a shot noise model is at work. This is

in accordance with astrophysical considerations: x-rays un-
dergo multiple Compton scattering in the corona of hot elec-
trons surrounding CygnusX-1. The shots represent the pro-
jection of this spatiotemporal, reaction-diffusion-like
processes on the time axis. The loss of spatial resolution is
responsible for the fact that the resulting process cannot be
formulated as a dynamical system anymore. This reveals an
interesting aspect of surrogate data testing that might also
apply for other applications@41#. Initially, testing by surro-
gates was introduced to support the detection of chaotic dy-
namics. Later, it was recognized that a rejection of the null
hypothesis of linear, stochastic, stationary, Gaussian dynam-
ics does not necessarily indicate chaos, i.e., a special type of
nonlinear, stationary, deterministic dynamics, since there are
other possibilities to violate the assumptions of the above
null hypothesis@61–64#. Furthermore, surrogate data testing
was characterized as not too informative if simple inspection
of the data reveals a deviation from the null hypothesis@61#.
In the present case, the linear analysis looks promising at
first sight rendering the surrogate data test informative. But
here, the reason for a significant surrogate data test is not
chaotic nonlinearity, but the projection from the spatiotem-
poral into the temporal domain. Thus, the x-ray variability
data offer a possibility for a rejection of the null hypothesis
of a linear dynamical system: The system is not a dynamical

system of the formxẆ5 fW(xW ,eW ) at all.
In summary, following a quotation of G.E.P. Box: ‘‘All

models are wrong, but some are useful,’’ we propose the use
of the misspecified linear state space model together with the
measure of time reversibility inspired by nonlinear dynamics
as an additional test to the usually applied energy and power
spectra to evaluate the validity of astrophysical shot noise
models on measured data.
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