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An interesting recent development in emotion research and clinical psychology

is the discovery that affective states can be modeled as a network of

temporally interacting moods or emotions. Additionally, external factors like

stressors or treatments can influence the mood network by amplifying or

dampening the activation of specific moods. Researchers have turned to

multilevel autoregressive models to fit these affective networks using intensive

longitudinal data gathered through ecological momentary assessment.

Nonetheless, a more comprehensive examination of the performance of such

models is warranted. In our study, we focus on simple directed intraindividual

networks consisting of two interconnected mood nodes that mutually enhance

or dampen each other. We also introduce a node representing external factors

that affect both mood nodes unidirectionally. Importantly, we disregard the

potential effects of a current mood/emotion on the perception of external

factors. We then formalize the mathematical representation of such networks

by exogenous linear autoregressive mixed-effects models. In this representation,

the autoregressive coefficients signify the interactions between moods, while

external factors are incorporated as exogenous covariates. We let the

autoregressive and exogenous coefficients in the model have fixed and

random components. Depending on the analysis, this leads to networks with

variable structures over reasonable time units, such as days or weeks, which are

captured by the variability of random effects. Furthermore, the fixed-effects

parameters encapsulate a subject-specific network structure. Leveraging the

well-established theoretical and computational foundation of linear mixed-

effects models, we transform the autoregressive formulation to a classical one

and utilize the existing methods and tools. To validate our approach, we perform

simulations assuming our model as the true data-generating process. By

manipulating a predefined set of parameters, we investigate the reliability and

feasibility of our approach across varying numbers of observations, levels of noise

intensity, compliance rates, and scalability to higher dimensions. Our findings

underscore the challenges associated with estimating individualized parameters
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in the context of common longitudinal designs, where the required number of

observations may often be unattainable. Moreover, our study highlights the

sensitivity of autoregressive mixed-effect models to noise levels and the

difficulty of scaling due to the substantial number of parameters.
KEYWORDS

affect dynamics, mood networks, ecological momentary assessment, mixed-effects
models, autoregressive models
1 Introduction

Recent developments in emotion research and clinical

psychology have highlighted the substantial impact of emotional

fluctuations on an individual’s daily experiences, behaviors, and

decisions (1). This recognition has led to the conceptualization of

the evolution of affective states throughout daily life as complex

networks comprising interacting emotional or mood variables.

Affective network models may shed light on general rules

underlying the generation and regulation of moods and on

individual differences therein. Moreover, when integrated with

other variables, affective networks may also elucidate the

relationship of moods to other aspects of human behavior or

their importance for longer-term outcomes, such as psychological

well-being or functioning (2–4).

Network models have also found utility in investigating the

dynamics of mental states in other areas, most prominently in

clinical psychology and psychiatry. In these fields, mental disorders

have been conceptualized as networks of symptoms (e.g.,

hypervigilance, despair, or anhedonia) that interact via biological,

psychological, and social mechanisms (5–7). Although both cases of

network models use the same principles, in terms of modeling on an

abstract level, they live on different time scales. Moods or emotions

might change quickly over short time intervals and several times a

day, whereas the definition of a symptom per se usually requires its

presence over at least a few weeks. In this work, we focus on

network models for moods and will use the extensively studied case

of symptom networks for comparison and reference, to thus better

highlight specific requirements of mood/emotion modeling.

The dynamics of these networks can be modeled using time-

series data. This has been facilitated by technological improvements

in recent years and the fact that smartphones and wearable devices

have become inseparable from the daily lives of many people. It is

now a well-established practice to acquire data by experience

sampling methods (8), where individuals are observed frequently

within short periods of time, e.g., several times a day over 1 to 2

weeks, or once every day for a couple of weeks, resulting in the so-

called ecological momentary assessment (EMA) data. As the

acquisition of EMA data is made easier, single-subject analysis is

also gaining momentum, where constructing individual dynamic

networks might be helpful in understanding the mental states of a
02
specific person, and this, in turn, might promote personal

prediction or also personal interventions (9, 10).

In constructing such networks, where one variable (observed

mood) is correlated to the other, the corresponding network nodes

(M1 and M2 in Figure 1) can be seen as being connected with a

weight according to the type (positive or negative) and the intensity

of the correlation (line in Figure 1A). For instance, in the case of

moods, a cheerful mood may frequently co-occur with a satisfied

mood and be inversely related to irritated, anxious, or sad mood

states. A connection may also be of some causal nature such that

one variable, M2, at time t + 1 is highly correlated (positively or

negatively) with the other, M1, at time t. In this case, we draw an

arrow from M1 to M2 (Figure 1B), which represents the Granger

causality of the source node on its target. For instance, a stressed

state may entail a state of being anxious or irritated. This

relationship could also be reciprocal, e.g., anxiety or irritation

may in turn increase stress.

The presence of two-way causal relations in this simple network

with two variables may lead to a positive feedback loop in the

network. In a more complex network with more nodes, this is also

possible with only one-way connections, e.g., there may be a

connection from stress to anxiety or irritation to stress. At a

certain level of activation, these characteristic network features

can theoretically promote a self-sustaining state of general high

activation of several strongly interconnected variables, which could

be considered a state of being locked in a certain mood, such as

enduring anxiety or frustration. Such lasting negative mood states

are akin to symptoms of mental disorders, which illustrates the

relevance that modeling of moods and emotions may have for the

understanding of psychopathology.

Each variable might also exhibit varying degrees of serial

correlation, depicting how its value at time t + 1 is influenced by

its previous values. In network representation, such a relationship is

shown by looped arrows on variables indicating the autoregressive

effect (Figure 1B).

External factors (E in Figure 1C) can further impact the

network’s state by amplifying or dampening certain variables or

even their interaction. For instance, negative events or situations,

such as stressors, might have enhancing effects on negative moods

or their interactions, while pleasant events/situations might dampen

them, the inverse being true for positive moods. One can also
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imagine that social contexts, personality variables, or biological

factors (e.g., drugs) can impact affective networks. We here restrict

ourselves on theorizing about event- or situation-like positive or

negative influences and only consider the contemporaneous effects

of such external factors, i.e., the effects of E at time t on other

variables also at time t. The extension of these networks to include

more nodes is straightforward.

In building the model, we begin with a very minimal network

containing two interacting nodes (M1 and M2) and one node for

external inputs (E). This way, we avoid the complexity related to the

number of parameters in the model as it grows quadratically by the

number of variables in an autoregressive setting.

The evolution of states in an autoregressive model usually does

not explicitly depend on time, and it is assumed that the observations

are made one unit of time apart in a consecutive manner. However,

EMA often violates this assumption by randomizing the observation

time points within a certain time interval. It also accommodates

overnight pauses, which is the only feasible way of collecting data.

This latter issue leaves EMAwith inherent missing data. Additionally,

participants might occasionally fail to report at some time points,

whether randomly or due to mood-related factors (11).

In psychological data, the use of randomized time points is

generally accepted for autoregressive processes. Some researchers

ignore missing points as well, aggregating data over days as a time

series, and directly applying vector autoregressive (VAR) methods

(12, 13). Others opt to preprocess data before applying VAR,

addressing irregular time stamps, overnight gaps, and missing

values through data smoothing, e.g., by interpolation (14, 15).

More advanced methodologies exist to tackle these issues while

handling time more effectively. Continuous time models leverage

stochastic differential equations (16, 17) to model dynamics in fine-

grained time scales. State-space methods project the observations

into a latent space where one could adjust for time irregularities (18,

19). Similarly, dynamic structural equation models utilize a

Bayesian framework to model observed and latent variable

dynamics, providing techniques to handle irregular time points

and missing data (20). However, these methods require more

theoretical grounding than a conventional VAR system.

Aggregating daily observations into sequential time series

implies a fixed network structure over time, essentially

representing a trait rather than a state. While this assumption

holds value for exploring individual differences, it becomes
Frontiers in Psychiatry 03
problematic when investigating within-person shifts in affect. This

scenario arises when tracking the development of affective

symptoms, predicting related behaviors, or assessing the impact

of emotion-targeting interventions, such as emotion regulation

strategies or therapy. To address this concern, time-varying VAR

models have been introduced to estimate subject-specific networks

that exhibit variable node connections over time. For instance,

Haslbeck et al. (21) explored methods employing splines and kernel

smoothing to estimate such time-varying networks. However, these

approaches differ from ours in that they explicitly model time

dependence, often through a combination of basic functions,

whereas we implicitly characterize time-varying properties by

allowing network structures to vary over days, as reflected in the

random-effects variance.

Multilevel autoregressive (22–24) and VAR (25) methods

have been investigated to account for the nested nature of EMA

data. However, to our knowledge, their empirical performance in

estimation errors, particularly for data from individual respondents,

remains less explored, though they have been used on real data.

Modeling individual EMA data through multilevel VAR models

could also offer time-varying network structures by allowing mood

interactions to exhibit random effects over days or weeks. However,

this time-dependent structure is not modeled explicitly but rather in

terms of the distributional characteristics of the random effects.

Focused on personalized dynamic networks and through

simulations, we delve deeper into the application of multilevel

methods to EMA data, using an exogenous linear autoregressive

mixed-effects model (LARMEx). This model extends linear mixed-

effects models for normally distributed (continuous) responses,

accounting for dependencies on lagged values as well as

covariates within a unified framework. By employing this

approach, we assume that the underlying data-generating process

for EMA data follows a VAR process. This process is initiated each

morning from an initial value independent of the last measurement

of the previous day and evolves through a day with potentially

slightly different parameters compared with other days. By this

formulation, we introduce day-to-day variations in VAR

coefficients (state) around a subject-specific set of values (trait),

capturing this time-varying property through random effects. The

subject-specific parameters constitute the model’s fixed-effects

component, encapsulating the overall characteristics associated

with an individual, or the trait.
A

M1 M2

B

M1 M2

C

M1 M2

E

FIGURE 1

Network structure. Emotions or moods, M1 and M2, interact with each other leading to meaningful contemporaneous correlation between them.
This is shown by a solid line (A). Solid arrows represent temporal correlations meaning that the value of the source variable (node) at time t has an
impact on the value of its target at time t + 1. Looped arrows indicate autoregressive effects (B). Exogenous factors E act on moods at the same time
in a one-way fashion (C). Blue (dark gray) and red (light gray) arrows indicate activation and suppression, respectively. Different thicknesses stand for
distinct interaction strengths. Dashed arrows indicate contemporaneous effects, while solid ones are indicative of possible temporal causalities.
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This formulation can be adapted to other multilevel designs

whenever there is evidence that pooling data over specific units of

observations is feasible. Assuming network structures remain stable

over weeks, one could consider a week as the unit of observation

and aggregate daily data. Alternatively, if the network structure

remains consistent across the entire respondent population,

allowing individuals to exhibit slightly different parameters could

involve aggregate data from each person. Here, however, we focus

on single-subject analysis, assuming observations are nested in days,

which in turn are nested within respondents.
2 Mathematical model and
parameter estimation

In this section, we present the mathematical formulation of the

network depicted in Figure 1C. We transform the model into a

simple matrix form and outline the estimation procedure by

formulating the maximum likelihood and restricted maximum

likelihood methods. For more details, please refer to Section 2 in

the Supplementary Text.
2.1 Mathematical representation

Linear autoregressive processes are used to model stochastic

dynamical systems of discrete data through difference equations

(26). LARMEx models the mean response as a combination of trait-

like characteristics of an individual as fixed effects and state-like

features varying over days (weeks) as random effects. It is important

to note that existing techniques allow for the estimation of fixed

effects and the variances of random effects, which in turn help

predict the values of random effects. This model structure effectively

accounts for the dependencies in different levels of data, such as

within a day, and at the same time compensates for the lack of

statistical power due to few observations on the first level (27, 28).

Let mi,t =  ½m1,m2�Ti,t be the 2 × 1 vector comprising the two

mood values from the ith measurement day at observation occasion

t =  1, 2,…, ni. Here, ni corresponds to the number of observations

per day, and T denotes the transpose of a matrix. Importantly, ni
might differ for every i despite the fact that it is normally planned to

collect the same amount of data each day.

Assuming that a collection of external factors, the node E with

measurements ei,t, influences mood nodes and its effect could vary

over days, the network in Figure 1B could be modeled as a LARMEx

model,

mi,t = Bar
i mi,t−1 + Be

i ei,t + Bc
i + ϵi,t : (1)

In this formulation, Bar
i = bar + bari are 2 × 2 matrices of auto-

and cross-lagged regression coefficients; Be
i = be + bei could be

considered as a measure of contemporaneous reactivity to

external events in the long run and short periods of time, like

days; and Bc
i = bc + bci are 2 × 1 vectors of constant terms

corresponding to the two moods. Every coefficient matrix and

constant term is a sum of fixed- and random-effects terms
Frontiers in Psychiatry 04
representing the subject-specific, b, and day-specific, bi,

components. A white noise element, ϵi,t , accounts for all the

uncertainties due to unknown factors, but not measurement

errors. Treating the measurement errors adds another layer of

complexity to the model and, hence, is avoided here for the sake

of simplicity.

The random effects are assumed to be normally distributed with

the mean zero and a certain variance–covariance, b ∼ N(0,G).

Different structures of G are used to account for possible

scenarios representing the dependencies among random effects.

We restrict ourselves to a compound symmetric (CS) type where all

random effects share the same variance, the diagonal elements of G,

and the same covariance, off-diagonal terms. Furthermore,

autoregressive and exogenous components are assumed to be

independent. For more structures, we refer the reader to

Funatogawa and Funatogawa (28) and references therein.

The selection of a diagonal form for ϵi,t primarily stems from

the limited number of daily observations (29), as well as ensuring

parameter identifiability. However, the total noise in the system

depends also on the covariance matrix of the random effects, G, in

Equation 4. In practice, G is not constrained, allowing for the

potential occurrence of contemporaneous correlations between

different mood variables, which is frequently observed in

empirical EMA data (13).
2.2 Matrix form

To simplify the estimation process, we transform the

autoregressive mixed-effects model into a more general format,

treating lagged variables as covariates and separating fixed and

random effects (30, 31). For any time point t within each day i, we

have:

mi,t = (bar + bari )mi,t−1 + (be + bei )ei,t + (b c + bci ) + ϵi,t , (2)

which takes the following matrix form with separated fixed and

random effects.

m1

m2

" #
i,t

=
b11 b12
b21 b22

" #
m1

m2

" #
i,t−1

+
be
1

be
2

" #
et +

bc
1

bc
2

" #
+

b11 b12

b21 b22

" #
m1

m2

" #
i,t−1

+
be1

be2

" #
i

et +
bc1

bc2

" #
i

+
ϵ1
ϵ2

" #
i : t

:

Considering that this equation holds true for each time point,

we stack the mood values, parameters, and covariates related to the

day i by defining:

Y i = ½m1,1 m1,2 … m1,ni m2,1 m2,2 … m2,ni �Ti ,
and

b = ½ b11 b12 b21 b22 be
1 be

2 bc
1 bc

2 �T :
Consequently, by defining bi and ϵi in a similar way, the matrix

representation for each day becomes

Y i = Xib + Zibi + ϵi : (3)
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Here, Xi and Zi are design matrices for fixed and random effects.

In general, these matrices can have different forms depending on

the included terms. In our full model, they are equal and have the

following form (28):

X i = Zi =

m1,0 m2,0 0 0 e1 0 1 0

m1,1 m2,1 0 0 e2 0 1 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

m1,n1−1 m2,n1−1 0 0 eni 0 1 0

0 0 m1,0 m2,0 0 e1 0 1

0 0 m1,1 m2,1 0 e2 0 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 m1,n1−1 m2,n1−1 0 eni 0 1

2
666666666666666664

3
777777777777777775
i

In its general form, Equation 3 for kmoods, Yi is a k(ni − 1) × 1

vector of mood values; b is a (k2 + 2k) × 1 vector of fixed effects; bi is
a (k2 + 2k) × 1 vector of random effects; and Xi and Zi are k(ni − 1) ×

(k2 + 2k) design matrices. The random effects bi and residuals ϵi are
assumed to be independent with a multivariate normal distribution

of

bi

ϵi

" #
∼ MVN

0

0

" #
,

G 0

0 Si

" # !
2.3 Maximum likelihood

In classic linear models, the expected value of the response

variable is parametrized by fixed effects. Typically, the only source

of variation comes from error terms which are usually considered

uncorrelated and independently distributed. This distribution gives

rise to the likelihood function, and the estimation is carried out by

maximizing it over the parameters. However, mixed-effects models

address the correlation structure of the response variable by

including random effects, which introduces further sources of

variability in addition to the error terms.

Assuming the normality of both errors and random effects,

mixed-effects models extend the ordinary least squares method for

parameter estimation (30, 32, 33). This method has also been

expanded to accommodate autoregressive terms through fixed

effects (28), to account for the overall trend in data, and random

effects to address further nested characteristics (22, 25).

Any inference in this context, Equation 3, involves the

estimation of fixed effects, b, and covariance components, G, and

Si. Additionally, random effects are predicted, since bi are

considered as random variables and not parameters. The

underlying assumptions about the distribution of residuals and

random effects impose certain restrictions on the observations,

leading to the likelihood of data given the parameters and

forming the basis for likelihood-based estimation methods. The

observations in this formulation follow a marginal distribution

given by

Y i ∼ MVN(Xib ,ZiGZ
T
i + Si) : (4)
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Assuming Vi = ZiGZ
T
i + Si, the likelihood function for a single

day reads as:

p(Y i b ,Vi) = 2p−n
2

�� ��V j−1
2exp  −

1
2
(Y i − Xib)

TV−1(Y i − X ib)
� �

:

In practice, data from all days are pooled, and −2 × ln p is used

to make the estimation procedure feasible,

l(b , q) =o
N

i=1
ln  Vij j +o

N

i=1
(Y i − Xib)

TV(q)−1(Y i − Xib),

in which constants are excluded. The covariance matrix is typically

parameterized and factorized as Vi = Vi(q) = LTL, using an upper

triangular matrix L to ensure that the estimated covariance is a

positive definite matrix, overcoming computational difficulties

associated with determinants and inverses.

If the covariance is known, the generalized least square

estimator of b that minimizes l(b , q) is given by

b̂ = o
N

i=1
XT
i V

−1
i X i

" #−1
o
N

i=1
XT
i V

−1
i bi,

in which a generalized inverse is used if the sum is not invertible.

This estimator is asymptotically unbiased, i.e., E(b̂ )  = b , and
follows a multivariate normal distribution if the response variable

has a conditional normal distribution (27), with

Cov(b̂ ) = oN
i=1X

T
i V

−1
i Xi

� �−1
:

The estimation of b is substituted in the likelihood function, and
the result is maximized with respect to Vi(q) to derive the

covariance estimator. This procedure typically employs iterative

methods such as Newton–Raphson or expectation–maximization

algorithms (34). It is well known that the maximum likelihood

estimators can exhibit biases in finite samples. Therefore, restricted

maximum likelihood is used to correct for the loss of degrees of

freedom resulting from the estimation of b.
Upon estimating these parameters, the prediction of random

effects follows from their conditional mean given the responses Yi,

E(bijY i) = GZT
i V

−1
i (Y i − Xib̂ ),

This gives rise to the so-called best linear unbiased predictor

(BLUP) (33, 35),

b̂ i = ĜZT
i V̂

−1
i (Y i − Xib̂ ) : (5)
3 Simulations

In this section, we utilize simulations to explore the effectiveness

and feasibility of our approach by assuming that the underlying true

data-generating process is the mixed-effects system outlined in

Equation 1. We generate synthetic data by setting predetermined

fixed effects and the variance of random effects. By varying noise

intensities, the number of observation days, and compliance rates,

we cover a range of scenarios commonly encountered in real-world

datasets. The known parameters are called “true” values, while
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fitting LARMEx to these datasets using the Julia (36) package

MixedModels.jl (37) provides the “estimated” parameters.

MixedModels.jl mirrors the functionality of the lme4 package in

R, harnessing the substantial speed advantages afforded by the Julia

programming language. In each instance, our simulations involve

generating realizations from a mood network consisting of two

moods and an external factor node. The primary objective is to

assess how well the true parameters are recovered in this context.
3.1 Data-generating process

To establish a foundation for our simulations, we define the

fixed effects, including the matrix of autoregressive coefficients, the

vector of coefficients for exogenous variables, and constant terms in

Equation 2 as follows. For a more comprehensive understanding,

kindly refer to the Supplemental Material for detailed information.

bar =
0:3 −0:3

−0:3 0:3

" #
, be =

0:3

−0:3

" #
, bc =

0

0

" #
: (6)

This set of parameters defines a moderately connected mood

network of a hypothetical person, assumed to be of a trait-like

nature that is preserved over long periods, like weeks or months.

The effects of the exogenous factors, be, are set at the same order of

magnitude as the autoregressive coefficients. To maintain the

trajectories mostly within the range of [−1,1], the initial values

and the intensity of external factors are uniformly chosen from

[−0.5,0.5] and [0,0.5], respectively. Random effects are chosen to be

independent, following a normal distribution with a mean zero.

To ensure the stability of the autoregressive processes, the

elements of bar + bari must satisfy the criterion that all the

eigenvalues are smaller than one. This is achieved by generating a

large sample compared with the number of days, 20,000 in this case,

and then retaining all sets for which the eigenvalues fulfill the stability

condition. However, this step can become challenging, as it might

lead to deviations from a normal distribution in the resulting random

effects. This becomes even more demanding when we impose

theoretical constraints on the network structure, such as positive

self-loops and negative values for edges between positive and negative

moods, and leaves a narrow range for random effects ending up in

low variances. Therefore, we relax the latter requirement and allow

some edges in the networks to take values of the opposite sign than

seen in Figure 1C. The distributions of the sum of fixed and random

effects are shown in Figure 2, for which the covariance of random

effects at the population level is an 8 × 8 diagonal matrix, G = 0.03 ×

I8×8, where I denotes the identity matrix.

With these considerations, in 78% of the cases, the structure of

the network is preserved as Figure 1C, i.e., with the same sign of

edges as illustrated by different colors. The noise is assumed to be of

the form s2I where we run the simulations for low, moderate, and

high noise intensities characterized by the variance of noise and the

signal-to-noise ratio (SNR) as (s2,SNR) ∈ {(0.01,12),(0.02,6),

(0.06,2)}. These values are valid for the chosen G which remains

consistent throughout our analysis. It is important to note that

higher SNR values can be achieved by increasing the variance of
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random effects. In each case, we calculate SNR as the ratio of the

variance of the noiseless signal to that of the noise (38). That is, for

Equation 1,

SNR =
Var(Bar

i mi + Be
i ei + Bc

i )
s 2 :

We refrain from transforming the SNR into decibel (dB) units,

common in signal processing, because of its unfamiliarity in the

field. More details are provided in Section 4, Supplementary Text.

This work is part of a study involving the collection of EMA

data from 250 subjects, 10 observations per day over the first weeks

(6 days) of six consecutive months (39). Therefore, we generate data

while varying the number of days, N, from the set {4, 6,…, 36} to

assess the impact of additional EMA days on parameter estimation.

The mean number of longitudinal observations per day, �n =

oN
i=1ni=N has a lower bound to ensure identifiable random

effects. Given a network of k moods and one node of external

factors, one has to predict a total number of (k2 + 2k)N random

effects while there are koN
i=1(ni − 1) observations. A rule-of-thumb

identifiability criterion for mixed-effects models is that the number

of observations must surpass the number of random effects (33).

Consequently, the number of moods in the aforementioned

network should be less than n  −  2. Therefore, for an empirical

EMA study with at most 10 observations per day and a presumed

compliance rate of 70%, this method would be suitable for small

mood networks up to four or five nodes.
3.2 Parameter recovery

To assess the effectiveness of parameter recovery, we employ the

LARMEx model on datasets generated with varying combinations

of the previously mentioned parameters.

We construct bootstrap confidence intervals, which are used to

quantify the sampling distribution of the estimates. For the fixed

effects detailed in Equation 6, we generate random effects for 200

simulated days. Subsequently, for any given n number of days,

parameters are sampled from this set. Throughout each iteration,

we create independent datasets for the three noise intensities

mentioned earlier, repeating this process 1,000 times. The

parameter estimation is carried out using the MixedModels.jl

package in Julia. The resulting confidence intervals for both fixed

effects (Figure 3) and variances of random effects (Figure 4) are

presented. For clarity, we display the results for the number of days

from the set 4, 8,…, 36.

Upon visual inspection, it becomes evident that by adding more

days of observations, the confidence intervals become narrower and

their widths decrease for lower noise intensities. It is worth noting

that, for these levels of SNR, they do not differ drastically. It is also

noteworthy that parameters corresponding to the exogenous

variable are less precise compared with others. Furthermore, this

methodology can be harnessed for conducting power analysis by

setting an appropriate null hypothesis, e.g., in terms of a cutoff for a

certain parameter. Then, the percent of the truly rejected null

hypothesis, when it is indeed false, would give an approximate

power (40, 41).
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We compute the relative estimation error (REE) in the

aforementioned cases as dq =   q̂ − q
�� ��= qj j in which q and q̂

represent the true and estimated parameters, respectively. To

avoid computational difficulties, only random effects larger than

0.02 are considered in these analyses. We also report only the

coefficients present in a network representation, i.e., bar, be, bar, and
be. This analysis underscores that in a mixed-effects model the
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prediction of random effects is not as reliable as the estimation of

fixed effects in terms of being able to recover the parameters varying

over days in our case. The reason is that only the variance of

random effects is present in the likelihood function and individual

values are not estimated directly. Notably, software outputs such as

those from packages like MixedModels.jl in Julia or lme4 in R hold

only for the expected values, Equation 5, and should not be
FIGURE 3

Fixed effects: bootstrap. Estimations of fixed effects for different levels of noise intensity and number of days. The number of observations per day is
10. True values of parameters are highlighted in bold on the x-axes. For every number of days on the vertical axes, three lines are drawn
representing the bootstrap 95% confidence intervals around the median depicted by cross signs. Every line is color- and style-coded to demonstrate
one noise intensity. Data are generated for one simulated subject, 1,000 times repeatedly, with (s2, SNR) ∈ {(0.01,12),(0.02,6),(0.06,2)}, and
estimations are performed using the MixedModels.jl package in Julia.
FIGURE 2

Parameter values. Distributions of the parameters, B⋯
⋯ = b ··· + b⋯

⋯, and sum of fixed and random effects for 200 simulated days. Each boxplot shows
the interquartile range (IQR) notched over the median and whiskers extending 1.5 × IQR beyond the first and third quartiles. Fixed effects are shown
by dark points.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1213863
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Pooseh et al. 10.3389/fpsyt.2024.1213863
considered as singular parameter estimations. Figure 5 illustrates

that the median REE for random effects approaches approximately

40% as the number of days increases, with minimal change after

approximately 20 days. Conversely, the error for fixed effects

remains below 20%, implying that with a reasonable dataset,

improved fixed-effects estimates can be anticipated. Nonetheless,

this outcome remains suboptimal. Notably, the two dashed lines in

Figure 5 represent exogenous factor coefficients, which exhibit

comparably poorer estimates than others (refer to Figures 3, 4).

Missing values are a common occurrence in EMA data. For our

study, we consider the presence of randomly missing values, leading

to the omission of 10%, 20%, and 30% of observations. Employing

the same methodology as earlier, we replicate the analysis for a two-

variable mood network. We calculate REEs for varying numbers of

days and the three distinct levels of missing values. The collective

average of these REE values is succinctly presented in Figure 6. This

insight reveals a potentially non-linear influence of missing data,

which may be attributed to the practice of listwise deletion, in

conjunction with the restriction to consecutively recorded data

points. As compliance rates decline, the probability of

consecutively recorded data instances experiences a significant
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decrease. This underscores the necessity of considering

imputation techniques depending on the severity of missing values.

To assess the scalability of this method in higher dimensions, we

simulate a network comprising four interacting nodes—two

positive and two negative valences—along with an external factor

influencing all mood variables. Figure 7 presents the REEs for this

simulation and compares them to those in Figure 5, averaging REEs

across all fixed and random effects. Notably, for a two-fold increase

in the number of mood variables, the REEs for fixed effects almost

doubled. This observation suggests that, for smaller networks,

employing the full model might be more appropriate. However,

for larger networks, it would be advisable to opt for reduced models

containing a smaller number of random effects. Additionally,

dimension reduction techniques could be applied to merge nodes

that measure similar psychological constructs.
4 Conclusion

We studied an extension of linear mixed-effects models by

adding an autoregressive component to model the network
FIGURE 4

Variance of random effects: bootstrap. Estimations of the variance of random effects for different levels of noise intensity and number of days. The

number of observations per day is 10. True values of parameters are highlighted in bold on the x-axes,
ffiffiffiffiffiffiffiffiffiffi
0:03

p
  ≈  0:17. For every number of days on

the vertical axes, three lines are drawn representing the bootstrap 95% confidence intervals around the median depicted by cross signs. Every line is
color- and style-coded to demonstrate one noise intensity. Data are generated for one simulated subject, 1,000 times repeatedly, with (s2, SNR) ∈
{(0.01,12),(0.02,6),(0.06,2)}, and estimations are performed using the MixedModels.jl package in Julia.
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representation of affective state which is suitable to model intensive

longitudinal data, the so-called EMA acquired by experience

sampling methods. Specifically, we assumed the simplest possible

network of two causally interacting state nodes under the influence

of external factors represented by a node acting on both states in a

contemporaneous fashion. We detailed the mathematical

formulation of this representation and discussed its components

by generating data in a step-by-step manner. Subsequently, we

transformed it to a classic linear mixed-effects form and

summarized the foundations of parameter estimation by

likelihood function.

This extension has been previously introduced as a multilevel

model with daily observations nested in days, days nested in

respondents, and respondents nested in a sample of subjects (24,

25). Given that our objective was constructing individualized

networks, we employed a two-level model with daily observations

nested in days for a specific respondent and estimated subject-

specific mood networks that may possess a time-varying structure

depending on the variance of random effects. Using simulated data,
Frontiers in Psychiatry 09
we constructed bootstrap confidence intervals for the fixed-effect

parameters, offering insight into the behavior of the model as more

days are added to the observation. We also demonstrated how

estimation precision is affected when dealing with a missing

completely at random scenario as compliance rates decrease. In

this analysis, missing values were addressed through listwise

deletion. We argued that random effects are not directly

estimated within this framework and highlighted the difference

between the relative estimation errors for fixed and random effects.

This difference revealed that, within a mixed-effects model, random

effects are less precisely identified, with marginal gains in precision

as the number of observations increases. Therefore, in order to infer

individual networks from EMA, one should build a two-level model

with daily observations nested in days for a single respondent. Our

results, indicating approximately double relative estimation errors

for a network with four nodes compared with one with two nodes,

suggest cautious application of this approach in higher dimensions.

While benefiting from the capabilities of mixed effects and

autoregressive models, it is crucial to acknowledge a notable
FIGURE 6

Relative errors: bootstrap with missing values. Lines represent the median relative estimation errors (REEs) averaged over fixed-effect parameters of a
network with two mood nodes and one node of external factors in the presence of missing values at random. Data are generated for one simulated
subject, 1,000 times repeatedly, with (s2, SNR) = (0.02, 6). We remove 10%, 20%, and 30% of the observations randomly for each case, and
estimations are performed using the MixedModels.jl package in Julia.
FIGURE 5

Relative errors: bootstrap. Solid and dashed lines represent the mean relative estimation errors for the six parameters of a network as in Figure 1C.
Data are generated for one simulated subject, 1,000 times repeatedly, with (s2, SNR) = (0.02, 6), and estimations are performed using the
MixedModels.jl package in Julia. The two lines with higher relative errors correspond to the exogenous factors.
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limitation of this approach. Linear autoregressive models are unable

to reveal complex characteristics of a dynamical system, such as

bistable points, crucial to studying transitions between different

stable states, like longer-term periods of fixed moods or shifts

between states of health and mental disorder (42, 43). Moreover,

we presumed that networks have time-varying characteristics, but

unlike Haslbeck et al. (21), the time dependence was not formulated

explicitly, opting instead to capture it indirectly via the variance of

random effects. Nonetheless, it is reasonable to assume that the

interactions or the impact of external forces changes over time in a

specific way. A simple time dependency might be achieved by

adding slopes to the model which capture the linear time trend of

the corresponding parameter, ½b… + b…�slo. Another more

sophisticated approach could involve letting parameters follow a

random walk, qt = qt−1 + ht , or making the variance–covariance

structures time-dependent,ot = FtDtF
0
t . The Markov chain Monte

Carlo or state-space techniques are usually used for estimating such

models (44, 45).

In a more realistic setting, one could also assume that external

forces act not only on states but also on their interactions in an

autoregressive way. This assumption results in having arrows

pointing to some edges in the network representation. An

additional equation must then be added to Equation 1, leading to

a non-linear system,

Bar
i,t = aar

i B
ar
i,t−1 + a e

i ei,t + a c
i + hi,t ,

in which hi are assumed to be white noises and mutually

uncorrelated at all leads and lags to other sources of variability in

the model. This formulation implies time-varying autoregressive

coefficients. However, these methods as discussed in the literature

require long time series to achieve acceptable results, and the

feasibility of mixed-effects modeling requires further exploration.
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In a broader context, it would be valuable to extend this

research to encompass more comprehensive real-world scenarios

and investigate the model’s performance under various conditions.

This could involve exploring the impact of different network

structures, the presence of external influences on interactions

between mood nodes, and the incorporation of more complex

temporal dependencies. Additionally, the application of this

approach to actual EMA datasets would provide insights into the

method’s practicality and effectiveness in real-world contexts.

We primarily considered one aspect of study design relating to

sample size, varying the number of observations per subject by

adding more days. We also showed how sensitive such a model

might be to the intensity of noise in data. In summary, while

autoregressive mixed-effects models offer a representation for

affective networks, estimating individualized parameters remains a

challenge within common longitudinal designs, where obtaining the

required number of observations per individual for acceptable

accuracy might be unattainable.
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