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Abstract

Ordinary differential equations are frequently employed for mathematical modeling of bio-

logical systems. The identification of mechanisms that are specific to certain cell types is

crucial for building useful models and to gain insights into the underlying biological pro-

cesses. Regularization techniques have been proposed and applied to identify mechanisms

specific to two cell types, e.g., healthy and cancer cells, including the LASSO (least absolute

shrinkage and selection operator). However, when analyzing more than two cell types,

these approaches are not consistent, and require the selection of a reference cell type,

which can affect the results. To make the regularization approach applicable to identifying

cell-type specific mechanisms in any number of cell types, we propose to incorporate the

clustered LASSO into the framework of ordinary differential equation modeling by penalizing

the pairwise differences of the logarithmized fold-change parameters encoding a specific

mechanism in different cell types. The symmetry introduced by this approach renders the

results independent of the reference cell type. We discuss the necessary adaptations of

state-of-the-art numerical optimization techniques and the process of model selection for

this method. We assess the performance with realistic biological models and synthetic data,

and demonstrate that it outperforms existing approaches. Finally, we also exemplify its

application to published biological models including experimental data, and link the results

to independent biological measurements.

Author summary

Mathematical models enable insights into biological systems beyond what is possible in

the wet lab alone. However, constructing useful models can be challenging, since they

both need a certain amount of complexity to adequately describe real-world observations,

and simultaneously enough simplicity to enable understanding of these observations and

precise predictions. Regularization techniques were suggested to tackle this challenge,

especially when building models that describe two different types of cells, such as healthy

and cancer cells. Typically, both cell types have a large portion of biological mechanisms

in common, and the task is to identify the relevant differences that need to be included

into the model.
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For more than two types of cells, the existing approaches are not readily applicable,

because they require defining one of the cell types as reference, which potentially influ-

ences the results. In this work, we present a regularization method that is independent

from the choice of a reference. We demonstrate its working principle and compare its per-

formance to existing approaches. Since we implemented this method in a freely available

software package, it is accessible to a broad range of researchers and will facilitate the con-

struction of useful mathematical models for multiple types of cells.

I. Introduction

Mechanistic modeling by means of ordinary differential equations (ODEs) has become a

wide-spread method to understand and discover systemic behavior and dynamic information

processing of complex biological systems. Along with the development of experimental tech-

niques such as quantitative high-throughput measurements, these mathematical models tend

to become more and more complex with hundreds of parameters that have to be calibrated to

match experimental data. This manifests in (i) more elaborate biological questions that can

only be addressed by taking into account more biological components and corresponding

mechanisms [1–3], (ii) accounting for broad ranges of input doses and time scales to enlighten

the full dynamical information [4–7], but also (iii) the need of such models to be valid across

multiple biological systems, e.g., different cell types, model organisms, or patients [8], which

roughly multiplies the number of involved model parameters by the number of systems.

In the setting of n cell types, a typical assumption is that their dynamics can be described by

ODE systems with an identical structure but potentially different parameter values, e.g.,

accounting for mutations [9] or copy number variations [10] between different cell types. The

challenge is then to cluster the cell types into groups that share the same value for a certain

parameter which reduces the overall number of parameters. From the opposite perspective,

the task of balancing model complexity for ODE models of n related biological systems, e.g.,

cell types, can also be understood as the task of determining which of the involved parameters

need to be specific to the cell type to, both, explain experimental observations and keeping

model complexity as low as possible. This parameter selection is related to the general topic of

feature selection or model discrimination [11], and was recently solved for the case n = 2: [12]

transferred the concept of the LASSO (least absolute shrinkage and selection operator) for

regression [13] to the field of parameter estimation in ODE models and employed an optimi-

zation strategy outlined in [14]. They adaptedMatlab’s trust-region optimizer lsqnonlin to be

capable of handling the discontinuous derivative occurring in the involved L1-norm at zero.

Following on this study, [15] compared different regularization terms that include sparsity in

the system with the interesting result of the L0.8-penalization outperforming both the classical

L1 approach and the elastic net, i.e., a regularization with a combination of L1 and L2 norms,

with respect to reliability of detecting sparsity and optimization performance.

For the case of n>2 cell types, the methodology of [12] and [15] can also be applied. Since

the regularization term is no longer symmetric with respect to changing the labeling of the cell

types, the choice of the reference cell type potentially influences the result of the regularization.

To resolve this asymmetry, we propose to employ a regularization function that includes pen-

alty terms for differences in fold change parameters between all n(n−1)/2 possible pairs of cell

types. This corresponds to the regularization applied in the clustered LASSO that was pro-

posed for regression modeling [16]. In the context of mechanistic ODE models, it allows, e.g.,

clustering of cell types into groups that share identical parameters, and thereby enables the dis-

covery of any kind of sparsity structure in the set of parameters. When sensible groups of
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parameters can be predefined by including prior knowledge, the grouped LASSO [17] can be

applied. However, in the setting of different healthy or cancer cell-lines, which typically

include recurrent mutations [18], the flexible identification of sparsity enabled by our

approach is essential. Also, it is not necessary to define parameter groups beforehand. An over-

view of the applicability of the different methods is provided in Table 1.

Within this publication, we provide a systematic approach to detect and quantify cell type-

specific parameters and thereby enable a statistically sound reduction of the remaining non-

specific parameters in ODE models. The main goal of inferring cell type-specific and non-spe-

cific parameters is to identify mechanisms that are different between related biological systems

and those that are shared across them. We demonstrate the necessary adaptions to the optimi-

zation algorithm and model selection to incorporate the symmetric regularization function

into the framework of ODE modeling. Finally, we provide an assessment of the performance

of the method we propose, and apply it to biological data.

II. Problem statement

Parameter estimation in dynamical systems

Biochemical pathway models can be formulated as dynamical systems by means of ordinary dif-

ferential equations (ODEs) which are based on a priori knowledge about underlying mechanisms:

_x!ðtÞ ¼ f
!
ð x!ðtÞ; uðtÞ; p!Þ

Such models typically comprise unknown but constant parameters p!, which represent,

e.g., reaction rate constants, or initial conditions of the dynamical system. The biochemical

species are contained in the state vector x!. Experimental perturbations are incorporated

through the input u(t). Maximum likelihood estimation combined with high performance

numerical optimization methods provides a statistically sound and efficient way to infer the

values of parameters from data {y*i,t} with normally distributed errors �i;t � Nð0; si;t2Þ. The

model states are linked to predictions of experiments yi via the observation function:

yiðt; p
!
Þ ¼ gið x

!ðt; p!Þ ; p�!Þ þ �i;t

Model calibration is equivalent to minimization of

w2 p!
� �

:¼
X

i;t

½y∗ i;t � yiðt; p
!
Þ�

2

2si;t
2

; ð1Þ

where all parameters are usually estimated on the logarithmic scale, rendering them strictly

positive.

Multiple cell types as related biological systems

A common application for regularization in systems biology is the identification of cell-type

specific parameters in ODE models [9,12]. In practice, such a model is constructed and

Table 1. Examples of applicability of regularization methods for different parameter subgroup structures.

Description Cell Type 1 (Reference) Cell Type 2 Cell Type 3 Suitable Method
Subgroup including reference 1 1 2 LASSO, Clustered LASSO

No subgroups 1 2 3 Group LASSO, Clustered LASSO

Subgroup excluding reference 1 2 2 Clustered LASSO

https://doi.org/10.1371/journal.pcbi.1010867.t001
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calibrated with the data of only one cell type initially, which we will regard to as the reference

cell type. Typically, one assumes that the other cell types share at least the model structure with

the reference cell type, if not exhibit identical behavior. Therefore, the starting point for model-

ing of the other cell types are copies of the model for the reference cell type, which, however, are

allowed to comprise different parameter values for the different cell types. When a priori knowl-

edge on common parameter values, e.g., the time scale of a protein degradation is available, it is

also possible to allow only a subset of parameters to be specific to the cell types [19].

Let pðjÞi ; j ¼ 1; 2; . . . ; n denote mechanistically equivalent parameters in nmodels for n dif-

ferent cell types. For example, pðjÞi might have one specific value in wild-type cells, and a differ-

ent value in mutated cells. Throughout this paper, we will denote the reference cell type with

j = 1. Consequently, the cell type-specific parameters read pðjÞi ¼ p
ð1Þ

i ~r ðjÞi , where ~r ðjÞi represents

the fold change that relates cell type j to the reference for parameter i, and ~r ð1Þi ¼ 1. On the log-

arithmic scale, the transformation that relates the cell type-specific parameters to those of the

reference cell type reads

log pðjÞi ¼ log pð1Þi þ r
ðjÞ
i ; r

ðjÞ
i ¼ log ~r ðjÞi : ð2Þ

LASSO regularization for the case of n = 2 cell types

In systems biology, a common application of regularization is the identification of shared mecha-

nisms or mutations in a biochemical reaction network across multiple cell types. The term regu-
larization refers to amending the objective function L by an additional function nð r!Þ:

Lð p!; r!; lÞ ¼ w2ð p!; r!Þ þ lnð r!Þ; ð3Þ

where λ is the regularization strength, which is a priori an unknown constant. To find common

mechanisms across multiple cell types, LASSO regularization can be applied with penalization of

deviations from zero of the L1 norm of the logarithmized fold change parameters (Fig 1A; [12]),

i.e.,

nð r!Þ ¼
X

i;j
jrðjÞi j; ð4Þ

which has proven to be useful in the context of (logical) ODE models [9,20–24]. Further, it needs

to be emphasized that in the context of ODE models with log-transformed parameters, the L1

norm has been reported as suboptimal due to the alignment of equal penalization manifolds with

manifolds of equal likelihood induced by the model structure, and employing an Lq pseudonorm

with q = 0.8 was suggested [15].

The challenge of n>2 cell types

When n>1 cell types are analyzed, the problem is not symmetric w.r.t. the choice of the refer-

ence cell type anymore, because by means of Eq (4), only deviations from the reference are

penalized. Deviations between pairs of the n−1 non-reference cell types remain unaffected by

the regularization, i.e., shared mechanisms between cell types that do not include the reference

cannot be detected. Therefore, the result of regularization potentially depends on the a priori
choice of the reference cell type.

Additionally, the objective function value at a given point in parameter space depends on

the choice of the reference cell type. Consider the simple example of three cell types differing

in their values of p at a point in parameter space that corresponds to log p taking the values 0.5,

0.75, and 1, in the cell type 1,2, and 3, respectively. Using cell type 1 or 3 as a reference, the con-

tribution to the objective function at this point is |0.25|q+|0.5|q (Eq 4), while for cell type 2 as a
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reference, it is only 2|0.25|q. Since the regularization is stronger in the former case, it is also

more likely to alter the position of the optimum induced by the data contribution (Eq 3).

Therefore, the endpoint of regularized optimization and also the resulting clusters potentially

depend on the choice of the reference cell type.

III. Methods

Symmetric penalization of fold-changes

The regularization function in Eq (4) induces a dependence on the choice of the reference cell

type, because it only penalizes fold-changes that represent pairwise differences between each

Fig 1. (A) Plots of the regularization function for the standard LASSO approach, i.e., penalization of logarithmized

fold-change parameter values different from zero, and penalization landscapes for the two-dimensional case. (B)

Regularization function for the symmetric penalization of fold-change differences via the clustered LASSO, evaluated

each for the L1 and L0.8 penalizations.

https://doi.org/10.1371/journal.pcbi.1010867.g001
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cell type and the reference cell type. Therefore, we propose to employ the clustered LASSO reg-

ularization regularization function

vð r!Þ ¼
X

i;j<k

jrðjÞi � r
ðkÞ
i j

q
; ð5Þ

taken from [16] and adapted to the setting of differential equation modeling. In this way also

the pairwise differences are penalized and symmetry is reassured. In some sense, this can be

interpreted as iterating over all possible reference cell types and summing up the penalty

terms. In addition, the chosen regularization function (Eq 5) employs Lq penalization to facili-

tate optimization in the setting of ODE models with log-transformed parameters (Fig 1B).

Note, that the penalization introduced by Eq (4) is included here through the terms with j,
k = 1, since ~r ð1Þi ¼ 1, i.e., log rið1Þ ¼ 0 and q = 1. With the proposed regularization function,

clusters of any size within the n cell types that share the same parameter value are promoted,

implying that they for example exhibit the same mutation or are governed by the same

mechanism.

We propose to use the L0.8 pseudonorm also with the clustered LASSO regularization func-

tion, since firstly it was found to be a suitable heuristic for the choice of q in the context of stan-

dard LASSO regularization [15], and secondly our analysis indicates a superior performance

compared to q = 1 (Section IV). In contrast to [16], we employ the same regularization

strength for all penalization terms corresponding to one parameter pi, because the problem is

completely symmetric w.r.t. the choice of the reference cell-line, and hence, penalization of

fold-change parameters and differences of such must be treated equally.

Due to this symmetry, the choice of the reference cell-line has no effect on the outcome of

the regularization procedure. Because defining a reference cell-line is still beneficial for techni-

cal reasons, it will be denoted as the technical reference in the following. For general limitations

of the clustered LASSO, see [16].

Adaptations to the optimization algorithm

Optimization algorithms, such asMatlab’s lsqnonlin, frequently require the objective function

L to be formulated as a sum of squared residuals. In terms of data contribution (Eq 1), this

reads Lð p!; r!; lÞ ¼
P

i res
2
i . In our case of clustered LASSO regularization (Eq 5), an addi-

tional n
2

� �
¼ n n � 1ð Þ=2 residuals need to be considered, analogously to the case of the stan-

dard LASSO [12]:

resm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ljrðjÞi � r
ðkÞ
i j

q
q

The so-called sensitivities sreslm = @resm/@pl represent the rate of change of a residual w.r.t.

a certain parameter, which is a necessary value to be handed over to the optimizer and is

employed during each step of the optimization. Let rðjÞi be the l-th and rðkÞi be the n-th parame-

ter of the model. The sensitivities associated with the regularization residual resm then read:

sreslm ¼ � sresom ¼
q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ljrðjÞi � r
ðkÞ
i j

q� 2

q

sgn rðjÞi � r
ðkÞ
i

� �
for rðjÞi � r

ðkÞ
i 6¼ 0

Optimality criterion in presence of regularized fold-change differences. Without regu-

larization, the process of optimization can be considered complete when r
!
w2ð p!Þ ¼ 0, i.e., the

objective function landscape induced by the data has no slope at the current parameter vector
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p!. When optimizing with the regularization term for symmetric penalization of fold-changes

(Eq 5), this criterion on the level of the individual parameters must be extended to

r
!

p!w
2ð p!; r!Þ ¼ 0 ð6:1Þ and either

½r
!

r!Lð p
!
; r!Þ�l� n ¼ 0 for jrðjÞi � r

ðkÞ
i j > 0 ð6:2Þ or

j½r
!

r!w
2ð p!; r!Þ�l� nj < lj½r

!
nð r!Þ�l� nj for jrðjÞi � r

ðkÞ
i j ¼ 0ð6:3Þ;

where the subscript l-n after denotes the gradient in the direction of el
!� en

!, and en
! being the

unit vector to the n-th parameter axis.

Criterion 6.1 is the extension of the optimality criterion without regularization to an objec-

tive function that also depends on the fold-change parameters r!, for which optimality is

determined by one of the following two criteria: Either the slope of the objective function

induced by the data in the direction of rðjÞi � r
ðkÞ
i , and the slope of the regularization function in

that direction exactly compensate each other at one point in parameter space, which is repre-

sented by criterion 6.2, or, the regularization function outweighs the data contribution in a

point where two fold-change parameters are equal (Criterion 6.3).

The gradient of the regularization function (Eq 5) can be calculated:

½r
!
nð r!Þ�l ¼ qjr

ðjÞ
i � r

ðkÞ
i j

q� 1sgnðrðjÞi � r
ðkÞ
i Þ for r

ðjÞ
i � r

ðkÞ
i 6¼ 0:

For rðjÞi � r
ðkÞ
i ¼ 0, the above expression diverges, which would introduce an optimum

regardless of the data contribution w2ð p!; r!Þ. To prevent optimization from getting stuck at

this spurious optimum, gradients are evaluated not at this singularity, but at � = 10−10 instead,

and all jrðjÞi � r
ðkÞ
i j < � are considered zero [15].

Implementation of the optimality criterion. The implementation of criterion 6.3

requires special attention: The termination of optimization due to arriving in a manifold

where two fold-change parameters are equal and the regularization dominates the total objec-

tive function gradient (Criterion 6.3) can be implemented by manipulation of the sensitivity

matrix such that the next optimization step does not change the value of rðjÞi � r
ðkÞ
i . For stan-

dard LASSO regularization, this can be ensured by setting all sensitivities corresponding to the

involved fold-change parameter to zero [12]. However, for the symmetric penalization of fold-

changes, this approach is not suitable, because it would terminate optimization prematurely: If

at any point during optimization, the case rðjÞi � r
ðkÞ
i ¼ 0; rðjÞi 6¼ 0 occurs, the next step would

not change the values of either rðjÞi or rðkÞi , which is also true for all subsequent steps. Therefore,

it would not be possible to ever reach the point rðjÞi ¼ r
ðkÞ
i ¼ 0, which should be the ultimate

optimization endpoint for λ!1.

We propose to employ an alternative method that ensures that optimization is terminated

correctly in the setting of symmetric penalization of fold-changes. While it is a necessary con-

dition to set the sensitivities corresponding to the regularization residual and rðjÞi and rðkÞi to the

same value, this value does not have to be zero. Instead, we propose to use the mean of sensitiv-

ities corresponding to rðjÞi and rðkÞi for every residual, i.e.,

sreslm ! meanðsreslm; sresnmÞ 8m and

sresnm ! meanðsreslm; sresnmÞ 8m;
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which avoids zero-valued sensitivities wherever possible, and employs information from both

individual sensitivities. We compared the performance to using the maximum of absolute val-

ues of sensitivities and found that using the mean resulted in better performance (S1 Text).

On the other hand, if at any point during optimization, criterion 6.3 is not fulfilled any-

more, because the data contribution to the gradient indicates a step away from jrðjÞi � r
ðkÞ
i j ¼ 0,

the sensitivity corresponding to the respective regularization residual resm* is set to zero, to

allow the exploration of alternative optima:

sreslm∗ ! 0

sresnm∗ ! 0

Optimization step truncation. Due to the discontinuity in the derivative of the Lq regu-

larization terms at sign-changes of the fold-change parameters, optimization step truncation

was suggested by [12] to enable efficient optimization. In the setting of symmetric penalization

of fold-changes, we truncate optimization steps to prevent sign changes also in all rðjÞi � r
ðkÞ
i . If

such a sign change would occur, we make a step directly to rðjÞi � r
ðkÞ
i ¼ 0 instead, where the

optimality criterion discussed above is evaluated before a subsequent step is performed.

Selection of the parsimonious model

Regularized optimization promotes sparsity, because rðjÞi � r
ðkÞ
i ¼ 0 minimizes the penalty

induced by the regularization function (Eq 5) and corresponds to the effect encoded by param-

eter pi to be identical between cell type j and k, which leads to a reduced number of degrees of

freedom in the model. On the other hand, the data contribution to the objective function will

almost over-fit finite amounts of data to maximize the goodness-of-fit and promote

rðjÞi � r
ðkÞ
i 6¼ 0. Depending on the regularization strength λ, both the data and the regularization

contribution to the objective function (Eq 3) determine the optimal value for λ. Finding a

value for the regularization strength that balances model parsimony with goodness-of-fit is

therefore crucial for using regularization to construct useful mathematical models.

A two-step model selection approach was proposed to identify the optimal regularization

strength λ* [12]. First, optimization of the regularized objective function is performed for a

discrete set of regularization strengths ranging usually over several orders of magnitude. With

the model structure constrained to the clusters rðjÞi � r
ðkÞ
i ¼ 0 identified in the first step, the

objective function is then optimized a second time without regularization for each λ, to obtain

unbiased parameter estimates. Finally, for each λ, a statistical test, e.g., a likelihood ratio test, is

performed w.r.t the unregularized objective function Lð p!; r!; l ¼ 0Þ. The optimal regulariza-

tion strength is then given by the largest value for which the constrained model is not rejected

to be consistent with the data by the statistical test.

To evaluate the statistical test, usually the number of degrees of freedom in the two alterna-

tive models must be taken into account. For the standard LASSO regularization, these are the

number of fitted parameters minus the number of fold-change parameters that are equal to

zero. For the symmetric penalization of fold-changes applied here, it is important to correctly

take into account the case rðjÞi � r
ðkÞ
i ¼ 0. This can occur for rðjÞi 6¼ 0 and rðkÞi 6¼ 0, which corre-

sponds to reduction in the number of degrees of freedom by one, or alternatively, when

rðjÞi ¼ r
ðkÞ
i ¼ 0. When counting the number of fold-changes and differences of fold-changes

that are equal to zero, the latter case should reduce the number of degrees of freedom by two

PLOS COMPUTATIONAL BIOLOGY Uncovering specific mechanisms across cell types in dynamical models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010867 September 13, 2023 8 / 18

https://doi.org/10.1371/journal.pcbi.1010867


only, i.e., the number of degrees of freedom is given by

ml ¼ #rð1Þi � #ðrð1Þi ¼ 0Þ
l
� #ðrðjÞi � r

ðkÞ
i ¼ 0&rðjÞi 6¼ 0Þ

l
:

In the following, we use a likelihood ratio test with α = 0.05, which follows the work of

Steiert et al. The test statistic then reads

DðlÞ ¼ Lð p!; r!; lÞ � Lð p!; r!; l ¼ 0Þ;

which, according to Wilks’ theorem [25], is distributed as a chi-squared distribution withmλ

degrees of freedom.

IV. Discussion

We implemented routines for the LASSO regularization with symmetric penalization of fold-

changes into the open-source modeling environment for dynamical systems, Data2Dynamics

[26]. It also includes routines for the standard LASSO regularization [12], to which we com-

pare our method. Our implementation is applicable to all classes of models and data that can

be implemented into Data2Dynamics.

Application to a toy model with simulated data

Model description. To showcase our method of symmetric penalization of fold-changes,

we apply it to the following toy model that depicts the exponential decay of a species x with the

rate constant p (Fig 2A):

_xðtÞ ¼ � pxðtÞ:

For simplification, we assumed x(t = 0) = 1 for the initial concentration and a direct obser-

vation of the state x, i.e., g(x(t),p) = x(t), such that p is the only remaining free parameter. As a

ground truth, we chose three cell types with a value for log p of -1.5 for cell type 1, -1.3 for cell

type 2 and -1.2 for cell type 3 (Fig 2B), translating to the fold change parameters being r(2) =

0.2, r(3) = 0.3. We simulated data simulated with normally distributed experimental errors with

log σt = -1.3 (Fig 2C). The parameter values were chosen such that p has similar values in cell

type 2 and 3, which are both clearly different from the value in cell type 1, and can be thought

of as a common mutation in cell types 2 and 3. For illustrative purposes, (2) and (3) were chosen

to differ slightly.

Approach. Next, the toy model was fitted to the simulated data with the aim of retrieving

the true parameter values stated above. We compared the application of three different regu-

larization approaches: (i) Standard LASSO regularization, (ii) the proposed symmetric penali-

zation of fold-changes with the L0.8 pseudonorm, and (iii) with an L1 norm instead. Each

scenario was implemented with cell type 1 as the technical reference to be able to compare the

results. For reasons of simplicity, we assume the true value of p in the technical reference cell

type is known, so that the resulting parameter space has only two dimensions.

For five values of λ, the objective function was shown in the r(2)−r(3)-plane together with the

respective optimization endpoints after each step of increasing λ (Fig 2D). Depending on the

regularization strength λ, the total objective function changes from being dominated by the

data through χ2, to mainly depicting the regularization function nð r!Þ (Eq 3). Note that in this

visualization of the optimization path, each point on the diagonal r(2)−r(3) = 0 corresponds to a

common mutation in cell types 2 and 3 as used for simulation, apart from the origin r(2) = r(3)

= 0 where all three cell types would comprise the same parameter value.
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Results. It can be observed that independent of the regularization approach, for low regu-

larization strengths, the optimization end points are close to but not exactly on the diagonal

r(2)−r(3) = 0, indicating that the model fit overly adjusts to the specific data realization. Note

Fig 2. (A) Schematic representation of the model structure. Each arrow represents a degradation reaction in one of

the three cell types. (B) Model parameter values used for simulation, i.e., the kinetic rate constants and initial

concentrations used in the three cell types. (C) A typical data realization (means and error bars) with un-regularized

model fits (lines). (D) Objective function landscapes with the regularized best-fit parameter vector (red dot) for

different regularization strengths λ. Square brackets indicate a significant decrease in likelihood in terms of a

likelihood ratio test.

https://doi.org/10.1371/journal.pcbi.1010867.g002
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that the values of the parameters cannot be directly compared with their true values, since they

are biased through the regularization.

For the standard LASSO regularization, the total objective function changes towards a

sloped surface with a gradient pointing towards the coordinate origin (Fig 2D, left panel). Con-

sequently, even though starting out closely, optimization end points only reach the diagonal at

the origin where r(2) = r(3) = 0. This indicates that with this regularization approach, only the

outcome of all cell types being equal can be found, which, however, is to be rejected by the like-

lihood ratio test. Therefore, with standard LASSO regularization, the parsimonious model rep-

resents different mutations in cell type 2 and 3.

Regularization with symmetric penalization of fold-changes leads to a different result: Due

to the L0.8 pseudonorm of the differences between the fold-change parameters, the additional

gradient induced by the regularization function implies a curved path towards the diagonal

r(2)−r(3) = 0 (Fig 2D, right panel). Therefore, in contrast to the standard LASSO regularization,

the equal mutation in cell types 2 and 3 is discovered at λ = 32, before ultimately the optimiza-

tion end point arrives at the coordinate origin. The likelihood ratio test correctly identifies the

former option as the optimal parsimonious model in agreement with the model used to simu-

late the data.

When employing the L1 norm instead (S1 Fig), the additional gradient induced by the regu-

larization function also implies a path towards the diagonal r(2)−r(3) = 0, but it is not curved as

for the L0.8 pseudonorm and therefore longer. This renders the use of the L1 norm less efficient

for identifying common mutations between cell types. In the presented example, the optimiza-

tion end point reaches the diagonal not until larger regularization strength of λ = 140.

Application to a biological model with simulated data

Model description. To systematically assess the performance of the symmetric penaliza-

tion of fold-changes also in a realistic setting, we employ the model of [27] for information

processing at the erythropoietin (Epo) receptor, where a mathematical model was established

for Epo-receptor dynamics upon ligand binding and calibrated with experimental data, includ-

ing time-resolved dose-response measurements. This model, which is part of the collection of

benchmark models for dynamical modeling of intracellular processes [28], includes six bio-

chemical species, four observables with 85 data points and 16 parameters in total (Fig 3A).

Approach. We simulated data in the same configuration as the actual biological data, i.e.,

the same observables, time points/doses, measurement errors as follows: For the technical ref-

erence cell type, we employed the best fit parameters of the original publication. We simulated

100 data sets in three additional cell types (Fig 3B) while varying three of the model parame-

ters, which depicts possible mutations (Fig 3C). We applied regularization with symmetric

penalization of fold-changes to all 100 data sets to find common mutations in the five cell

types related to the parameters listed in Fig 3C. We fixed the rate constant kex and the offset

parameter to 10−5 because they were practically non-identifiable with the experimental data set

included in Data2Dynamics. Because the parameters of the observation function are typically

not related to the investigated biological system, they are excluded from regularization. We

then counted how often a fold-change parameter or a difference of fold-change parameters is

correctly identified as being compatible with zero in the selected parsimonious model, and

repeated the whole process with the standard LASSO regularization for comparison (Fig 3D).

Results. For regularization with symmetric penalization of fold-changes, the overall num-

ber of correctly identified fold-change parameters and differences of those is very high (Fig

3E). At the same time, there are virtually no false positive results, which is indicated by the

absence of cell types identified as having a parameter in common when it is not true (Fig 3C).
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In comparison to the standard LASSO regularization, the proposed method has identical per-

formance w.r.t. the fold-change parameters that relate to the technical reference cell type in

this setting. The differences of fold-change parameters equal to zero that represent pairs of cell

types with the same mutation are only found using regularization with symmetric penalization

of fold-changes. We can observe that in some cases, it is more challenging to identify a fold-

change parameter or a difference of them as being zero, e.g., for the difference between the ini-

tial value for Epo in cell types 2 and 3. We interpret this as an effect of all parameters being reg-

ularized with the same strength λ, while not all parameters have the same influence on model

simulations due to the non-linearity of the models, which however also affects the results of

the standard LASSO regularization.

Application to experimental data

Model description. To investigate the effect of ligand addiction, which drives tumor

growth, [28] developed a mechanistic model that comprises multiple signal transduction path-

ways including ErbB, IGF-1R and Met signaling [19]. This model was calibrated on experi-

mental data for seven cancer cell-lines, which was possible through introduction of cell-line

Fig 3. (A) A schematic representation of the structure of the model used in [27]. (B) A typical data realization (dots) with model fits before regularization

(lines and shaded areas). (C) Parameter values used for simulation of the data for the five cell types. (D) Schematic representation of the simulation study work-

flow. (E) The number of times each individual fold-change parameter and difference of fold-change parameters is constrained to zero in the parsimonious

model is plotted as a histogram for the standard LASSO approach (blue) and the symmetric penalization of fold-change differences (red). A gray bin

background indicates the true values that were used for simulation of the data.

https://doi.org/10.1371/journal.pcbi.1010867.g003

PLOS COMPUTATIONAL BIOLOGY Uncovering specific mechanisms across cell types in dynamical models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010867 September 13, 2023 12 / 18

https://doi.org/10.1371/journal.pcbi.1010867.g003
https://doi.org/10.1371/journal.pcbi.1010867


specific parameters for receptor expression, i.e., the initial concentration of the receptor model

species. This comprehensive model was later employed to predict proliferation behavior in 58

cancer cell-lines as well as—in combination with decision tree classification—in humans from

actual patient data.

Approach. It was reported that it is possible to fit the experimental data of the individual

cell-lines with the same model structure assuming equal kinetic rates and cell-line specific

receptor abundance based on the standard LASSO approach ([19], Eq 4). Because this method

is in general not able to identify subgroups of cell-lines that share the same receptor expression

when they do not include the reference cell-line, we investigated the clusters resulting from

symmetric penalization of the fold-change parameters. Following the work of [28], we added

regularization terms to the objective function for parameters that relate the receptor expression

of the cell-lines BxPc3, A431, BT-20, ACHN, ADRr and IGROV-1 to that of H322M. We

applied our approach with the original experimental data and 30 regularization strengths rang-

ing between 1 and 104 and identified clusters of cell-lines that share identical receptor expres-

sion. We incorporated these clusters into our model and utilized the likelihood ratio test to

select the parsimonious model.

Results. Introducing regularization to the optimization function promotes model sparsity,

i.e., a low number of cell-line specific parameters (S2A Fig). These constraints result in worse

objective function values also in the unregularized setting when compared to the uncon-

strained model, increasing the likelihood ratio (S2B Fig). We found the optimal value of the

regularization strength to be λ = 101.75, where the constrained model is still compatible with

the full model of [28]. At this value of the regularization strength, we find a number of clusters

that share the same receptor expression among the seven cell-lines (S2C Fig). When scanning

through different values of λ, new optima can arise can lead to different combinations of fold-

change parameters and differences of such equal to zero. Such behavior can lead to a drop in

the test statistic when increasing the value of λ.

Values for the receptor surface levels for the different cell-lines calculated from data of the

CCLE database were reported in [28], which can be compared to the estimated model parame-

ters. We additionally compare their relative amounts to the receptor values from their model

that were estimated with penalization of fold-change differences (Fig 4). For the EGF receptor,

we find a cluster of the three cell-lines with the lowest EGFR surface level, IGROV-1, ADRr

and H322M. For IGF-1R and Met receptors, clustering also resembles the surface receptor

value ordering. However, for the ErbB2 and ErbB3 receptors, the clustering of cell-lines result-

ing from regularized optimization is more challenging to interpret: In ErbB2, clustering seems

unrelated to the receptor surface levels, while in ErbB3, cell-lines with similar receptor surface

levels are clustered together, but the model estimates for these clusters do not reflect the order-

ing in the CCLE-based data. However, the latter two effects also occur without regularization

in the best-fit reported by [28], which indicates that these results are not related to the symmet-

ric penalization of fold-change differences, but rather a result from the model structure or are

artifacts in the CCLE data. Through the identification of clusters of cell-lines that share identi-

cal receptor surface levels, we demonstrated how the method we propose provides additional

insights compared to the classical LASSO approach.

V. Conclusions

Regularization is a valuable method to reduce model complexity, e.g., when dealing with mul-

tiple cell types. In ordinary differential equation models, it is often applied to infer candidates

for parsimonious models from data by clustering similar cell types on the level of individual

parameters. Biologically, this can be related to cell types that have identical mutations.
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Approaches based on LASSO regularization with L1 and Lq penalization for two cell types are

readily available, but the question of how to handle n>2 cell types without biasing the result

through the specification of a reference cell type remained open. The grouped LASSO was pro-

posed to address this challenge when predefined groups of parameters can be specified, for

example based on prior knowledge. This translates to one parameter being either identical in

or specific to all analyzed cell types, without being able to search for subsets that share a certain

parameter or mutation.

We proposed an extension of the LASSO approach in differential equation modeling moti-

vated by the clustered LASSO [16] with an L0.8 penalization, which is the regularization with

symmetric penalization of fold-change differences. We highlighted that this method allows

Fig 4. Comparison of receptor surface level values from [28]. for EGF, ErbB2, ErbB3, IGF-1 and Met receptors for the

different cell-lines H322M, BxPc3, A431, BT-20, ACHN, ADRr and IGROV-1 with the estimated initial values from

the mathematical model, as well as the results from regularization with symmetric penalization of fold-change

differences.

https://doi.org/10.1371/journal.pcbi.1010867.g004
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treating an arbitrary number of cell types without the result being dependent on the arbitrary

choice of a reference cell type or introducing any additional parameter. We argued that

employing an L0.8 instead of the usual L1 norm is more beneficial, because it provides a gradi-

ent that leads to more efficient clustering. We discussed how optimization must be adapted in

the presence of the new regularization function in terms of the additional residuals and sensi-

tivities. Further, we adapted the optimality criterion and optimizer step truncation accord-

ingly, as well as the calculation of degrees of freedom that is required to perform statistical

tests. Concerning computational cost, the computation time required for optimizing a system

comprising multiple cell types is multiplied by the number of cell types, which holds true also

in a non-regularized setting and is independent from the clustered LASSO approach. A general

performance analysis of ODE models can be found in [29].

We demonstrated the advantages of regularization with symmetric penalization of fold-

change differences compared to the standard LASSO approach with the L0.8 penalization when

using more than two cell types in a simplistic example by visualizing the optimization end

points of the objective function landscape in parameter space under the influence of increas-

ingly strong regularization. We evaluated the effect on performance of symmetric penalization

of fold-change differences in a simulation study: It revealed how our method extends the use-

fulness of regularization approaches compared to the standard and grouped LASSO, by

enabling clustering of any number of cell types that share certain mutations.

We applied our method to a published model of the Epo receptor dynamics upon ligand

binding by Becker et al. with realistically simulated data. This confirmed the surplus value of

symmetric penalization of fold-change differences compared to standard and grouped LASSO

also in a realistic setting. We also revisited the research question of [19] and performed LASSO

regularization with symmetric penalization of fold-change parameters on the exact same prob-

lem including biological data. We were able to identify clusters of cell-lines that share the same

receptor expression, which were confirmed by CCLE-based receptor surface level data where

such a comparison is applicable.

We would like to emphasize that, as in all modeling approaches in biology, interpretations

of results can be challenging. Moreover, due to data sparsity and limitations of data quality,

false positive and false negative results can be obtained, as is also the case for the proposed

method. Resulting models should always be seen as a useful approach to understand biological

mechanisms and resulting model predictions should subsequently be validated

experimentally.

In summary, we illustrated how the proposed method will advance the analysis of multiple

cell types. Since we implemented our method in the freely available open-source modeling

environment Data2Dynamics, it can be easily applied to a broad range of modeling problems,

especially in but not limited to the context of systems biology.
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S2 Fig. (A) The number of cell type specific parameters dependent on the regularization

strength in the model of [28] with symmetric penalization of fold-change differences. (B] The

likelihood ratio (blue line) between the constrained and unconstrained model increases with

the regularization strength. The largest value of λ for which the likelihood ratio is below the

statistical threshold (red line) represents the parsimonious model (black line). The drop in the

test statistic can be accounted to emergence of a new optimum. (C) Fold change parameters

and differences of them with their values dependent on the regularization strength λ. Boxes

denote the regions where a parameter is not constrained to zero, while the dashed line indi-

cates the regularization strength corresponding to the parsimonious model.
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S3 Fig. Simulation study (Fig 3C) with an ABC model to assess the performance of regular-

ization with symmetric penalization of fold-change differences when using (A) the maxi-

mum of sensitivities corresponding to the same residual as a common value, and (B), the
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