A Dynamic Mathematical Model of Bile Acid Clearance in HepaRG Cells

Daniel Kaschek,* Ahmad Sharanek,†,‡ André Guillouzo,†,‡ Jens Timmer,*,§,¶,1 and Richard J. Weaver‖,2

*Institute of Physics, Freiburg University, Freiburg, Germany; †Inserm UMR 991 Foie, Métabolismes et Cancer, Rennes, France; ‡Université Rennes 1, Rennes, France; §BIOSS Centre for Biological Signalling Studies, Freiburg, Germany; ¶Freiburg Center for Systems Biology, Freiburg, Germany; and †Institute de Recherches Internationales Servier, Suresnes, France

1To whom correspondence should be addressed at E-mail: jeti@fdm.uni-freiburg.de.
2Institute de Recherches Internationales Servier, 50 Rue Carnot 92284 Suresnes, Cedex, France. Fax +33-1-55-725-40. E-mail: richard.weaver@servier.com.

ABSTRACT

A dynamic model based on ordinary differential equations that describes uptake, basolateral and canalicular export of taurocholic acid (TCA) in human HepaRG cells is presented. The highly reproducible inter-assay experimental data were used to reliably estimate model parameters. Primary human hepatocytes were similarly evaluated to establish a mathematical model, but with notably higher inter-assay differences in TCA clearance and bile canaliculi dynamics. By use of the HepaRG cell line, the simultaneous TCA clearance associated to basolateral uptake, canalicular and sinusoidal efflux, was predicted. The mathematical model accurately reproduced the dose-dependent inhibition of TCA clearance in the presence and absence of the prototypical cholestatic drugs cyclosporine A (CsA) and chlorpromazine. Rapid inhibition of TCA clearance and recovery were found to be major characteristics of CsA. Conversely, the action of chlorpromazine was described by slow onset of inhibition relative to inhibition of TCA clearance by CsA. The established mathematical model, validated by the use of these 2 prototypical cholestatic drugs and the integration of bile canalicular dynamics, provides an important development for the further study of human hepatobiliary function, through simultaneous temporal and vectorial membrane transport of bile acids in drug-induced cholestasis.

Key words: human hepatocytes; HepaRG cells; mathematical model; taurocholic acid; chlorpromazine; cyclosporine A.

The underlying pathophysiological mechanisms for most hepatocellular forms of drug-induced hepatic injury remain poorly understood. However, there is reasonable evidence that intrahepatic cholestatic forms of drug-induced liver damage frequently result from a drug- or metabolite-mediated inhibition of hepatobiliary transporter systems (Goldring et al., 2017; Hillgren et al., 2013). In addition to the function of these key transporters in determining hepatic drug exposure and clearance, the coordinated action of these transport systems is essential for bile formation and the biliary secretion of cholephilic compounds and drugs (Chiang, 2009). A drug-mediated functional disturbance of these processes, directly or indirectly, can lead to the arrest of bile formation and flow with the development of cholestatic liver cell damage (Pauli-Magnus and Meier, 2006). In addition to drug-mediated inhibition of hepatocellular transport function, the interindividual variability of transporter expression and function are altered by pre-existing hepatic diseases and genetic factors, which are believed to contribute to the development of drug-induced risk of cholestasis in susceptible individuals (Trauner et al., 1998). Recently, some of us reported that cholestatic drugs caused alteration of bile canaliculi dynamics associated with impairment of the Rho-kinase/myosin light chain kinase signaling pathway using human HepaRG cells (Burbank et al., 2016; Sharanek et al., 2016).

©The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

Downloaded from https://academic.oup.com/toxsci/article-abstract/161/1/48/4161911 by University Freiberg user on 29 December 2017
Although the use of primary human hepatocytes (PHHs) for the study of drug effects on bile formation and secretion by hepatocytes is well documented (Guo et al., 2016; Swift et al., 2010), the donor-donor variability and inherent dedifferentiation of the hepatocellular phenotype in culture can often greatly influence their practical routine use in early screening in drug discovery. Moreover, these biological donor-donor variabilities associated with PHH may confound opportunities to sequentially build an integrated time-resolved mathematical model using a singularly phenotypically stable, reproducible and robust in vitro model by which to describe bile acid clearance and flow, and study the impact of drug effects with time in culture. By contrast, the HepaRG cell line exhibits a well-characterized and stable hepatocyte-like phenotype (Guéguen-Guillouzo and Guillouzo, 2010) by which to reproducibly measure bile formation and bile canalicular (BC) clearance (Sharanek et al., 2015), to establish a dynamic mathematical model describing bile acid clearance.

Modeling the flow of drugs or substrates by ordinary differential equations (ODEs) is a common approach in pharmacokinetic modeling. Indeed, mathematical models of drug disposition (Jones et al., 2012; Li et al., 2014) and bile flow (Guo et al., 2016; Yang et al., 2015) into and out of hepatocytes have been previously presented. All these models have a common model structure, including cellular, canalicular/biliary and medium compartments. Bile acids are transported between these compartments. This model structure is also used in this work. However, drug-mediated transporter inhibition is frequently modeled as a static process as the transport rates are reduced in a dose-dependent manner; time-dependence of the inhibitory process and the recovery is neglected, and the effects are assumed to occur immediately. In contrast, our model incorporates transporter inhibition as a dynamic time-resolved process into the ODE model. Also, the compartment size, such as the volume of BC that changes dynamically with the concentration of cholestatic drugs and are importantly implemented into our ODEs. These features are key events identified in the acute phase of cholestasis associated with vectorial transport of bile acids and bile flow.

In this study, we describe the use of experimental data derived from human HepaRG cells to establish a quantitative and predictive dynamic model of bile acid clearance, using a prototypical bile acid, taurocholic acid (TCA), for the study of hepatobiliary transport. A validation of the model was further achieved by use of 2 prototypical cholestatic drugs, cyclosporine A (CsA) and chlorpromazine (CPZ), previously shown to exhibit differences in the mechanisms of apical and basolateral transporter inhibition (Antherieu et al., 2013; Sharanek et al., 2014) and their effect on BC dynamics (Burbank et al., 2016).

MATERIALS AND METHODS

Data sources and statistical analysis. Chemical reagents, details of biological experiments and techniques used to prepare and characterize HepaRG cells and PHH are provided in the Supplementary Material (Section 1). In brief, wet-bench assay data from experiments with CPZ (Bachour-El Azzi et al., 2014) and CsA (Sharanek et al., 2014) were used to develop a mathematical model. In addition, new experiments with the use of CPZ and CsA were performed during the course of the present study with model-informed study design. At least 4 independent experiments with HepaRG cells and PHH were performed and analyzed.

Preprocessing of time-resolved data. For each protocol, experiments were repeated at least 4 times. Since TCA is radio-labeled, the count data follows a Poisson distribution. In our case the number of counts is in the order of 10^2–10^4. “For statistical analysis, it is beneficial to have normally distributed data with equal expected variance of all data points. The transformation $n = 2\sqrt{N}$ translates the Poisson-distributed number of counts N into (almost) normally distributed numbers n with unit variance”. Differences between independent experiments, j, that exceed the expected variance are due to heterogeneity between the preparations of cultures of HepaRG cells. These differences can be attributed to a different number of cells between experiments, represented by a scaling factor S, which translates into a factors $2\sqrt{S}$ of the numbers n. In total, the mathematical model to describe all replicate readouts is described;

$$n_{jk}(t) = s_{j} \cdot n_{k}(t) + \epsilon_{jk}(t)$$

where $n_{jk}(t)$ is the transformed number of counts of experiment j, set-up/treatment k and replicate r at time point t. The numbers $\epsilon_{jk}(t) \sim N(0, 1)$ and $\eta_{jk}(t) \sim N(0, \sigma^2_{celltype})$ describe random contributions due to the stochasticity of radioactive decays and heterogeneity between HepaRG cell and treatment preparations. The parameters of interest, $n_{k}(t)$, represent the true transformed number of counts for each set-up/treatment k as being used for dynamic modeling. They are determined jointly with the scaling parameters s_j and the cell-type heterogeneity $\sigma_{celltype}$ by least-squares estimation. Parameter uncertainties $\sigma_{n_{k}}$ are obtained from the least-squares fit. They account for the number of replicates, the uncertainty of the estimated scaling parameters and the heterogeneity between experiments. The heterogeneity parameters $\sigma_{celltype}$ are employed to quantify the reproducibility of experiments for the cell types HepaRG, human hepatocytes in sandwich culture and human hepatocytes in conventional culture. See Supplementary Figure 2 (Data preprocessing) for a comparison of the different cell types.

A dynamic model of TCA transport. TCA transport is modeled by ODEs. The equations are based on mass-action or Michaelis-Menten kinetics and account for the transport between 3 compartments, ie, incubation medium, cells (cyto) and canaluli with volumes V_{buffer}, V_{cyto}, and V_{cana}. A schematic overview of the model is shown in Figure 1. The basic transport processes are

$$TCA_{buffer} \xrightarrow{k_1} TCA_{cyto} \xrightarrow{k_3} TCA_{cana} \xrightarrow{k_4} TCA_{buffer}$$

where k_1, \ldots, k_4 denote transport rates. These rates are susceptible to temperature, calcium/magnesium and sodium changes and depend on the activity of the corresponding basolateral and canalicular membranes to TCA transport. In this study, each transport process can be associated to 1 membrane transporter known to be associated with the basolateral, sinusoidal and canalicular cell membranes, i.e. uptake (T_{ij}), sinusoidal efflux (T_{ji}) and canalicular efflux (T_{ij}). In summary, the rate constants are expressed by the equations
parameters associated to a temperature drop, /C14$buffer$ compartment is modeled by mass-action kinetics. The kinetic principles used to model uptake, sinusoidal efflux and canalicular efflux is Michaelis-Menten Kinetics wherek' denotes the effect of calcium on canalicular efflux.

Figure 1. Schematic representation of the dynamic model. A, The flow of TCA between the three compartments is indicated by arrows. Transporters associated to each transport route are marked by red (uptake) and green (efflux) circular symbols. Canalicular content ejection back into buffer is marked by a blue circular symbol. The amount of TCA in each compartment and the canalicular volume are dynamic states. Canalicular volume changes are induced by drug exposure B, Drug-induced transporter inhibition is expressed by a phenomenological model which can be represented by a reaction network. During the absence of the drug, levels of the active transporter (green open circle) are in equilibrium. Upon drug stimulation, a new equilibrium between active and inactive transporters (grey circle) is approached. C, transporter inhibition is expressed by a phenomenological model which can be represented by a reaction network. During the absence of the drug, levels of the active transporter activity is equally incorporated into the model by k_i is the acceleration parameter associated to sodium in the buffer and K_4 represents the effect of calcium on canalicular efflux.

The kinetic principles used to model uptake, sinusoidal efflux and canalicular efflux is Michaelis-Menten Kinetics whereas the transport from the canalicular compartment to the buffer compartment is modeled by mass-action kinetics.

$$
\begin{align*}
\frac{d}{dt} TCA_{buffer} &= -\frac{k_1 \cdot [TCA_{buffer}] \cdot (1 + a_1 \cdot [Na^{+}])}{1 + d_1 \left(1 - \frac{\Delta \theta}{33 \degree C}\right)} + \frac{k_2 \cdot TCA_{cyto}}{1 + d_1 \left(1 - \frac{\Delta \theta}{33 \degree C}\right)} + k_3 \cdot TCA_{cana} \\
\frac{d}{dt} TCA_{cyto} &= \frac{k_1 \cdot [TCA_{buffer}]}{1 + d_1 \left(1 - \frac{\Delta \theta}{33 \degree C}\right)} - \frac{k_2 \cdot TCA_{cyto}}{1 + d_1 \left(1 - \frac{\Delta \theta}{33 \degree C}\right)} - \frac{k_3 \cdot TCA_{cyto}}{1 + d_1 \left(1 - \frac{\Delta \theta}{33 \degree C}\right)} \cdot (K_4 + [Ca^{2+}]) \\
\frac{d}{dt} TCA_{cana} &= \frac{k_2 \cdot TCA_{cyto}}{1 + d_1 \left(1 - \frac{\Delta \theta}{33 \degree C}\right)} - k_3 \cdot TCA_{cana}
\end{align*}
$$

wherek_1, \ldots, k_4 are the transport parameters, $\Delta \theta$ is the temperature change with respect to 4 \degreeC, d_1, \ldots, d_4 denote deceleration parameters associated to a temperature drop, a_1 is the acceleration parameter associated to sodium in the buffer and K_4 represents the effect of calcium on canalicular efflux.

The transporter activity $T_i, i=1, \ldots, 3$, is dynamically regulated being modeled by the reactions $\rightarrow \rightarrow T_i$. Where, “$\rightarrow$” and “$\rightarrow$” denote deregulation and production. The parameterization by a_i implies that the equilibrium of the reaction is $T_i = 1$ for all transporters and the time-scale how quickly the disturbed system returns to the initial measures of TCA clearance is determined by the value of a_i. TCA clearance in control incubations can in the meantime be reduced by cholestatic drugs. Within the mass-action formalism, inhibition by a drug is implemented as

$$D + T_i \xrightarrow{k_i^{D}} DT_i,$$

where D is the drug and DT_1, \ldots, DT_3 are the inhibited transporters, see Figure 1B. The rate parametersk_i^{D} represent the effective inhibition of the drug on transporter T_i while k_i^{D} represents the transporters’ ability to recover when the compound-containing buffer is removed.

In the absence of the drug, membrane-associated transport activity is equal to unity and assigned the value of 1 across the membranes. By the addition of the drug, a new equilibrium between active and inactive membrane transport activity is approached which is determined by the equilibrium constants $K_i^{D} = \frac{k_i^{D}}{k_i^{D}}$. Conversely, when the free drug is removed, the system transitions to another equilibrium retaining some of the drug’s inhibitory effect for reversible inhibition of transporter activity. The drug-induced dynamics is overlain by the transporter regulating mechanism steering all transporter activities associated to membranes to unity of 1. The possibility of irreversible changes of the transporter activity is equally incorporated into the model by...
choosing drug-specific values for the membrane transporter activity, n_i.

When cells are exposed to TCA for more than 30 min, the uptake can be seen to effectively accelerate. This is possibly accounted for by changes in membrane transport with time of TCA exposure in culture. In our model, TCA uptake is controlled by the T_1 state variable. To account for the accelerated uptake, we include a gain term for the T_1 state, proportional to the integrated TCA buffer concentration, area under the curve (AUCTCA(buffer)), see Figure 1C. In summary, the transporter dynamics is described by the differential equations.

$$
\frac{d}{dt} T_1 = z_1 \cdot (1 - T_1) - k_1^3 \cdot D \cdot T_1 + k_1^1 \cdot DT_1 + b \cdot \text{AUC}_{\text{TCA(buffer)}} \\
\frac{d}{dt} T_2 = z_2 \cdot (1 - T_2) - k_2^2 \cdot D \cdot T_2 + k_2^2 \cdot DT_2 \\
\frac{d}{dt} T_3 = z_3 \cdot (1 - T_3) - k_3^3 \cdot D \cdot T_3 + k_3^3 \cdot DT_3 \\
\frac{d}{dt} \text{AUC}_{\text{TCA(buffer)}} = \text{TCA}_{\text{buffer}}
$$

Besides their effects on membrane transporter activity, cholestatic drugs can have both constriction and dilatation effects on BC, such that the volume of the canalicular compartment is either reduced or increased. For low CsA concentration treatments, the dilatation effect prevails whereas for higher doses reduced or increased. For low CsA concentration treatments times, incubations times or changing Ca$^2+$ levels in the buffer. These conditions are fully accounted for by the model which ultimately depends on a single set of parameters. From these parameter values, the simulated model outcome is uniquely determined for all experimental conditions. The building of the model was achieved by use of 4 different experimental protocols, 2 efflux and 2 uptake protocols. For the sake of clarity, these protocols with the corresponding model predictions are discussed separately, keeping in mind that they are connected by a single model structure and parameter set.

$$
\phi_D \frac{D}{k} \text{AUC}_{\text{Drug}}, \quad V_{\text{BC}} = \frac{\text{AUC}_{\text{Drug}}}{\phi_{\text{BC}}} \text{AUC}_{\text{Drug}} \quad \phi
$$

The dilatation/constriction rates are linked to the integrated drug concentration over time, see Figure 1A. The integrated drug concentration is restricted by a reduction of the rate, k. Because we expect a certain delay between drug treatment and reduction of the volume, canalicular volume constriction is linked to the integrated drug concentration AUCDrug instead of simply drug concentration.

A list of all reactions and the corresponding differential equations are available in the Supplementary Material Section 3 (Model Specification).

Parameter estimation and uncertainty analysis. Parameter estimation is based on the maximum-likelihood method. As discussed in the section on preprocessing of time-resolved data, the observational noise is composed of a random contribution due to the stochasticity of radioactive decays and a random contribution due to the heterogeneity between repeated preparations. Although results for the HepaRG cell line are highly reproducible, heterogeneity σ_{celltype} still presents the major contribution to the observation noise of around 15%.

Maximization of the likelihood is equivalent to minimizing of the objective function

$$
\chi^2(p) = \sum_{ij} \frac{(x_i(t, p) - \hat{x}_{ij}^2)}{\sigma_{ij}^2}
$$

where $x_i(t, p)$ denotes the model prediction for state j at time-point t_i given the parameter values p. The squared residuals between model prediction and data points $x_{ij}^2 = \frac{e_{ij}^2}{\sigma_{ij}^2}$ are weighted by the variances $\sigma_{ij}^2 = \frac{n_{ij}(t)}{\sigma_{\text{celltype}}^2}$. Optimization of the objective function is performed by a trust-region algorithm (Nocedal and Wright, 2006) that relies on derivative information. Therefore, the ODEs of the dynamic system are combined with their forward sensitivity equations (Leis and Kramer, 1988) and solved numerically by the LSODES integrator (Soetaert et al., 2010). Nonlinear optimization is usually compromised by the existence of several local optima. To search the parameter space for the best optimum, we follow a multi-start strategy to initialize the trust-region optimizer. Identification of the parameter determinants has been checked based on the symmetries that are admitted by the system (Merk et al., 2015). Practical non-identifiability and parameter confidence bounds were analyzed using the profile likelihood method (Kreutz et al., 2013; Raue et al., 2009).

All analyses have been performed in R with the packages cOde/dMod (Kaschek et al., 2016) for dynamic modeling and parameter estimation in R, available on Comprehensive R Archive Network. More details about the parameter estimation process are available in the Supplementary Material Section 4 (Model Fitting and Model Reduction).

RESULTS

The results described in this work are based on dynamic modeling in combination with parameter estimation to match the experimental TCA data with our mathematical model. Thus, the nature of our model turns from being descriptive to being predictive. The model of TCA transport in HepaRG cells is based on ODEs describing the TCA flux between three compartments; incubation medium, cells and canaliculi. The impact of the cholestatic drugs CsA and CPZ on uptake and efflux activities has been implemented as a dynamic process with changing transporter activity and canalicular volume over time.

The experimental conditions are characterized by different treatments times, incubations times or changing Ca$^2+$ and Mg$^2+$ levels in the buffer. These conditions are fully accounted for by the model which ultimately depends on a single set of parameters. From these parameter values, the simulated model outcome is uniquely determined for all experimental conditions. The building of the model was achieved by use of 4 different experimental protocols, 2 efflux and 2 uptake protocols. For the sake of clarity, these protocols with the corresponding model predictions are discussed separately, keeping in mind that they are connected by a single model structure and parameter set.

Temperature and Ca$^{2+}$/Mg$^{2+}$ Conditions

The first protocol sheds light on the temperature dependency of transport rates and shows how strongly the presence of Ca$^{2+}$/Mg$^{2+}$ in the buffer contributes to the formation of canalicular junctions to retain TCA in the canaliculi. Figure 2 shows the efflux dynamics of $[^{3}H]$-TCA in the cells and in the buffer at 2 temperature conditions, 37°C and 4°C, and 2 buffer conditions, with and without Ca$^{2+}$/Mg$^{2+}$. Cellular levels of $[^{3}H]$-TCA (Figure 2A), remain almost constant for low temperature (blue) while showing a quick reduction at 37°C (red).

In building the dynamic model of TCA transport, we introduced deceleration parameters d_1, \ldots, d_4 to express the change of transport rates from 37°C to 4°C. Exploring the parameter space, we found several locally optimal solutions that explained the temperature and Ca$^{2+}$/Mg$^{2+}$ dependency as shown in Figure 2A. Locally optimal solutions involved either dominant deceleration of sinusoidal/canalicular efflux mediated TCA transport or dominant deceleration of canalicular efflux.
However, only the latter solution is able to reproduce the pronounced effect between Ca\(^{2+}\)/Mg\(^{2+}\) and Ca\(^{2+}\)/Mg\(^{2+}\)–free conditions at 37 °C while, at the same time, showing no difference at 4 °C.

The dynamic model allows separation of the intracellular and canalicular contributions which summarized, represents the observation of cellular TCA content. Together with a priori knowledge about the total TCA amounts, a prediction of the \(^{3}H\)-TCA distribution throughout the compartments is feasible, shown in Figure 2B. After 30 min uptake, 75% of all TCA is located in the cytoplasm of cells and 25% in the canaliculi. Under calcium-free conditions at 37°C, it takes around 10 to 20 min for the canalicular junctions to disrupt, as can been seen from the model prediction for canalicular TCA.

Efflux of TCA in the Presence of Cholestatic Drugs

The second protocol focuses on the inhibitory effect of the cholestatic drugs CsA and CPZ on TCA efflux. HepaRG cells were incubated with \(^{3}H\)-TCA for 30 min and then treated for 2 h in the presence or absence of drug in standard buffer containing Ca\(^{2+}\)/Mg\(^{2+}\). The experimental results and corresponding model fits are shown in Figure 3. Cellular levels of TCA over a time period of 120 min are shown in Figure 3A. With increasing concentrations, CsA-treated cells (squares and solid lines) show the expected inhibition of TCA efflux. To obtain a measurement that reflects the cytoplasmic TCA level as close as possible, the efflux buffer was exchanged by a Ca\(^{2+}\)/Mg\(^{2+}\)–free medium is added after incubation with \(^{3}H\)-TCA and drug to measure total TCA efflux. The buffer exchange has been included as a discontinuity into the mathematical model. Therefore, for each data point there is 1 corresponding model trajectory to fit this data points. The typical trajectory shows a slow exponential decay followed by a fast transition caused by the disruption of canalicular junctions before returning to a slow decay. The range in which the cytoplasmic TCA contents changes due to the buffer exchange is shown as shaded area. The bottom part of the shaded area, a dotted line, reflects the TCA concentration after buffer exchange which is to be compared with the data points. Relative to CPZ, CsA shows a much stronger inhibitory effect on TCA clearance by comparison with CPZ at a dose of 50 μM.

Figure 3B shows the predicted absolute amounts of TCA in the different compartments for an efflux buffer with Ca\(^{2+}\)/Mg\(^{2+}\)–free medium. All active transport processes are inhibited by CsA, as shown by Figure 3C and remain low over 120 min except for multidrug resistance-associated protein 3 (MRP3) as confirmed by immunostaining (Sharanek et al., 2015), which begins to recover cellular efflux of TCA over the period following addition of CsA. CPZ has no apparent inhibitory effect on sinusoidal efflux, albeit in the model is shown to inhibit uptake and canalicular efflux. The most evident difference between CsA and CPZ is the slower time scale by which CPZ inhibits uptake and canalicular efflux. Therefore, cells treated with 50 μM of CPZ are able to clear almost all of the contained TCA although canalicular efflux transporters activity drops to almost 0% as similarly observed for CsA.

The inhibitory constant (K) reflects binding affinity and functional strength for the inhibition of activity and becomes important for helping to predict clinically relevant drug interactions. These are normally reported as static measures. Figure 3C indicates that transporter recovery and different time scales of CsA and CPZ action are major characteristics of the system. These properties being identified by our semi-mechanistic drug-transporter interaction cannot be captured by a classical inhibition model ie, based on K, values, as shown in the Supplementary Material. Exposure to high concentrations (50 μM) of either cholestatic drug resulted in constriction of BC as early as 2 h (Figure 3C, canalicular volume). At lower concentrations (5–10 μM), only CsA exhibited an effect characterized by bile canaliculi dilatation as shown by phase-contrast microscopy in Figure 4.

Uptake of TCA in the Presence of Cholestatic Drugs

The third protocol was performed to investigate the effect of treatment time on the concentration-dependent inhibitory effect of CsA. The results are shown in Figure 5. The effects of the CsA on BA uptake was estimated through measurement of intracellular accumulation of \(^{3}H\)-TCA. Briefly HepaRG cells were treated for 15, 30, or 60 min with different concentrations of CsA (0, 1, 5, 10, 25, and 50 μM) and measurements were taken 10 min after incubation with TCA. CsA induced a dose-dependent inhibition of TCA uptake as early as 10 min after treatment. On the other hand, TCA levels of equivalent doses for different treatment times roughly achieve the same response (see Figure 5A). This is also reflected in the predicted absolute amounts in the three compartments (Figure 5B). In accordance with the observation, the estimated time-scale parameters for transporter inhibition are fast enough to realize the full inhibitory effect within few minutes (Figure 5C). During incubation with \(^{3}H\)-TCA, no drug is contained in the incubation buffer. The membrane transporter activity can recover and regain their activity to some extent during this phase. The curves for canalicular export and uptake transporter activity are almost exactly

![Figure 2](https://academic.oup.com/toxsci/article-abstract/161/1/48/4161911/78x619 to 182x711)
superimposable, producing the same efflux dynamics whether the treatment with CsA was for 15, 30, or 60 min. By parameter estimation we find that TCA transport to the canaliculi is 4 times higher than sinusoidal export, limiting the possible impact of sinusoidal export on the shape of the curves. This relative preferential clearance of TCA is confirmed by the observed activities of bile salt transport pump (BSEP) and MRP3 activities in heterologous expressed vesicle membranes (unpublished observations). Similarly since we observe cellular uptake of TCA, the reduction of canalicular volume has no direct feedback on the observed cellular levels.

Finally, by the fourth experimental protocol, the effects of the 2 cholestatic drugs, CPZ and CsA, on bile acids uptake was estimated through measurement of intracellular accumulation of \([^{3}H]\)-TCA. HepaRG cells were treated for 30 min with either drug and then loaded with \([^{3}H]\)-TCA for different time points over 120 min. As shown in Figure 6 our model predicts that the TCA dynamics upon CPZ treatment is more linear than upon CsA treatment and turns earlier into the phase of accelerated uptake (Figure 6A). This is also visible in the predicted intracellular TCA levels, (Figure 6B) which show a different shape for CsA and CPZ. Although the exposure to high TCA concentrations for more than 2 h might be nonphysiological, the insight that continuous TCA exposure could lead to increased TCA uptake is valuable for future mathematical model development.

Evaluating the ratio between intracellular and canalicular TCA amounts by the mathematical model, we find 2–4 times more TCA intracellular content than in the canaliculi. The ratio is even higher for higher drug concentrations. All these observations are in line with the estimated effects of CsA and CPZ on the transporter activity shown in Figure 6C. CPZ inhibition is slower, but more sustained and its effect on canalicular export and cellular uptake is similar. Also, CsA inhibition of basolateral uptake is similar to efflux inhibition. The effect is more immediate for CsA than for CPZ but transporters can partially recover after the removal of CsA. The strongly inhibited accumulation of TCA in the cells upon CsA treatment is supported by the quick recovery and over compensation of sinusoidal response, which can be attributed to sinusoidal transporter activity.

Primary Human Hepatocytes

We relate our findings on HepaRG cells to the TCA efflux dynamics observed in human hepatocytes. Hepatocytes were kept in either conventional (CCHH) or sandwich (SCHH) cultured human hepatocytes. The direct comparison of cellular TCA levels is shown in Figure 7.
The measurements in HepaRG cells, CCHH and SCHH are normalized by the respective mean values at $t = 30$ min, just before the uptake buffer is replaced to measure efflux. Since the efflux is approximately described by an exponential curve, differences between the cell types are visualized on the log-scale where a steeper slope corresponds to a higher export rate. On average, the human hepatocytes show a faster export of TCA. The efflux from human hepatocytes is not stopped at 4°C but is in the same range as at 37°C with $\text{Ca}^{2+}/\text{Mg}^{2+}$ in the buffer; conventional cultured hepatocytes are partly affected. There is the tendency that human hepatocytes are more susceptible to $\text{Ca}^{2+}/\text{Mg}^{2+}$ removal which might indicate that BC tight junctions

Figure 5. TCA uptake in HepaRG cells at different CsA treatment times. A, HepaRG treated with 0–50 μM CsA for 15, 30, or 60 min, then change of buffer containing H^3-TCA for 10 min prior to measurements of CA. Cells have been treated with different doses (colors) of CsA for 15, 30 or 60 min and then incubated by TCA for 10 min. B, The model predicts similar TCA uptake dynamics in absolute amounts, independent of the treatment time. C, The efflux across sinusoidal, canalicula membrane and uptake are similarly predicted irrespective of time of treatment at 0–50 μM CsA are described. Replacing the treatment-buffer with the TCA-incubation buffer, results in partial recovery of transporter inhibition (the transporter inhibition is partially reduced). Color versions of illustrations are available in the online version.

Figure 6. TCA uptake in HepaRG cells for different TCA incubation times. After a fixed treatment time of 30 min, either with CsA or CPZ (line-type and symbols), the cells have been incubated with TCA for different times up to 120 min. A, The data show an accelerated uptake of TCA at later time points. B, Canalicular TCA amounts, expressed as percentages, are predicted to be smaller than cytoplasmic amounts by a factor of 2–4, which is even reinforced by the cholestatic drugs. C, Uptake and canalicular export transporters show almost irreversible predicted inhibition, especially for CPZ. Uptake is increased due to the continuous exposure to TCA in the buffer. Color versions of illustrations are available in the online version.
DISCUSSION

In this study, we describe a dynamic mathematical model of TCA uptake and clearance on the basis of experimental data obtained with untreated and CsA- and CPZ-treated human HepaRG cells. Data from both previously performed and new experiments on untreated and drug-treated cells were analyzed. All our results were obtained by dynamic modeling of time-resolved experimental data and parameter estimation. Our basic model of bile acid transport was established on ODEs and was extended by a dynamic drug-effect model introducing transporter activity and canalicular volume as dynamic states. These features are important components of bile acid secretion and flow, the deregulation of which are implicated in drug-induced cholestasis (Watanabe et al., 1991, 2007).

We analyzed TCA clearance by measuring uptake and both canalicular and sinusoidal efflux that are predominantly performed by sodium-taurocholate co-transporting polypeptide (NTCP), BSEP, and MRP3 membrane transporters, respectively. Although passive diffusion is reported for some bile acids the predominant clearance of the prototypical bile acid, TCA, for hepatobiliary studies is through active transport by the involvement of these membrane transporters. In untreated cells, TCA was found in the three compartments, ie, cells (intracellularly), BC lumen, and medium after a short incubation. Time-dependent increased accumulation in the medium during the 30 min incubation likely reflected an increased sinusoidal efflux associated with the activation of the MRP3 membrane transporter in the presence of drugs, which has been described as a compensatory mechanism in the event of BSEP inhibition (Yang et al., 2013). In support of this, immuno-localization of MRP3 showed a more intense labeling of the sinusoidal membrane after 30 min of CsA treatment (Sharanek et al., 2015). However, it cannot be excluded that a fraction of TCA was effluxed to the supernatant via BC. Indeed, we recently showed that BC exhibit asynchronism contraction and relaxation cycles of around 60 min each to evacuate BC content into the supernatant (Sharanek et al., 2016).

In our model, membrane transporter activity returns close to its basal level following CsA treatment. By parameter estimation we found that this regulatory mechanism could play a major role for sinusoidal export but not for cellular uptake and canalicular export. The model favors a scenario where sinusoidal transporters quickly recover after CsA treatment and restores full sinusoidal membrane transporter activity, whereas for uptake and canalicular export transporters the recovery of activity remains partially inhibited. Consequently, TCA export is shifted from canalicular to sinusoidal export which, under normal conditions, contributes only 20% to the total export. Thereby, the sinusoidal membrane transporter activity confirms its role as an alternative route of TCA exports when the canalicular membrane transporter (ie, BSEP) is inhibited. These observations hold promising insights for the study on the simultaneous inhibition and recovery of membrane transporter activities in acute drug-induced cholestasis. Further work to extend these observations to other cholestatic drugs will provide important developments to establish if the effects of CsA and CPZ on membrane transporters are drug specific, or equally applies to potent cholestatic drugs and rarely cholestatic drugs.

Inhibition of transporter activity by the 2 prototypical inhibitors, CsA and CPZ, was modeled phenomenologically by irreversible and irreversible binding reactions. Parameter estimation revealed that all transporters have a well-defined forward- and backward reaction to CsA due to competitive inhibition characteristics of CsA. This means that the time-scales of inhibition and recovery as well as the extent of inhibition during and after CsA treatment can be uniquely determined from the time-course experiments for the three membrane containing...
transporters. CPZ which is an inhibitor of cellular uptake and canalicular export but not sinusoidal export (Antherieu et al., 2013) was found to act on TCA clearance rates more slowly when compared with CsA. In agreement, by parameter estimation we could show that inhibition by CPZ is irreversible, the 2 reaction parameters corresponding to reversibility being compatible with zero. Indeed, experimental studies showed that the cholestatic mechanism of CPZ is indirect and slower, depending on generation of reactive oxygen species that lead to irreversible bile flow inhibition (Antherieu et al., 2013). This indicates that the mathematical model is capable of distinguishing between the 2 cholestatic drugs which act by different mechanisms. In addition, the effect on clearance by both CsA and CPZ causes reduction of canalicular size which was confirmed by direct light microscopic observation. Therefore, the canalicular volume was included as a dynamic state into the mathematical model. We found that the volume reduction was well described when linked to compound exposure and effect on TCA clearance. These features are important when considering testing unknown drug safety profiles for cholestasis in drug discovery. Moreover, the model predicts Ki and can be extended to the study of drug-drug interactions, bile acid perturbation and BC deregulation in drug safety testing. The assessment of Ki was performed by 2 approaches in our work with generally comparable results (Supplementary Material Section S5). The observed differences by 2 the approaches can be attributed to the temporal effect of inhibition and transport recovery. The ability to model both inhibition and recovery can provide important insight when defining drug safety by use of the dynamic model.

Finally, to validate that data from experiments on HepaRG cells are adequate to build a physiologically relevant mathematical model, we analyzed sets of data on TCA uptake and efflux from PHH. As expected, the mathematical analysis of all data reveals expected variability in PHH clearance of TCA that was considerably larger than in HepaRG cells attributed to the statistical fluctuations of inter-donor variability. By contrast, statistical analysis of HepaRG cells data showed high inter-assay reproducibility, further supporting the stable phenotype of this cell line and its suitability to construct a mathematical model to explore for the first time the hepatobiliary function and apparent inter-relationship of membrane transport, BC dynamics by drug-induced impairment of TCA clearance. Use of HepaRG cells, which confers stable biological phenotype without donor-donor phenotypic variabilities associated with isolated PHHs, would permit use in the screening and modeling of novel drug candidates in pharmaceutical drug discovery. The approach herein would equally contribute to known works on Systems Pharmacology Modeling that de-
on chlorpromazine-induced cytotoxicity and cholestatic features in HepaRG cells. Drug Metab. Dispos. 42, 1556–1566.

