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a b s t r a c t

Heat Stroke (HS) is a life-threatening illness caused by prolonged exposure to heat that causes severe

hyperthermia and nervous system abnormalities. The long term consequences of HS are poorly un-

derstood and deeper insight is required to find possible treatment strategies. Elevated pro- and anti-

inflammatory cytokines during HS recovery suggest to play a major role in the immune response. In

this study, we developed a mathematical model to understand the interactions and dynamics of cy-

tokines in the hypothalamus, the main thermoregulatory center in the brain. Uncertainty and identi-

fiability analysis of the calibrated model parameters revealed non-identifiable parameters due to the

limited amount of data. To overcome the lack of identifiability of the parameters, an iterative cycle of optimal

experimental design, data collection, re-calibration and model reduction was applied and further informa-

tive experiments were suggested. Additionally, a new method of approximating the prior distribution of the

parameters for Bayesian optimal experimental design based on the profile likelihood is presented.

© 2014 Elsevier Inc. All rights reserved.
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. Introduction

Heat Stroke (HS) is a life-threatening illness caused by prolonged

xposure to heat. It is commonly diagnosed as core temperatures

Tc ) > 40 °C, profound central nervous system abnormalities and

rgan or tissue damage [1]. In times of global warming, HS is

ot only a sports and military problem [2] but becomes a pub-

ic health issue, endangering not only the young and elderly [3].

n the past two decades HS had a higher death toll in the United

tates than tornadoes, hurricanes, earthquakes and lightning com-

ined [4]. Despite clinical cooling therapies, HS is often followed

y the systemic inflammatory response syndrome (SIRS) and multi

rgan dysfunction and no preventive treatments, e.g., pharmaceu-

ics have been discovered [5,6]. Mechanisms mediating SIRS are

ot well understood, but concomitantly elevated pro- and anti-

nflammatory cytokines during HS recovery [1,3–6] suggest that

complex network of cytokines functions as potential mediator.

urthermore, HS patients and animal models show unexplained
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emperature behavior during recovery consisting of immediate hy-

othermia and fever 24 h after heat exposure. Hypothermia is thought

o be a consequence of damage to the pre-optic anterior hypothala-

us (POAH) [1,3], which is considered the main thermoregulatory

enter in the brain [7,8], however, these effects also occur in absence

f any damage [6]. Elevated pro- and anti-inflammatory cytokines

re able to act on the CNS to regulate Tc during inflammation which

akes them most likely to be part of the Tc response. Biedenkapp

t al. [6] determined increased cytokines (heat shock protein 72 (HSP),

nterleukin-6 (IL-6), IL-1, tumor necrosis factor (TNF)α) and cyclooxy-

enase (COX) 2 gene expression changes in the hypothalamus, sug-

esting them to be associated with SIRS and Tc regulation.

Rodriguez-Fernandez et al. [4] developed a mathematical HS

odel, describing the dynamics of gene expression of HSP, IL-1α,

L-1β , IL-6, IL-10 and TNF-α in the liver during early stages of

IRS. To understand the cytokine dynamics which may regulate

c, we extended the approach to the hypothalamus. In contrast

o the complex model in [4] (65 ordinary differential equations

ODEs) and 130 free parameters) a more simple model was built

o describe the dynamics of HSP, IL-6, TNF-α, IL-1, IL-10 and cox-2

http://dx.doi.org/10.1016/j.mbs.2014.07.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2014.07.011&domain=pdf
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Table 1

Data shows fold changes in the hypothalamus of heated relative to

controls in C57BL/6J mice.

Gene Tc,max HD 24 h

HSP 44 ± 12a 216 ± 18a 1.0 ± 0.5

IL-6 1.1 ± 0.3 3.6 ± 1.1a 0.72 ± 0.50

TNF 1.9 ± 1.3 7.8 ± 1.9a 2.7 ± 0.6

IL-1 3.7 ± 0.8a 27 ± 5.3a 2.5 ± 0.9

cox2 1.5 ± 0.5 3.6 ± 0.5a 2.0 ± 0.7

a Represents significant difference from controls (student’s T-test:

p < 0.05). Data obtained from [6].
gene expression disregarding any transcription factors. A systems bi-

ology approach helps to gain insight in the important interactions and

pathways during and ensuing HS as well as explains the dynamics of

the observables between measurements. The mathematical model

helps to identify the molecular mechanisms, which may serve as po-

tential pharmaceutical targets in HS patients and can be utilized to

perform in silico experiments, which saves costs, time and reduces

animal testings.

In order to rely on the obtained information from the model, it is

important that its predictions can be trusted. Model predictions de-

pend on the estimated model parameters which are obtained from the

fitting to the experimental data and their identifiability. After param-

eter estimation, some parameters may not be identifiable, due to a

limited amount and quality of the experimental data. That means the

confidence intervals (interval; which contains the true value with a

certain probability) are infinite. Even if parameters are uniquely iden-

tifiable they can only be estimated within a finite confidence interval,

in case measurement errors exist [9]. Uncertainties in the parameter

estimates thus directly translate in model predictions making some

biological questions not addressable [10].

Hence, it is important to resolve non-identifiabilities in a math-

ematical model by incorporating new data. However, the choice of

new data is crucial to the information which is needed to identify

parameters. Optimal experimental design (OED) can be used to find

the most informative experimental conditions. In this study an it-

erative cycle of model calibration, identifiability analysis, OED and

experiments is demonstrated to identify parameters in an inflam-

matory model describing the cytokine interactions in the hypotha-

lamus. Parameter estimation is done by optimizing the likelihood

and identifiability analysis as well as OED is based on the profile

likelihoods of the estimates [10]. Additionally a new method of ap-

proximating the prior distribution of parameters in Bayesian OED is

presented.

2. Methods

2.1. Description of the data

A detailed description of the experimental methods can be found

elsewhere [6]. Briefly, male C57BL/6J mice were accustomed to

standard environmental conditions (25 ± 2 °C, 12:12 h light–dark

cycle, lights on at 6am). Before the experiment mice were in-

traperitoneally implanted with a battery-operated radiotelemetry

transmitter device to record Tc. Tc was monitored in 1-min in-

tervals with a precision of ± 0.1 °C throughout the experiment.

Full recovery from surgery was awaited until experiments were

begun (≥1 week). A detailed version of the heat stress proto-

col can be found elsewhere [3]. In summary, mice were ex-

posed to an ambient temperature (Ta) of 39.5 ± 0.2 °C with-

out food and water until they reached a maximum temperature

(Tc,max) of 42.7 °C. Ensuing removal from the heat, mice were

kept at Ta = 25 °C with free access to food and water for re-

covery. Prior to the experiment mice were randomly assigned to

one of the following groups for tissue collection: (1) baseline (im-

mediately prior to the experiment, t = 0), (2) Tc,max (Tc = 42.7

°C), (3) hypothermia depth (HD; lowest Tc value with cooling

rate ≤ 0.01 ◦C/min) and (4) 24 h after heat exposure. RNA was

isolated from micropunches of the hypothalamus and cDNA was

synthesized which was used in real-time PCR (polymerase chain

reaction) experiments. For each gene a threshold cycle (Ct) was de-

fined as the PCR cycle where the emitted fluorescence signal was

greater than any background noise. Data of heated and non-heated

controls were normalized by calculating the difference in Ct values

between the target gene of interest and the 18s internal housekeeping

gene
Ct = Cttarget − Ct18sRNA. (1)

ene expression changes in heated mice were calculated as fold

hanges relative to the average of non-heated controls using the
−ΔΔCt method [11] at the specific time points (Tc,max, HD, 24 h)

ith

ΔCt = ΔCtheated − ΔCtav,control. (2)

urthermore the mean of the fold changes and its standard er-

or was calculated at every time point tj (Tc,max, HD, 24 h)

or all observables i (HSP, IL-6, IL-1β , TNF-α, cox-2) according

o

˜i(tj) = 1

Z

Z∑
z=1

ỹiz(tj) and σi(tj) = σỹiz
(tj)√
Z

(3)

ith

ỹiz
(tj) =

√
1

Z − 1

∑Z

z=1
(ỹiz(tj)− ỹi(tj))

2. (4)

nd Z being the number of data points obtained at tj. A detailed

escription of the data is provided in [6] and summarized in Table 1.

In order to use the mean fold changes calculated in Eq. (3) an

verage of the temperature profiles of the heated mice has to be

sed. However, sampling points at Tc,max and HD depend on the tem-

erature and therefore vary in the sampling times according to the

ndividual heating and cooling rate of the mice. Rodriguez-Fernandez

t al. [4] has shown that averaging along the time axis would lead

o misleading results in terms of the temperature values. Thus in-

ividual temperature profiles were averaged along the temperature

xis (Fig. 1). For modeling purposes sampling time points at Tc,max

nd HD were determined from the averaged temperature profile to

Tc,max = 261 min and tHD = 445 min.

.2. Framework, modeling and assumptions

The underlying framework of the mathematical model describing

he cytokine dynamics during heat stroke is presented in Fig. 2. The

ynamics are modeled by ODEs

d

dt
x(t, θ) = f(x, θ, u(t)) (5)

here x is a vector of the species, θ the free model parameters and

(t) an input to the system. f describes all reaction rates and inputs

o the respective species. It will be specified in the following.

It has been assumed that the elevated Tc is the only trigger of

he concomitantly elevated pro- and anti-inflammatory cytokines

y increasing the concentration of denatured proteins, endotoxins

lipopolysaccharides, LPS) and reactive oxygen species (ROS) [4].

eeing that NF-κB is not strongly elevated during heat stroke in

he liver [4] and the fact of increased mortality in toll-like recep-

or 4 (TLR4; receptor to detect LPS and initiate an immune re-

ponse) KO mice [12] suggests that LPS may not play a signifi-

ant role. Furthermore we neglected the impact of ROS and tested

he hypothesis that immune responses ensuing heat stroke are

ainly mediated by denatured proteins. Denaturation of proteins can
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Fig. 1. The individual temperature profiles for the wild-type (WT) mice are shown in red and the average over temperature is displayed as a blue dotted line. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Model of the inflammatory network of cytokines in the hypothalamus. The

thick black arrow represents the activation rate coming from a constant pool of inac-

tivated macrophages, etc. Thin black arrows represent the synthesis of mRNA coming

from activated macrophages, green arrows indicate activation while red lines specify

inhibition. Hypothalamus mRNA fold changes at Tc,max, HD and 24 h and a temperature

profile were measured for blue boxes whereas no data was available for brown boxes.

(For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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Table 2

Table of interactions with corresponding references and assumptions.

Gene Synthesis and Activation by Inhibition by

production MM kinetics MM kinetics

HSP Tc dependent [14] – –

M Const. MR = 1 HSP [15], TNF [18,19], IL-1 [18] IL-10 [20]

IL-6 ∝ M [21] TNF [22,23], IL-1 [22] IL-10 [20]

TNF ∝ M [24] – IL-10 [20]

IL-10 ∝ M [25] TNF [26,24] –

IL-1 ∝ M [27] - IL-10 [20]

cox-2 ∝ M [28] IL-6 [29–31] IL-10 [20]
ccur at temperatures as low as 37–38 °C which stimulates the ex-

ression of HSPs through activation of HSF-1 (transcription factor of

SPs) [4,13,14]. Peper et al. [14] has shown that the denaturation

rocess of proteins is exponential in Tc. For sake of parsimony and

implicity the activation process of HSPs was disregarded and an ex-

onential ansatz was assumed for the mRNA synthesis

ate of synthesis = kHSP exp [α(Tc(t)− 37 ◦C)] for Tc ≥ 37 ◦C

(6)

here Tc(t) is the input of the system (u(t)). It can be seen that the HSP

ene expression is delayed compared to the temperature response

hich is most likely due to the chain of reactions starting at the

enaturation of proteins until the transcription of HSP mRNA. The

elay was determined to be δ = 100 min from [4] and mathematically

ealized as

c(t) =
{

37 ◦C, t < δ,

T∗
c (t − δ), t ≥ δ.

(7)

o simplify the handling of the input temperature, cubic splines

ere fitted to the experimental data prior to computational
nalysis. Cubic splines are continuous and easily to be derived, which

elp the usage in solving ODEs and derivative based optimization

Section 3).

Increased HSP gene expression is able to modulate the activa-

ion of macrophages and monocytes [15,16] which further can secret

ro- and anti-inflammatory cytokines. Activated macrophages and

onocytes are part of a black box in the model which initiates the

mmune response under heat stroke. It is assumed that the black box

s activated from a constant pool MR = 1 of inactivated macrophages,

onocytes, etc. Synthesis of mRNA was modeled with mass action

inetics proportional to the concentration of the activated black

ox [17]

ate of synthesis = θxi
· M. (8)

Furthermore cytokines interact with each other what can enhance

r suppress the synthesis rate

ate of synthesis = θxi
· M · (1 + Activation) · Inhibition. (9)

or the sake of simplicity activation and inhibition are modeled with

ichaelis Menten (MM) kinetics [4,17]. Activating MM kinetics are

iven as

xj/θxixj

1 + xj/θxixj

(10)

here xj activates xi and θxixj
is the respective MM constant. Inhibiting

M kinetics are given as

1

1 + xk/θxixk

. (11)

ere, xk inhibits xi and θxixk
is the inhibiting MM constant. Last but

ot least degradation is assumed to be linear, i.e.,
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Rate of degradation = dxi
· xi. (12)

The considered interactions in the model are shown in Fig. 2 and are

summarized in Table 2.
Thus the full set of ODEs reads as follows:

dHSP

dt
= θHSPeα(T(t−δ)−37) − dHSPHSP

dM

dt
= MR ·

(
HSP/θMHSP

1 + HSP/θMHSP
+ IL1/θMIL1

1 + IL1/θMIL1
+ TNF/θMTNF

1 + TNF/θMTNF

)
1

1 + IL10/θMIL10
− dMM

dIL6

dt
= θIL6 · M ·

(
1 + TNF/θIL6TNF

1 + TNF/θIL6TNF
+ IL1/θIL6IL1

1 + IL1/θIL6IL1

)
1

1 + IL10/θIL6IL10
− dIL6IL6

dTNF

dt
= θTNF · M · 1

1 + IL10/θTNFIL10
− dTNF TNF

dIL10

dt
= θIL10 · M ·

(
1 + TNF/θIL10TNF

1 + TNF/θIL10TNF

)
− dIL10IL10

dIL1

dt
= θIL1 · M · 1

1 + IL10/θIL1IL10
− dIL1IL1

dcox2

dt
= θcox2 · M ·

(
1 + IL6/θcox2IL6

1 + IL6/θcox2IL6

)
∗ 1

1 + IL10/θcox2IL10
− dcox2cox2. (13)

Here, the free parameters combine to a parameter vector θ and the

degradation constants are denoted by d with appropriate subscripts.

Without heat the system of ODEs is assumed to be at steady state

d

dt
x(t, θ) = 0. (14)

Fold changes of gene expression of heated mice are calculated relative

to controls, i.e., initial conditions that are equivalent to steady state

conditions are x0 = 1 for all compounds of the model. Degradation
constants can therefore be calculated as

Fig. 3. The heat stroke model (solid lines) was calibrated to gene expression data from HSP,

one standard deviation is plotted by error bars. Initial conditions were given by controls x0 =
dxi
:

ẋi(t = 0, θ)

dt
= 0

}
(15)

nd the number of estimated parameters is reduced from 26 to 19.

. Computational methods

.1. Model calibration

The system of ODEs has been solved numerically by CVODEs [32]

hich can be accessed by a MATLAB interface and simultaneously

rovides derivatives of the estimates which are needed in the opti-

ization.

The model parameters θ have been estimated by optimizing the

ikelihood estimator. Assuming normally distributed measurement

oise the likelihood function

(ỹ|θ) =
Nk∏

k=1

Ni∏
i=1

Nj∏
j=1

1√
2πσik(tj)

exp

[
−

(
ỹik(tj)− yik(tj, θ)

)2

2σ 2
ik
(tj)

]
(16)

s a well-known distance measure. Here, Nk is the number of exper-

ments, Ni the number measured observables and Nj the number of

ampling points, ỹik(tj) is the measurement i in experiment k at time

j, yik(tj, θ) the predicted model value i in experiment k at time tj and

ik(tj) the respective variance of the measurement. Maximizing the

ikelihood function is equivalent to minimizing the weighted sum of

quared residuals

2(ỹ|θ) =
∑
ijk

(ỹik(tj)− yik(tj, θ))
2

σ 2
ik
(tj)

. (17)

he optimization

ˆ = arg minθχ
2(ỹ|θ) (18)

as been performed with the implemented MATLAB function

SQNONLIN. It is a local deterministic solver based on the gradient
IL-6, TNF, IL-1 and cox-2 at Tc,max, HD and 24 h. Data is indicated with an asterisk and

1.
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Fig. 4. Profile likelihoods χ2
PL(θi) (black solid lines) were calculated for 19 model parameters with respect to the WT data. A 95% point-wise threshold (red dashed line) holds for

each parameter individually (df = 1). The optimal parameter value is indicated with an asterisk. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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f the cost function. To avoid local minima a multistart method has

een used where initial parameters were generated with Latin hyper-

ube sampling [33].

.2. Identifiability analysis

Identifiability of the parameters was analyzed by calculating the

rofile likelihood of each parameter [10,34]

L(θm) = min
θn�=m

χ2(ỹ|θ). (19)

y re-optimizing χ2(ỹ|θ) with respect to θn �=m for different values of

m. It breaks down the high dimensional parameter space into one

imension and makes identifiability easy to visualize. A perfectly flat
ig. 5. Modifications of the inflammatory pathways in the knock out experiments are indica

he reader is referred to the web version of this article.)
rofile indicates a structural non-identifiable parameter, i.e., it de-

ends on the model structure only and cannot be resolved by in-

reasing the amount or quality of the data. A desired confidence level

as been used to distinguish between practical non-identifiable and

dentifiable parameters. For identifiable parameters the confidence

nterval is finite whereas for practical non-identifiable parameters it

s infinite on either or both the upper and lower bound. The confidence

nterval can be obtained from the profile likelihood

I(θm) = {θm|PL(θm) ≤ χ2(ỹ|θ)∗ + Δα} (20)

here Δα is the α-quantile of the χ2 inverse cumulative distribu-

ion function with one degree of freedom and χ2(ỹ|θ)∗ the opti-

ized cost function with respect to all parameters. In this work a
ted with a red cross. (For interpretation of the references to color in this figure legend,
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Fig. 6. To perform OED with the trajectory method, parameter vectors were chosen along the profile likelihoods of non-identifiable parameters (Fig. 4). Then model predictions

of knock out designs were simulated for the possible observables HSP, IL-6, TNF, IL-1, cox-2 and IL-10. A large spread indicates an informative measurement and a small spread a

weak informative experiment.

3

t

t

threshold corresponding to a 95% (α = 0.95) confidence level has been

chosen.

Model calibration and identifiability analysis were performed with

the open source software D2D [33] which can be obtained from

https://bitbucket.org/d2d-development/d2d-software/overview.
.3. Optimal experimental design

OED can be used to choose among possible experiments ω such

hat the free model parameters θ can be optimally estimated from

he measurement data ỹ(ω) which becomes a function of ω. The

http://https://bitbucket.org/d2d-development/d2d-software/overview
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Table 3

Relative distances of predicted trajectories to the optimal trajectory along profile

likelihoods of non-identifiable parameters. Distances S(yi)were calculated accord-

ing to Eq. (33) for observables in the knock out experiments. Suggested observables

are indicated in red.

yi HSP IL-6 TNF IL-10 IL-1 cox-2

S(yi) IL6 KO 0.246 0 6.903 20.481 3.667 3.863

S(yi) TNFR KO 0.495 8.692 16.779 43.136 10.676 9.482

Best KO TNFR TNFR TNFR TNFR TNFR TNFR

Table 4

TNFR KO data in fold changes in the hypothalamus of heated mice relative to

controls.

Gene Tc,max RTB HD

IL-10 1.2 ± 0.5a 3.3 ± 0.5a 5.2 ± 1.7a

TNF 0.7 ± 0.5 1.8 ± 0.5 16.5 ± 3.8a

IL-1 5.7 ± 0.5a 4.6 ± 0.9a 17.4 ± 2.9a

a Represents significant difference from controls (student’s T-test: p < 0.05).
ED problem aims to find the most informative experiment ω̂ within

design space �.

A common approach is to maximize a scalar measure φ(·) of the

isher Information Matrix (FIM) [35,36]

ˆ = argmax
ω∈�

φ(FIM(ω, θ)). (21)

here the FIM quantifies the information content of the experimental

ata and is defined as the expectation of the second derivative of the

og-likelihood with respect to the change of parameters [35]. If the

arameter estimates are normally distributed the FIM

IMnm(ω, θ) =
∑
ijk

1

σ 2
ik
(tj)

∂2yik(tj, θ)

∂θn∂θm
(22)

ontains second order derivatives of the observables with respect to

he free parameters. For the scalar measurement φ(·) the commonly

alphabetical” OED criteria were used. A-optimal maximizes the sum

f eigenvalues of the FIM which corresponds to minimizing the av-

rage variance of the estimated parameters. D-optimal minimizes

he generalized variance of the estimated parameters by maximizing

he determinant of the FIM and E-optimal minimizes the estimate

ith the largest uncertainty by maximizing the smallest eigenvalue.

n nonlinear dynamic systems, the FIM depends on the estimated

odel parameters θ̂ and therefore makes it only meaningful if all pa-

ameters are identifiable [35]. In the presence of non-identifiabilities

obust OED methods are needed.

.3.1. Bayesian OED

Bayesian OED considers the prior probability distribution P(θ) of

he parameters. Based on Lindleys decision theory framework [37],

e et al. [36] presented a general Bayesian design criterion

ˆ = argmax
ω∈�

E
θ∈�

{
φ(FIM(ω, θ))

}
(23)

argmax
ω∈�

∫
�
φ(FIM(ω, θ))P(θ)θ̇. (24)

Applying the design criteria φ(·) as discussed in the previous sec-

ion the approach is straightforward. However, for most biological

etworks the prior parameter distribution P(θ) is unknown and has

o be assumed. The prior has been realized in literature as e.g. a multi-

ariate uniform distribution in the parameter space �, a multivariate

aussian distribution around the estimated parameters θ ∼ N(θ̂,σ)
36] and a multivariate uniform logarithmic distribution in the pa-

ameter space � [38]. If preceding experiments are available gath-

red information about estimated parameters should be used in the

onstruction of P(θ). For this reason an empirical Bayesian approach

s presented. Rodriguez-Fernandez et al. [38] suggested to compute

he maximum likelihood function for a discrete number of parameter

ets

(ỹ|θq) : θq ∈ � with q = 1, 2, . . . , N (25)

nd weigh the parameter sets θq accordingly

(θq) = L(ỹ|θq)∑N
q=1L(ỹ|θq)

. (26)

herefore one obtains a normalized discretized probability distribu-

ion

N

q=1

P(θq) = 1 (27)

hich converges to a continuous parameter distribution for N → ∞.

or large parameter spaces N has to be really large to obtain a

eaningful prior distribution. To reduce the computational effort

e decided to consider only a subspace of parameters �sub ⊂ �
hich is in good agreement with the experimental data ỹ. Therefore
arameter sets having a negligible impact on the prior distribution

re ignored from the beginning. Finding such a subset can be done

ith the help of the profile likelihoods as defined in [39].

ˆ(θm) = argmin
θn�=m

χ2(ỹ|θ) (28)

s one point on the profile likelihood PL(θm) which is represented by

parameter vector containing the re-optimized parameters θn �=m to

he parameter value θm. The subspace can be written as

sub =
⋃
m

{θ̂(θm)|θm ∈ CIα(θi)} (29)

nd is visualized as all the points on the profile likelihoods beneath

he threshold Δα .

Nsub equally spaced parameter sets are chosen and weighted as

n Eq. (26) along the profile likelihoods PL(θm). The new probability

istribution based on the subset is given as

Nsub

q=1

M∑
m=1

P(θ̂q(θm)) = 1 (30)

ith M denoting the dimension of the parameter space and

(θ̂q(θm)) = L(ỹ|θ̂q(θm))∑
q,mL(ỹ|θ̂q(θm))

. (31)

nserting Eq. (31) into Eq. (24) leads back to the Bayesian OED maxi-

ization problem

ˆ = arg maxω∈�

Nsub∑
q=1

M∑
m=1

φ(FIM(ω, θ))
L(ỹ|θ̂q(θm))∑
q,mL(ỹ|θ̂q(θm))

. (32)

ven though the FIM is calculated from the local sensitivities a wide

ange of parameters depending on its uncertainties calculated from

he profile likelihoods has been considered which makes the Bayesian

esign robust to non-identifiabilities. Note, that the maximum range

s limited to the choice of the parameter bounds.

.3.2. Trajectory OED

In contrast to calculating the FIMs one can simulate the time

eries from the parameter vectors along the profile likelihoods for

ifferent designs yω(θ̂q(θm), t). The method has been described in

etail in [39,10]. Briefly, a wide spread of trajectories corresponds

o a very informative experiment to identify the respective pa-

ameter whereas small variability relates to a weak informative

xperiment. The variability of the trajectories was determined by
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Fig. 7. Model simulations (solid lines) versus experimental data. The heat stroke model was calibrated to WT average data at Tc,max, HD and 24 h and TNFR KO data at Tc,max, RTB

and HD with initial conditions x0 = 1.

a

e

4

4

s

calculating the relative distance with respect to the optimal trajec-

tory

S(yi) =
M∑

m=1

Nj∑
j=1

Nsub∑
q=1

abs
[
yi(tj, θ̂q(θm))− yi(tj, θ̂)

∗]
yi(tj, θ̂q(θm))+ yi(tj, θ̂)

∗ . (33)

Here yi(tj, θ̂)
∗

is the trajectory based on the parameter set with all

parameters optimized. A large value in the cost function indicates
n informative experiment and a small value a weakly informative

xperiment.

. Results wild type data

.1. Model calibration and identifiability analysis

The mathematical model described in the previous section con-

ists of 7 ODEs and 19 free model parameters. Experimental data of
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ild-type (WT) mice were used to calibrate the model parameters.

n accurate data-to-model agreement could be achieved with the

odel predictions lying within one confidence interval of all data

oints (Fig. 3). To investigate the uncertainty in the parameter

stimates, the profile likelihood of each parameter was calculated

here only 3 out of 19 parameters could be identified with a finite

onfidence interval (Fig. 4). The identifiable parameters α, θHSP and

MHSP are all affiliated with the dynamics of HSP gene expression,

hich suggests that the HSP dynamics are well-defined by the data.

he other parameters are non-identifiable, i.e., the profile likelihood

oes not exceed the 95% threshold at either or both the lower

nd upper bound. The high uncertainties in the non-identifiable

arameters translate into the model predictions, making them

nreliable. Therefore a cycle of identifiability analysis, experimental

esign and experiments was chosen to improve the uncertainties in

he estimates and thus the model predictions.

.2. Optimal experimental design options

Performing new experiments is very time consuming and expen-

ive. Therefore it is important to plan a new experiment efficiently.

o limit the costs as much as possible, we accessed a tissue bank of

eat stroke experiments conducted with gene knock out mice. The

evelopment of knock out experiments provide a valuable tool to

tudy cytokine interactions. Knock out mice lack functional genes

or cytokines or cytokine receptors in al the tissues of the body.

iving the fact that mice survive with the lack of one gene until

dulthood, one must assume that other mechanisms compensate

or the absence, which make results difficult to interpret and to

mplement in the model.

The tissue bank contained IL6 gene knock out (IL6 KO) and TNF

eceptor knock out (TNFR KO) tissues of the hypothalamus which
ig. 8. Profile likelihoods χ2
PL of the model parameter (solid lines) including the WT and the

ndividually (df = 1). The optimal parameter value is indicated with an asterisk. (For interpre

ersion of this article.)
ere frozen at −80 °C. All observables except the activated black box

HSP, IL-6, TNF, IL-10, IL-1 and cox-2) of our model were possible

easurements, however, due to experimental limitations only three

bservables could be measured. Tissue samples of heated and control

ice were maintained at Tc,max = 42.4 °C, return to baseline (RTB;

rst time point when Tc falls below 36 °C during recovery) and HD.

IL6 KO mice lack IL-6 congenitally in all tissues and are not able to

roduce IL-6 gene expression in any way. Mathematically, the design

as been realized by setting the secretion rate and the degradation

ate of IL-6 to zero (kIL6 = dIL6 = 0; Fig. 5a), thus no other compen-

ating mechanisms were considered. TNFR KO mice lack all the TNF

eceptors (p55 and p75), meaning they are not able to induce any bi-

logical effects outgoing from TNF. However, that does not mean that

NF cannot be expressed. Mathematically all the interactions terms

utgoing from TNF were consequently removed in the system of ODEs

see Fig. 5b).

.2.1. Optimal experimental design results

OED was performed to find the most informative experiment

mong IL6 KO and TNFR KO mice to identify the non-identifiable

arameters of the mathematical model. Our novel empirical Bayesian

ED favored TNFR KO for all criteria. To identify the most important

bservables individually the trajectory method was regarded. Five

rajectories per profile likelihood along non-identifiable parameters

ere simulated according to the respective design. Results are illus-

rated in Fig. 6 and summarized in Table 3.

The relative spreads of trajectories were calculated at the

ime points Tc,max (t = 261 min), RTB (t = 290 min) and HD

t = 445 min), revealing TNF, IL-10 and IL-1 as most informative

bservables to measure. Analyzing Fig. 6, the largest spread of

rajectories occurs during recovery from HD, i.e., t ≈ 500–700 min.
TNFR KO data. A 95% point-wise threshold (red dashed line) holds for each parameter

tation of the references to color in this figure legend, the reader is referred to the web
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Fig. 9. Model predictions for IL-6 (a), IL-10 (b and e), TNF (c) and cox2 (d) gene expression data in IL10R KO (a and b), IL1R KO (c), IL6R KO (d) and IL1 KO (e) mice. Parameter

vectors were chosen along the profile likelihoods of the to be identified parameters (see subcaption).
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Therefore it would be most informative to modify the heat stress

protocol such that mice are sacrificed at times after HD, for future

experiments. Since mice have an individual heating and cooling

rate, no specific time point can be suggested. Therefore we suggest

to sacrifice the mice at the first time point Tc > 34 °C after HD in

prospective experiments.

5. Including TNFR KO data

5.1. Experimental data

Following the suggestions of the empirical Bayesian OED method

and the trajectory OED method, we measured IL-10, IL-1 and

TNF gene expression in TNFR KO mice. Tissue samples were ex-

tracted at Tc,max, RTB and HD. The corresponding time points

were calculated from the averaged temperature profile of the

TNFR KO mice to Tc,max (t = 263 min), RTB (t = 290 min) and HD
t = 427 min) and the gene expression data are summarized in

able 4. Incorporating the TNFR KO data in the model calibration

esulted in a still good data-to-model agreement for both the WT

ata, see Fig. 7a and the TNFR KO data, see Fig. 7b. Again for the

T data, the fitting lies within the confidence interval in almost

very data point. Only IL-1 at HD is considerably larger than the

odel predictions, suggesting a possible IL-1 activation by TNF, as

eported by [30], since the fitting of the TNFR KO data captures

he trend of IL-1 almost perfectly. The TNF and IL-10 dynamics in

he TNFR KO experiment are well enough captured. Identifiability

nalysis on the newly estimated parameters by calculating the pro-

le likelihood is illustrated in Fig. 8. Five new parameters could

e identified, namely θcox2IL10, θIL10, kθTNFM θcox2 and θMTNF , mak-

ng a total of 8 out of 19 parameters identifiable and leaving 11

ut of 19 non-identifiabilities. Especially the likelihood profiles of

IL6IL10, θIL6, θIL6TNF and θcox2IL6 did not change incorporating the

ew data. This is not surprising since they are all affiliated with
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L-6 dynamics for which no new data were acquired. Addition-

lly, including the TNFR KO data opens up possibilities to reduce

he model. In general, whether a model should be reduced de-

ends on the biological issue of the model. Here, the focus lies

n explaining the cytokine interactions and explaining their dy-

amics in the hypothalamus. Therefore model reduction becomes

easible.

The profile likelihoods of θIL1IL10 and θMIL10 in Fig. 8 have both

heir minimum of the cost function at their upper bound (ub = 103).

onsidering the structure of the inhibition of xj

θxjIL10

θxjIL10 + IL10
, (34)

he inhibiting effect depends on the concentration of IL-10 and the

nhibition constant θxjIL10. The larger θxjIL10 the smaller the inhibiting

ffect for a constant concentration of IL-10. If θxjIL10 � IL10 holds for

ll times the inhibition
θxjIL10

θxjIL10+IL10
≈ 1 becomes negligible and can be

eplaced by one in the ODE equations. Hence, the model can be re-

uced by θIL1IL10 and θMIL10 ignoring the inhibitory effects of IL-10 to

L-1 and the activated black box. The fitting results and the value of

he objective function did not change, confirming that the reduced

odel is able to describe the dynamics of the system without loss

f accuracy. The model reduction suggests that IL-10 inhibition of IL-

and the activated black box are negligible compared to the other

nteractions during the inflammatory response in the hypothalamus.

dditionally, parameter ++ MIL1, whose profile likelihood was just

elow the threshold, now becomes identifiable exceeding the thresh-

ld at the upper bound and making a total of 9 out of 17 parameters

dentifiable. Since the impact of the reduced parameters is negligible,

odel reduction helps to resolve parameter identifiabilities that were

early identifiable before without loss of fitting accuracy. Moreover,

he reduction supported by the experimental data also improved the

iological appropriateness of the model by identifying interactions

hat are not biologically relevant; insights that were not obvious at

he initial stage of building the model.

To resolve the remaining non-identifiabilities in silico experiments

f IL1 KO, IL1R KO, TNFR KO, IL6 KO, IL6R KO, IL10 KO and IL10R KO

ere conducted and analyzed with OED to find the most informative

erturbation. The temperature profile of the WT mice served as input

emperature and no specific time points were considered. Trajec-

ories along profile likelihoods of non-identifiable parameters were

imulated to visualize the highest variability in the in silico experi-

ents. IL10R KO turned out to be the most informative experiment.

t showed the highest variability in the trajectories for IL-6 to iden-

ify θIL6IL10, θIL6, θIL6IL1 and θIL6TNF (Fig. 8 and for IL-10 to identify

IL10TNF (Fig. 9b). Furthermore it is suggested to measure TNF in IL1R

O mice to identify θTNFIL10 (Fig. 9b) and cox-2 in IL6R KO mice to

dentify θcox2IL6 (Fig. 9d). Last but not least IL-10 in IL1 KO mice was

roposed for θIL1, showing the least variability compared to the other

arameters and thus making it the most difficult parameter to identify

Fig. 9e). For all experiments it is suggested to measure the cytokines

t the time point of the largest spread. For most cytokines this is the

ase at times after HD, agreeing with the suggestion to measure at

.g., the first time point Tc > 34 °C after HD.

. Conclusion

After developing a mathematical model of the liver [4] we ex-

ended the emphasis on the thermoregulatory center in the brain,

he hypothalamus. Based on previous studies we tested the hypoth-

sis that denatured proteins are the main initiator of the network

f HSP, cytokines and COX and considered effects of tissue dam-

ge, reactive oxidative species and endotoxins (LPS) negligible. HSP,

NF-α, IL-1, IL-6, IL-10 and cox-2 were secreted by an unspecified
lack box of activated macrophages and monocytes and were consid-

red the primary regulators of the immune response. The interactive

etwork is supported by literature, however, relations among species

nd are not exactly known and need to be experimentally validated.

etwork interactions were modeled with ODEs consisting of mass

ction kinetics and Michaelis–Menten functions.

The model was calibrated to mRNA accumulation in the hypotha-

amus provided in [6]. No protein data were measured but one would

xpect mRNA to change prior to protein expression. The model could

ccurately describe the mRNA data, supporting the hypothesis of DP

s main initiator. However, the Tc changes at 24 h could not be ex-

lained with the considered species in the model, showing all gene

xpression back to baseline at 24 h. The fever might be a delayed re-

ponse to the highly elevated cytokines at HD but it is more likely that

ther potential mediators, e.g., chemokines [6] trigger the Tc changes.

hemokines have been shown to regulate fever in response to LPS,

ut their function in HS remains unknown and needs to be further

nvestigated.

After parameter estimation a good fit was obtained and uncer-

ainty and identifiability of parameters were calculated by means

f profile likelihood. Identifiability analysis revealed difficulties in

nique parameter estimation in form of non-identifiabilities. Only

out of 19 parameters were identifiable within a 95% confidence

nterval which suggested to start an iterative cycle of identifiabil-

ty analysis, OED and new data collection. The empirical Bayesian

nd trajectory OED methods, which are robust to non-identifiable

arameters helped to decide on measurements of IL6 and TNFR KO

xperiments stored in a tissue bank. Within this step we presented

new method to calculate a prior in the empirical Bayesian design,

hich is weighted according to the profile likelihoods. IL-10, TNF-α
nd IL-1 were found to be the most informative observables in TNFR

O mice for parameter estimation and gene expression changes were

easured from hypothalamus tissue samples for the said cytokines.

he model was re-calibrated using the WT and the novel TNFR KO

ata and five more parameters could be identified. The new data sug-

ested that IL-10 inhibition on activated macrophages and on IL-1

s negligible and the model was reduced accordingly. Model reduc-

ions further improved the number of identifiable parameters. OED

ith in silico cytokine and cytokine receptor knock out experiments

uggested to measure IL-6 and IL-10 gene expression in IL10R KO HS

xperiments at time points after HD, to identify five of the remaining

ight parameters.
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