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The transcription factor POU5f1/OCT4 controls pluripotency in mammalian ES cells, but little is
known about its functions in the early embryo. We used time-resolved transcriptome analysis of
zebrafish pou5f1 MZspg mutant embryos to identify genes regulated by Pou5f1. Comparison to
mammalian systems defines evolutionary conserved Pou5f1 targets. Time-series data reveal many
Pou5f1 targets with delayed or advanced onset of expression. We identify two Pou5f1-dependent
mechanisms controlling developmental timing. First, several Pou5f1 targets are transcriptional
repressors, mediating repression of differentiation genes in distinct embryonic compartments. We
analyze her3 gene regulation as example for a repressor in the neural anlagen. Second, the dynamics
of SoxB1 group gene expression and Pou5f1-dependent regulation of her3 and foxD3 uncovers
differential requirements for SoxB1 activity to control temporal dynamics of activation, and spatial
distribution of targets in the embryo. We establish a mathematical model of the early Pou5f1 and
SoxB1 gene network to demonstrate regulatory characteristics important for developmental timing.
The temporospatial structure of the zebrafish Pou5f1 target networks may explain aspects of the
evolution of the mammalian stem cell networks.
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Introduction

The transcription factor POU5f1/OCT4 controls pluripotency
of mouse embryonic inner cell mass cells (Nichols et al, 1998),
and of mouse and human ES cell lines (Boiani and Scholer,
2005). Although POU5f1/OCT4-dependent pluripotency tran-
scriptional circuits and many transcriptional targets have been
characterized (Boyer et al, 2005; Loh et al, 2006), little is
known about the mechanisms by which POU5f1/OCT4
controls early developmental events. In ES cells, POU5f1/
OCT4 cooperates with SOXB1 class transcription factors
(Masui et al, 2007), Nanog (Chambers et al, 2003; Mitsui
et al, 2003), and KLF4 (Jiang et al, 2008), to regulate target
genes. Together, these core components of the network
maintain their own expression and suppress differentiation.

In addition, POU5f1/OCT4 is involved in developmental
decisions, including trophectoderm segregation (Strumpf et al,

2005) and primordial germ cell survival (Kehler et al, 2004).
Mouse POU5f1/OCT4 is expressed in epiblast-derived structures
from gastrulation to the 16-somite stage (Downs, 2008), suggesting
other functions in development. However, detailed understanding
of POU5f1/OCT4 functions during mammalian blastocyst and
gastrula development as well as studies of the temporal changes in
the POU5f1/OCT4-regulated networks are precluded by the early
lineage defects in Pou5f1/Oct4 mutant mice (Nichols et al, 1998).
Similarly, investigation of potential roles of POU5f1/OCT4 in
differentiating ES cells is hampered by critical requirements for
POU5f1/OCT4 to suppress the first lineage-specification event—
trophectoderm differentiation (Niwa et al, 2000, 2002).

Pou5f1 gene homologues have been identified in birds
(cPouV; Lavial et al, 2007), Xenopus (XlPou91, XlPou25, and
XlPou60; Morrison and Brickman, 2006), axolotl (Axoct4;
Bachvarova et al, 2004), and zebrafish (pou2; Takeda et al,
1994). According to the current view, a common ancestor of
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jawed vertebrates had a single PouV class gene, syntenic to
zebrafish pou5f1/pou2 (Niwa et al, 2008; Frankenberg et al,
2009). This pou5f1/pou2-type gene was duplicated to give rise
to pou5f1/pou2 (in Xenopus and chick) and Pou5f1/Oct4 (in
Axolotl, mouse and human). All five sequenced fish species
have only a single pou5f1/pou2-type gene (Niwa et al, 2008;
Frankenberg et al, 2009), suggesting that the pou5f1/pou2
gene duplication occurred later in evolution, presumably in
the common ancestor of tetrapods. Therefore, zebrafish
pou5f1/pou2 should be considered to be an ortholog of mouse
Pou5f1/Oct4 and all other vertebrate PouV class genes
(Koonin, 2005). pou5f1 genes in vertebrates show broad
expression during pregastrulation and gastrulation stages
(Belting et al, 2001; Burgess et al, 2002; Bachvarova et al,
2004; Lunde et al, 2004; Morrison and Brickman, 2006; Lavial
et al, 2007; Downs, 2008), suggesting that at least in part their
function during these stages is conserved. Less well known is
that Pou5f1 in fish and mouse is also expressed in the neural
plate until midsomitogenesis (Takeda et al, 1994; Reim and
Brand, 2002; Downs, 2008). In contrast, expression in
primordial germ cells is present only in mouse and chick
(Kehler et al, 2004; Lavial et al, 2007), but not in zebrafish
(Reim and Brand, 2006).

In zebrafish, the zygotic pou5f1 loss-of-function mutation
spiel ohne grenzen (Zspg) is lethal due to neural plate
patterning defects (Belting et al, 2001). pou5f1 mRNA rescue
of Zspg embryos enables homozygous mutant fish to be
established that can generate embryos devoid of maternal
Pou5f1, Mspg (abbreviated ‘M’), in which the zygotes are
rescued by expression from the paternal allele; and MZspg
embryos (abbreviated ‘MZ’), which are completely devoid of
maternal and zygotic Pou5f1 activity (Lunde et al, 2004; Reim
et al, 2004). MZ embryos have gastrulation abnormalities
(Lachnit et al, 2008), dorsoventral patterning defects (Reim
and Brand, 2006), and do not develop endoderm (Lunde et al,
2004; Reim et al, 2004). The only direct Pou5f1 transcriptional
target characterized in zebrafish so far is sox17 during
endoderm specification (Lunde et al, 2004; Reim et al, 2004;
Chan et al, 2009). Interestingly, and in contrast to Pou5f1/Oct4
mutant mice, which are blocked in development due to loss of
inner cell mass, MZ mutant embryos are neither blocked in
development nor display a general delay. For example, Nodal-
dependent mesendoderm induction proceeds normally as
judged by the correct expression of ntl, ndr1, or gata5 (Lunde
et al, 2004; Reim et al, 2004). Further, gastrula organizer
formation as judged by the onset of gsc, boz, and chd
expression is initiated with the same developmental timing
as in wild-type (WT) siblings (Reim and Brand, 2006). Even
selected later development events, including somitogenesis,
proceed at a pace similar to WT (Lunde et al, 2004). At the
cellular level, the delay in epiboly movement in MZ is a
selective delay in deep cell epiboly, while the enveloping layer
is less affected (Lachnit et al, 2008). Specifically, in contrast to
the mammalian embryo, cell cycle and proliferation are
normal in MZ during early to midgastrula stages (Lachnit
et al, 2008). The early synchronous cell cycles in zebrafish are
maternally controlled (Kane and Kimmel, 1993), and largely
independent of Pou5f1 activity. Therefore, zebrafish present a
good model system to identify specific transcriptional targets
of Pou5f1 during development without disturbing develop-

ment by the loss of embryonic blastomers (inner cell mass)
observed in the mouse Pou5f1/Oct4 mutant.

To better understand the Pou5f1-regulated transcriptional
circuitry in zebrafish, we identified groups of genes activated or
repressed by Pou5f1, and analyzed the temporal and spatial
expression of these targets during the first 3–8 h of zebrafish
development, which correspond to pregastrula and gastrulation
stages. A large group of developmental regulators is prematurely
expressed in MZ embryos, whereas transcriptional repressors
including FoxD3 and Her3 are absent, and the expression of
SoxB1 genes is severely reduced. We found that Pou5f1 and
SoxB1 proteins share a large set of direct target genes. We
characterize her3 as a novel Pou5f1 target, and demonstrate
molecular mechanisms of regulation by Pou5f1 and SoxB1
proteins that can explain the temporal profile of her3 expression.
We developed a model of the regulatory network based on a set
of ordinary differential equations to describe the dynamics of
Pou5f1–SoxB1 target gene regulation, and provide important
insights into regulatory features of the network. Finally, we
compare the Pou5f1 targets in zebrafish and mouse, and
establish evolutionarily conserved components of Pou5f1 and
SoxB1 regulatory subnetworks that are likely critical for the
control and timing of vertebrate development.

Results

Pou5f1-dependent changes in the maternal
and early zygotic transcriptome

Pou5f1 is expressed maternally and zygotically during early
zebrafish development (Takeda et al, 1994). Complete loss of
Pou5f1 activity in MZ mutant embryos provides an in vivo
model to study the contribution of Pou5f1 activity to the
control of early vertebrate developmental progression and
early fate decisions. We investigated transcriptome changes by
microarray analysis at 10 distinct time-points during develop-
ment, from ovaries to late gastrulation. Comparison of
expression levels of each probe in WT and MZ genotypes
(Figure 1A; Supplementary Table 1) defined 20 stage-specific
sets of regulated genes. We grouped the probes independently
based on similarity of their temporal expression profiles
(Figure 1A and B; Supplementary Table 2; 24 temporal
profiles). We then identified those Pou5f1-regulated gene
groups that showed strong positive correlations between
stage-specific gene sets (SSGS, horizontal axis in Figure 1C
and D) and temporal profiles in WTand MZ (TP, vertical axis in
Figure 1C and D, respectively). This correlation analysis (see
Supplementary information and references therein for details)
enabled us to subdivide the large heterogeneous group of
Pou5f1 targets into smaller sets of genes with similar temporal
behavior (squares in Figure 1C and D). Visualization of gene
expression changes throughout developmental time in WT
(Figure 1C) versus MZ (Figure 1D) aids comprehension of the
temporal changes in the Pou5f1 downstream networks
(Supplementary Figure 1).

To assess the biological significance of the high correlation
between SSGS and TP for individual groups (squares in Figure
1C and D), or for clusters of neighboring groups (letters A–E in
Figure 1C and D), we performed Fisher’s exact tests for
enrichment in gene ontology (GO) function (Supplementary
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Table 3) and in specific expression patterns (Supplementary
Table 4). Clusters A to E proved to be significantly enriched for
specific GO functions in Fisher’s exact test. Only Clusters A, D,
and E were enriched in genes that function in development and
differentiation, and have region-specific expression patterns.
We did not specifically consider maternally expressed genes
regulated by Pou5f1 (Cluster B, enriched for metabolic
functions, and Cluster C, enriched for ribosomal proteins)
for further analysis, because genetic evidence indicates that
deficiencies in maternal transcripts can be completely rescued
by zygotic activity (Lunde et al, 2004; Reim et al, 2004).

Developmental regulators with loss or delay
of expression in MZ (Cluster A)

Cluster A (Supplementary Table 5) contains 1005 probes with
loss or delay of expression in MZ, and includes several early

acting transcriptional repressors (her3, klf2b, klf4, foxD3, snail2),
sox genes, patterning and differentiation genes, as well as genes
encoding diverse signaling pathway components (Figure 2A and
B). The reduced expression of her3, foxd3, sox2, hesx1, sox19b,
and sox11a, was confirmed by whole-mount in situ hybridization
(Figure 4E–G) and RT–PCR (Supplementary Figure 6E–G and
data not shown). Reduced or lost expression of 165 Cluster A
genes was also confirmed by an independent validation
microarray experiment using the Affymetrix platform (Supple-
mentary information; Supplementary Table 5).

Premature expression of patterning
and differentiation genes in MZ (Cluster DE)

Cluster DE (Supplementary Table 6) contains 844 probes
upregulated in MZ, and includes many genes involved in
embryonic patterning (pax6 (Stoykova et al, 1996); gbx2

Figure 1 Developmental time series and experimental analysis of Pou5f1-dependent transcriptome changes. (A) Scheme of microarray time-series data analysis
(0–8 hpf). In all, 20 stage-specific Pou5f1-regulated gene sets were defined based on 42-fold regulation MZ versus WT (5350 probes at Po0.05). Independently,
expression profiles of each gene were analyzed in WT and MZ separately for temporal changes in expression level, as shown in (B), and grouped to 12 temporal profiles
in WT and in MZ. (B) Examples of temporal profile groups. Reference temporal profiles (black lines), based on maximal switch between high to low (down) or low to high
(up) levels were calculated. Probes were grouped based on maximal similarity of temporal expression graphs (gray lines) to one of the reference profiles. (C, D)
Identification of Pou5f1-dependent target clusters by correlation analysis. Each temporal profile group (left) in WT (C) or MZ (D) was tested for significant correlations with
stage-specific Pou5f1-regulated gene sets (top). Intersection squares with strong correlations in Fisher’s exact test are colored (q-value Fisher’s exact test, legend at
top). The letters A–E indicate clusters showing functional enrichment in GO Fisher exact test.
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(Rhinn et al, 2003); and rx3 (Stigloher et al, 2006)), and
differentiation for example of neural tissues (sox21 (Sandberg
et al, 2005); COUP-TF family members nr2f1a, nr2f2 and nr2f5
(Gauchat et al, 2004)), or blood progenitors (tal1 and lmo2
(Gering et al, 2003)). A striking feature of this group is
premature initiation of expression in MZ, clearly visible in the
microarray-based developmental gene expression curves
(Figure 2C; Supplementary Figure 2). Indeed, expression of
the majority of Cluster DE genes starts only after 8 hpf in the
wild type, but occurs 2–4 h prematurely in MZ (Supplementary
Table 7, summarized in Figure 2B). By in situ hybridization,
we have confirmed premature expression of nr2f1 (at 4 hpf)
and pax6 (at 7 hpf), in MZ (Figure 2D), several hours
before their normal onset of expression. On the basis of the
prevailing functions of genes in this group, we classify them as
‘promoters of differentiation’ (PODs). The upregulaton of 191

Cluster DE members was confirmed by the independent
Affymetrix microarray experiment (Supplementary Methods
and Supplementary Table 6).

To evaluate the role of the level of Pou5f1 on the expression
dynamics of PODs, we performed transcriptome analysis of M
mutants (Supplementary Figure 4; Supplementary Table 11). M
mutants are devoid of maternal Pou5f1, and start to express
functional pou5f1 RNA when the zygotic genome is activated
at the midblastula transition (MBT, 3 hpf; data not shown).
Both Clusters A and DE genes are activated at MBT in
M mutants, but expression levels of most Cluster DE genes
decline below those of MZ by 5 hpf, and further decline to WT
levels (Figure 3A–E). Pou5f1 activating transcriptional repres-
sors, which then in turn repress PODs, may explain this
temporal behavior. Among the Pou5f1 targets is the transcrip-
tional repressor her3. We performed Her3 overexpression in

Figure 2 Pou5f1 is required for proper developmental timing of gene expression. (A) Microarray expression profiles in WT (white squares) and MZ (black triangles) of
Cluster A genes downregulated in MZ. (B) Diagram of selected Cluster A (downregulated in MZ, black font) and DE (upregulated in MZ, white font) genes organized by
their normal time of activation in WT. In WT, Cluster A genes start to be expressed at 3–8 hpf, whereas in MZ their expression during these stages is reduced or absent.
In contrast, in WT most Cluster DE genes start to be expressed at 48 hpf, and are involved in tissue specification and differentiation. In MZ, expression of Cluster DE
genes is prematurely activated at gastrula stages. (C) Microarray expression profiles in WT (white squares) and MZ (black triangles) of Cluster DE genes prematurely
activated in MZ. (A, C) Values were normalized to maximal expression (100). Error bars show s.e.m. of two probes (foxD3, klf2b, klf4, nr2f1) or of three biological
replicates for one probe. (D) Whole-mount in situ hybridization, lateral view with animal pole at top, except where animal pole view is indicated. Cluster DE genes with
different activation time and spatial pattern in MZ: pax6a prematurely appears after 7 hpf in the neuroectodermal region of MZ, nr2f1 is ubiquitously upregulated already
at sphere (4 hpf).
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MZ embryos to address if it could be involved in the repression
of nr2f1, pax6, or sox21b, and found that injection of her3
mRNA significantly reduced the levels of all three PODs
(Figure 3F), however, less efficiently than pou5f1 injection
(Figure 3G). Considering that her3 is expressed soon after MBT
(Hans et al, 2004), this suggests that Her3 may be involved in
the process of repressing PODs during gastrulation, acting
partially redundantly with other Pou5f1-dependent repressors
of differentiation (RODs).

Direct and indirect targets of Pou5f1

To determine whether repression of PODs by Pou5f1 is likely to
be direct or indirect, we performed a series of Pou5f1
overexpression experiments in which we inhibited translation

of zygotically expressed mRNAs with cycloheximide (CHX;
Figure 4A, Supplementary Table 8). We are aware that our
CHX-based analysis of zebrafish Pou5f1 targets still needs
verification of direct interactions by chromatin immunopreci-
pitation techniques. Targets induced by Pou5f1 re-expression
in MZ in the presence of CHX (termed ‘direct targets’)
significantly overlap with Cluster A genes (Figure 4B).
In contrast, we found no significant overlap of genes down-
regulated by Pou5f1 re-expression in MZ in the presence of
CHX with Cluster DE (Supplementary Figure 3; Supplementary
Table 9). We analyzed the genomic regulatory regions of genes
up- or downregulated in the CHX experiments, as well as those
of Clusters A and DE, for enrichment in Pou5f1 consensus
DNA-binding sites (Kel et al, 2006). We found an eightfold
enrichment (Po1e�6) of Pou5f1-binding sites in the direct

Figure 3 Pou5f1 indirectly represses PODs. (A–E) Temporally delayed repression of PODs in M mutant. (A) Expression of PODs in WT, M, and MZ at 4 hpf.
(B) Expression of PODs in WT, M, and MZ at 5 hpf. Relative expression of PODs is shown as percent of maximum (reference to M at 4 hpf but to MZ at 5 hpf, to better
reveal changing ratio M to MZ), data are from microarrays. Error bars show standard error of the mean (s.e.m.). (C–G) Expression analysis of PODs (real-time QPCR).
RNA was collected from M, MZ, or WT embryos at times indicated. (C) nr2f1 is an early POD with onset of expression already at 3 hpf in MZ. In M, expression levels of
nr2f1 show gradual decline at 4, 4.7, and 8 hpf. (D) Expression of sox21b, a neural POD with late switch time point in MZ (7 hpf, Supplementary Figure 2) was
indistinguishable in M and WT at 8 hpf. (E) pax6a, neural POD that switches up at 6 hpf in MZ (Supplementary Figure 2), expression levels at 8 hpf. (F) her3 mRNA
injection reduces nr2f1, pax6a, and sox21b expression in MZ. RNA isolated at 8 hpf. (G) pou5f1 mRNA injection reduces pax6a expression in MZ. Averages of three
independent experiments are shown, error bars—s.e.m. of three biological replicates. Star indicates significant difference from MZ control (Po0.05, Student’s t-test).
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targets of Cluster A, in comparison to the background of 6655
genes from the array (Supplementary Table 10). Groups of
genes downregulated by Pou5f1 showed no enrichment. Taken

together, these data indicate that Pou5f1 in zebrafish acts
primarily as a transcriptional activator, and may represses
zygotic genes only indirectly.

Figure 4 Direct Pou5f1 and Pou5f1/Sox transcriptional targets have spatially restricted expression domains. (A) Design of overexpression experiments analyzed by
microarray. CHX was added at the 64-cell stage to allow for translation of injected mRNA, but to block translation of the earliest zygotic transcripts. mRNA for analysis was
isolated from 4.7 hpf old embryos. (B) Overlap of target sets directly activated by injection of Pou5f1 (þ CHX) at 3–4.7 hpf and zygotically regulated clusters A 3–8 hpf. Pink-
shaded area highlights 133 developmentally regulated direct targets of Pou5f1. (C) Overlap of target sets activated at 3–4.7 hpf by overexpression of Pou5f1 and Sox2 in the
presence of CHX, analyzed by microarray. The set of shared direct targets Pou5f1 and Sox2 is shaded green. (D) Overlap of target sets directly activated by Pou5f1 (þ CHX)
or Sox2 (þ CHX) with Cluster A (3–8 hpf). Pink shading shows Sox-dependent (52) and Sox-independent (81) probe sets of Pou5f1 developmentally regulated Cluster A
genes. (E–G) Whole-mount in situ hybridization, probes and genotypes as indicated. (E, F) SoxB1 and SoxC genes require Pou5f1 for proper expression; animal pole views,
dorsal at right. (E) The expression of sox2 and sox11a is impaired in MZ already by 4.7 hpf; (F) sox2, sox19b, and sox11a are strongly downregulated, and sox3 expression is
mislocalized at 8 hpf. (G) Pou5f1 direct targets occupy different territories in the embryo: at 8 hpf in WT foxD3 is expressed in the margin and paraxial mesoderm, whereas the
target genes her3 and hesx1, which are regulated by both Pou5f1 and Sox, occupy posterior and anterior neuroectoderm, respectively; no detectable expression in MZ.
(H) Schematic drawing of zebrafish embryo at 75% epiboly (8 hpf), indicating the spatial segregation of expression domains of Pou5f1 targets. Genes induced by Pou5f1
directly (CHX experiments) are shown in bold; genes induced by Sox2 directly (CHX experiments) are underlined.
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Pou5f1 and SoxB1 proteins co-regulate a large
target set

Many Pou5f1 target genes in mammalian ES cells seem to be
controlled by Oct-Sox enhancers (Boyer et al, 2005).
We investigated the relative roles of Pou5f1 and SoxB1 proteins
by performing Sox2 overexpression in combination with CHX
treatment, and compared Sox2 direct targets with those of
Pou5f1. The analysis revealed a high positive correlation of
genes directly activated by Pou5f1 and Sox2 (128 probes in
Figure 4C; Supplementary Figure 3E; Supplementary Table
12), suggesting that Pou-Sox cooperation may regulate many
of the identified targets. Comparison of the results from the
CHX-treated embryos with Cluster A genes identified 81 probes
directly regulated by Pou5f1 alone and 52 probes regulated in
combination with Sox2 (Figure 4D). Pou5f1-direct but SoxB1-
independent targets include the transcription factors FoxD3,
Klf4, Snail2, and Sox11a. In contrast, Her3, Klf2a, Klf2b, Gata2,
Foxi, Sox2, and Sox3 expression directly depend on both
Pou5f1 and Sox2 (Supplementary Table S12).

SoxB1 proteins act as transcriptional activators and have
been reported to have the same DNA-binding specificity in
overexpression assays (Okuda et al, 2006). In zebrafish, 4
SoxB1 genes are expressed during the first 8 h of development:
sox2, sox3, sox19a, and sox19b. sox19b is present in the
zebrafish egg, others are only expressed zygotically (Okuda
et al, 2006). According to our data, sox2 is directly regulated
by both Pou5f1 and Sox2, sox19b is indirectly regulated
by Pou5f1 and directly by Sox2; sox11a is directly induced in
MZ by Pou5f1 in the presence of CHX (Supplementary Table 12
and data not shown). Most of SoxB1 activity, and that of the
SoxC gene sox11a is significantly reduced in MZ embryos
(Figure 4E and F).

Interestingly, tissue-specific expression of Pou5f1 targets
correlates with their regulation by Sox2. Out of 12 Pou5f1
transcriptional targets with characterized expression patterns
in neural or non-neural ectoderm, 10 are targets of Sox2.
In contrast, out of nine mesodermal targets only three are
also targets of Sox2 (Supplementary Table 13). SoxB1 group
genes are expressed in the whole-ectodermal region until 6 hpf
and become restricted to neuroectoderm at 8 hpf (Figure 4E
and F; Okuda et al, 2006; Dee et al, 2007). Our data indicate
that SoxB1 activity is sufficient for activation of her3, foxi1,
klf2b, tfap2a, and lhx5. In contrast, foxD3 and snail2 are
regulated by Pou5f1 independent of zygotic Sox activity,
which correlates with their expression in the mesendoderm
(Figure 4G, Supplementary Table 13). The spatial distri-
bution of selected Pou5f1 direct targets is summarized in
Figure 4H. Taken together, these data suggest that the
Pou5f1 transcriptional network is spatially segregated into
Sox-dependent (ectodermal) and Sox-independent (mesendo-
dermal) subnetworks.

Monophasic and biphasic expression profiles
of Pou5f1 target genes

Most Sox-independent direct Pou5f1 targets in WT reach
maximal expression levels soon after MBT (foxD3, klf4, snail2
in Figure 2A; Supplementary Figure 5). In contrast, Sox2- and
Pou5f1-dependent genes tend to have biphasic or delayed

expression, and reach maximum levels at 6–7 hpf (her3, klf2b,
foxi in Figure 2A; Supplementary Figure 5). We chose foxD3
and her3 as examples for Sox-dependent and -independent
targets to study further. MZ embryos injected with pou5f1 RNA
expressed foxD3 to the level of WT by 8 hpf, whereas her3 in
these embryos reached o10% of WT expression levels
(Supplementary Figure 6E and F). In CHX-treated MZ
embryos, Pou5f1 and Pou5f1-VP16 (Supplementary Figure
6D and F) were able to activate her3; however, the level of her3
message was about two orders of magnitude below the level in
WT embryos. These results suggested that, although the her3
promoter seems to be directly activated by Pou5f1, additional
Pou5f1-dependent indirect input is needed to reach full
expression levels.

her3 expression critically depends on a conserved
Oct/Sox enhancer

To investigate the mechanism of direct her3 regulation by
Pou5f1, we made a luciferase expression construct Her3_luc
with 2.2 kb of the her3 upstream promoter region (Hans et al,
2004). We identified a conserved Sox2–Pou5f1 composite ‘SP’
site 11 bp upstream of the TATA-box with high similarity to the
Oct4 Position Weight Matrix by Loh et al (2006) (Figure 5A).
Mutated Her3_Sm_luc and Her3_Pm_luc constructs showed
reduced activity in WT luciferase assays compared with
Her3_luc (Figure 5C), and could not be activated by over-
expression of Pou5f1 (Figure 5D; Supplementary Figure 7A).

Coexpression of Sox2 and either zebrafish or mouse Pou5f1
led to very strong (20� ) activation of Her3_luc, suggesting
cooperative action both in mammalian cell culture (Supple-
mentary Figure 7B) and in zebrafish embryos (Figure 5D). This
cooperativity was completely abolished in Her3_Sm_luc and
Her3_Pm_luc mutant constructs (Figure 5D), suggesting that
the interaction between Sox2 and Pou5f1 on the SP-binding
site is essential for her3 promoter activity (Figure 5D).
Coexpression of low concentrations of Pou5f1–VP16 strong
activator fusion (Lunde et al, 2004) with Sox2 in MZ embryos,
also resulted in cooperative activation of the Her3_luc
construct (Supplementary Figure 6H). To test whether Sox2
and Pou5f1 cooperatively bind to the SP site, we performed
DNA retardation assays with labeled WTor mutated Sm and Pm

oligos (Figure 5B), and either mouse or zebrafish Pou5f1 and
mouse Sox2 proteins. Specific complexes with Pou5f1,
and Pou5f1/Sox2 were detected when using labeled WT
(Supplementary Figure 7C) but not Sm or Pm probes (data not
shown). The formation of labeled triple zPou5f1/Sox2/DNA or
mPou5f1/Sox2/DNA complexes was effectively prevented
with as little as 10-fold excess of unlabeled WT oligo. Pm and
Sm unlabeled oligos competed for DNA in these triple
complexes with considerably lower efficiency than WT oligo
(Figure 5E; Supplementary Figure 7D and E, arrowheads).
Sm oligo, which contains a POU-binding half-site, could efficiently
compete for DNA in double mPou5f1/DNA or zPou5f1/DNA
complexes as efficiently as WT oligo (Figure 5E; Supplemen-
tary Figure 7D and E, arrows). Taken together, our data
indicate that her3 promoter activation is likely achieved by
cooperative binding of Pou5f1 and SoxB1 proteins to the SP
site. Phylogenetic conservation of the SP site and the similar
mechanism of binding by mouse and zebrafish Pou5f1 suggest
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Figure 5 her3 expression critically depends on Sox–Pou5f1-binding site. Zebrafish Pou5f1 and mouse Sox2 was used in all assays. (A) From top to bottom: 2.2 kb
her3 promoter–luciferase constructs with SP—Sox–Pou5f1-binding site. Alignment of the conserved SP-binding site for human, mouse, and zebrafish. Luciferase
constructs with mutations in the half-sites of SP. (B) Sequence of zebrafish SP-binding site, Sox half-site mutant (Sm) and Pou half-site mutant (Pm). Mutated residues
are shown in italics and underlined. Oct4 PWM from Loh et al (2006). (C, D) Luciferase assays. Zebrafish embryos were injected at 1 cell stage with wild type and mutant
reporter constructs and mRNAs as indicated, embryos snap-frozen at 6 hpf, and luciferase activity measured (see Supplementary information for details). (C) Her3
promoter activity in WT (white bars) versus MZ (black bars). Asterisks: significant difference of luciferase activity from WT (C) (Po0.05, two-tailed t-test), (D) Pou5f1 and
Sox2 cooperatively induce Her3 promoter construct activity in MZ embryos. (E) Gel retardation assay. Labeled WT oligo was incubated with in vitro transcribed proteins
and unlabeled oligos as indicated at the top. 10� ; 20� or 100� excess of unlabeled WT (lanes 3–5), Sm (6–8) or Pm (9–11) oligo was added. Formation of the
Pou5f1/Sox2/DNA complex (arrowhead) can be efficiently prevented by 10� excess of unlabeled WT, but not mutant oligos. Formation of Pou5f1/DNA complex (arrow)
can be efficiently prevented by 10� excess of unlabeled WT and Sm, but not by Pm mutant oligo. (F–H) Quantitative RT–PCR. We expressed Pou5f1, Sox2, or zebrafish
Sox3-VP16 fusion in MZ embryos, blocked protein synthesis at the 64-cell stage with CHX, and measured endogenous mRNA at 8 hpf. (F) Sox2 and Sox3-VP16 directly
activate her3 to 10-fold higher level than Pou5f1. (G) Sox2 or zSox3-VP16 directly activate sox2 an order of magnitude higher than Pou5f1 activated sox2, which is
consistent with sox2 biphasic expression (Supplementary Figure 5). (H) In contrast, monophasic foxD3 is activated by Pou5f1 but not by Sox2. (I) Model of biphasic
Pou5f1/Sox target activation in WT and MZ embryos. Low and high Sox protein activity are indicated. S—postulated Sox-only binding site, SP—Sox–Pou5f1-binding site,
Sox protein—black diamonds, Pou5f1 protein—white notched circle. Regulatory regions of biphasic genes contain both S and SP enhancers. In the presence of Pou5f1
and low concentrations of Sox, SP sites are preferentially occupied, resulting in low transcriptional activity (G1). In the presence of Pou5f1 and high Sox concentrations,
S sites are also occupied, resulting in higher transcriptional activity (G2). In the absence of Pou5f1, and at low Sox concentrations, these biphasic genes remain silent
(G3), whereas high Sox concentrations alone can induce their transcriptional activity (G4).
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that the SP site may have a similar function in the activation of
hes3 (homologue of her3 in mammals; Hirata et al, 2001;
Hatakeyama et al, 2004).

her3 responds to high Sox2 levels independent
of Pou5f1

According to our data, her3 transcription is directly activated
by Sox2 overexpression in WT zebrafish embryos. Thus, either
(1) in the presence of Pou5f1 and initially low expression of
SoxB1 genes, additional Sox2 is required for the full activation
of her3 via SPand other Pou5f1-dependent Sox-binding sites or
(2) direct activation by Sox2 occurs via Pou5f1-independent
sites in her3. Overexpression of Sox2 or Sox3–VP16 in MZ can
directly activate her3 and sox2 but not foxD3 (Figure 5F–H),
supporting the second mechanism. Taken together, our data
favor a mechanistic explanation for the biphasic expression
profile of her3 (Figure 2A) based on independent Pou–Sox and
Sox-only regulatory modules (Figure 5I). First, maternal SoxB1
(Sox19b) and Pou5f1 may bind to the SP enhancer and activate
a low level of her3 expression during the period from 3 to 6 hpf
(Figure 5I1). In MZ, this activation fails due to the absence
of Pou5f1 (Figure 5I3). The second phase of her3 activation
(6–8 hpf) may depend on high SoxB1 activity required to bind
Sox-only regulatory modules (Figure 5I2). We hypothesize
that the use of Pou-Sox and Sox-only regulatory modules
may also explain the biphasic activation of other targets
(i.e. foxi, klf2b, Figure 2A), where activation thresholds to
initiate high-level expression may differ for each gene.

The structure of Sox gene control is suited to provide
temporal information to the activation of Pou5f1–Sox targets:
maternal sox19b activity helps to start the network, and then
the immediate Pou5f1-dependent target sox11a builds up
sufficient SoxB1 and SoxC activity to regulate sox2 to high
levels and to activate a larger set of Pou5f1–SoxB1-dependent
zygotic targets. Essentially, this enables an early response that
is mostly dependent on Pou5f1–Sox19b, and a late response
that may be more dependent on additional zygotic SoxB1
group activation. This hypothesis is in agreement with our
finding that the majority of the Pou5f1/SoxB1-dependent
targets have bimodal or delayed expression, whereas Pou5f1-
only regulated targets are activated soon after zygotic
transcription start.

A dynamic network model of Pou5f1-dependent
temporal control

To summarize and theoretically check the consistency of our
current findings on Pou5f1/SoxB1-dependent versus Pou5f1-
only regulation, we built a small dynamic network model that
links the temporal control of target genes to regulatory
principles exerted by Pou5f1 and SoxB1 proteins (Figure 6A;
Supplementary information). The model was derived using a
phenomenological approach based on binary transcription
responses (Veflingstad and Plahte, 2007) to reflect the temp-
oral switching behavior of most genes (Supplementary Figure
1A and B). The model parameters were determined by a fit to
the WTand MZ gene expression data (Materials and methods).
The optimized model highlights two qualitatively different

temporal expression modes of Pou5f1 downstream targets:
monophasic for targets depending only on Pou5f1 (foxd3), and
biphasic for Pou5f1- and SoxB1-dependent targets (sox2 and
her3; Figure 6B). Interestingly, the activation of biphasic
targets is dominated by the SoxB1 factors and the timing of
expression strongly depends on the SoxB1 activation threshold
as deduced from the model parameters. To test whether the
model is also able to correctly predict a different genetic
condition, we simulated the M mutant, which is lacking
maternal Pou5f1 (Figure 6B, blue, dashed curve). The model
predicts an overall shift in the developmental program. Most
importantly, the sox2 and her3 expression is rescued with a
delay of about 2 h. The model predictions were checked
experimentally by quantitative RT–PCR (Figure 6B, blue dots).
Most predictions are in good agreement with the experimental
data, for example the delayed rescue of the sox2 and her3
expression pattern. Only the Sox11a expression pattern differs
from the prediction, which points to additional regulatory
input not implemented in the model. With respect to the ‘POD’
nr2f1, the model correctly predicts the efficient downregula-
tion by zygotic targets of Pou5f1 (Figure 6B).

To understand the quantitative contributions of Pou5f1 and
the Sox factors to the temporal regulation of biphasic targets
such as sox2 and her3 in more detail, we performed a
systematic parameter screen (Figure 6C). We varied the Sox
activation threshold as well as the relative contributions of
Pou5f1 and the Sox factors to the activation of an exemplary
biphasic target gene, and calculated the time the target needs
to reach its half-maximal expression level. Interestingly,
it turns out that the Sox factors control all of the timing
aspects of biphasic target gene expression. Thus, the Sox
threshold of activation is the major determinant for the start of
the second phase of expression. To achieve the temporal
control over target gene expression, Sox factors must activate
their targets stronger than Pou5f1 alone (see Figure 6C).
Otherwise the genes behave monophasically.

Evolutionary conservation

Mouse orthologs have been identified for 8341 genes in the
zebrafish Agilent microarray (conserved genes). Among those
genes, 3284 have differential expression between MZ and WT
at any time point of the developmental curve. We compared
Pou5f1-dependent zebrafish genes to previously identified
mouse POU5f1/OCT4 targets. We used data from two micro-
array studies, based on Pou5f1-siRNA-mediated knockdown
(Loh et al, 2006) (Supplementary Table S17 therein) and
tetracycline-inducible loss-of-POU5f1 in ZHBTc4 cells (Sharov
et al, 2008) (Supplementary Table S4 therein). The Venn
diagram (Figure 7A) shows that for 15% of the zebrafish
Pou5f1 targets, mouse orthologs were regulated in both
microarray experiments. There is an even stronger overlap of
45% between our fish data and the combined set of Oct4
targets from both experiments. Further, 23% of mouse ortho-
logs of Cluster A and 29% of those of Cluster DE were
regulated in both mouse experiments (Figure 7B and C). This
conservation between fish and mouse target sets may be
considered unexpectedly high, given the modest overlap of
9.1% between the POU5f1/OCT4 targets identified for mouse
and human (Figure 8A in Loh et al, 2006). For example, mouse
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hes3 appears as a target on analysis of the primary microarray
data (Sharov et al, 2008), but was filtered out in the study
based on algorithms used to evaluate ChIP and microarray
data. To determine whether POU5f1/OCT4 in ES cells regulates
Hes3, we tested whether Hes3 expression persists in mouse ES
cells when POU5f1/OCT4 expression is turned off. We used the
ZHBTc4 ES cell line (Niwa et al, 2002) for inducible POU5f1/
OCT4 knockdown (Supplementary information; Supplemen-
tary Figure 8). Hes3 expression disappeared shortly after
depletion of Pou5f1/Oct4 mRNA, revealing that Hes3 expres-
sion depends on POU5f1/OCT4. Thus, her3/Hes3 are indeed
evolutionary conserved target of Pou5f1 in zebrafish and
mouse. Boyer et al (2005) report ChIP binding of POU5f1/
OCT4 to the human HES3 genomic region Chr1:6233720–
6234419, suggesting that regulation may also be relevant in
human.

To identify a conserved minimal core set of relevant Pou5f1
targets, we compared our Cluster A gene list with the core lists

of mouse POU5f1/OCT4 targets defined by combining micro-
array and ChIP data (Supplementary Table S17 in Sharov et al,
2008). Our analysis identifies a set of 93 genes (Figure 7D;
Supplementary Table 14), with many developmental tran-
scription factors, including sox2, foxD3, klf2, klf4, and pou3f1,
and signaling pathway components.

A significant part of the Pou5f1 downstream transcriptional
network has been conserved from fish to mammals. Con-
sidered together with the similarities in the expression patterns
of Pou5f1 during gastrulation stages of all vertebrates studied,
similarity of transcriptional targets suggest equivalent Pou5f1
functions during the pregastrulation and gastrulation period of
vertebrate embryogenesis. Therefore, we tested whether
mouse POU5f1/OCT4 was able to rescue MZ embryos.
Injection of mRNA encoding mouse POU5f1/OCT4 into MZ
embryos (Figure 8A) was able to restore normal zebrafish
development to an extent comparable with zebrafish pou5f1/
pou2 mRNA (Figure 8B and C). In all, 15 out of 115 MZ

Figure 6 Quantitative mathematical model of Pou5f1 and SoxB1 activity dependent temporal dynamics of target gene expression. (A) Interaction chart used to build
the model. Arrows indicate direct transcriptional activation. Rounded arrows indicate contributions of individual Sox genes to summarized Sox activity. RODs—
repressors of differentiation, PODs—promoters of differentiation, each with exemplary genes listed. (B) Simulated time course of selected network components in WT
condition (black curve), MZ condition (red curve). Model parameters were determined by a fit to the WT (black circles) and MZ (red circles) expression data (see
Supplementary information). The optimized model was used to predict the M condition, that is, non-functional maternal Pou5f1 (blue, dashed curve). The model
predictions were subsequently confirmed by additional Q-PCR measurements (blue circles). (C) Temporal control of target genes by Pou5f1 and the Sox factors. The
onset of the second phase of expression (indicated in gray) was measured by the time when the target gene reaches its half-maximal level and is plotted as a function of
the Sox threshold and the relative contribution of the Sox and Pou regulation (see Materials and methods). Note that, to control the timing of target gene expression, the
contribution of the Sox factors must exceed the contribution by Pou5f1. The model predicts a smaller contribution of Pou5f1 to the activation of biphasic targets
(her3, sox2) compared with the Sox factors.
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Figure 7 Evolutionary conserved Pou5f1 targets in zebrafish and mouse ES cells. (A–C) We restrict our comparison of Pou5f1 targets to those genes for which
orthologs have been identified in zebrafish and mouse. (A) The Venn diagrams show the overlap between zebrafish microarray-based genes list of Pou5f1 targets
at 3–8 hpf from this study with two previously reported mouse Pou5f1/Oct4 microarray-based target gene sets (Loh et al, 2006; Sharov et al, 2008). (B) Overlap of the
same mouse gene sets with zebrafish Cluster A, and (C) with Cluster DE. (D) Comparison of our Cluster A to a list of mouse Pou5f1 presumably direct targets selected
from microarray and ChIP experiments (Loh et al, 2006; Sharov et al, 2008), identifies a set of 93 conserved Pou5f1 targets.
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Figure 8 Mouse POU5f1 rescues zebrafish Pou5f1 deficiency. Hypothetical scheme for evolution of the vertebrate downstream Pou5f1 network. (A) Mouse POU5f1
rescues zebrafish pou5f1 deficiency. From left to right: Phenotypes of 24 hpf old non-injected MZ embryos, MZ embryos injected with mouse Pou5f1 mRNA (2 pg/
embryo), and non-injected WT embryos. Top row, individual embryos dechorionated, lateral views, dorsal up. Bottom row: overview of embryo groups from same
injection experiment. (B) Rescue statistics for different amounts of injected mouse Pou5f1 mRNA. MZ embryos were injected with the control RNA at 25 pg/embryo
or mouse Pou5f1 mRNA at the amounts indicated, phenotypic classes were counted at 24 hpf and expressed as percent of whole. N¼20–213 embryos per condition.
(C) Rescue statistics for different amounts of injected zebrafish pou5f1 mRNA. MZ embryos were injected with control RNA at 100 pg/embryo or zebrafish pou5f1 at the
amounts indicated. Phenotypic classes were counted at 24 hpf and expressed as percent of whole. N¼102–186 embryos per condition. (B, C). Phenotypic classes: red
solid bars—full rescue of body axes, head, tail, eyes; red-shaded bars—incomplete rescue (body axes and tail form, malformed head, no eyes); white bars—no rescue
(no body axis); and gray bars—dead embryos. Note that the rescue capacity of mouse Pou5f1 at 2–5 pg/embryo (B) is comparable with that of zebrafish pou5f1 at 10–
25 pg/embryo (C). (D, E) Hypothesis on Pou5f1 downstream network evolution in vertebrates. (D) Pou5f1 downstream transcriptional network in zebrafish
embryogenesis from MBT until 8 hpf. Pou5f1 directly activates RODs, which regulate the timing of differentiation by repressing their targets (PODs) in a tissue-specific
manner. mRODs, eRODs, nRODs—repressors of mesendodermal, ectodermal, and neural differentiation, respectively. Dotted line—suggestive evidence, solid line—
direct evidence from our work. (E) A conserved subset of mouse POU5f1/OCT4 transcriptional network (RODs) is used during mouse gastrulation to ensure the timing of
lineage-specification events (black arrows), similar to zebrafish. Evolutionary novel, mammalian-specific elements of the network architecture (red arrows) operate at
earlier developmental stages, serve the function of inhibiting trophectoderm differentiation and ensure self-maintenance of ES cell culture. We hypothesize that a
subnetwork of POU5f1/OCT4 transcriptional targets, including RODs known from ES cell studies, is also used in mouse development, and acts in a tissue-specific
manner during pregastrulation and gastrulation stages. If this is true, loss-of-function of those conserved RODs in ES cells may result in the tissue specificity of
differentiation. Indeed, two recent publications support this idea. Asterisks indicate references demonstrating tissue-specific action of RODs (*) FoxD3 (Jiang et al, 2008)
and (**) Klfs (Liu and Labosky, 2008) in ES cells. We want to emphasize that the schemes depict only a subset of biological functions of Pou5f1 with an emphasis on
germ layer development and temporal control, but do not cover, for example, activities controlling chromatin state or proliferation.
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embryos (13%) injected with 2 pg/embryo, and 9 of 19 MZ
embryos (47%), injected with 5 pg/embryo of mouse Pou5f1/
Oct4 mRNA, respectively, developed into swimming larvae
beyond 6 days postfertilization. This result strongly supports
the hypothesis of evolutionary conserved functions of Pou5f1
orthologs during blastula and gastrula stages.

Discussion

We identified changes in Pou5f1 target gene expression both
with respect to their expression level and temporal behavior.
Several targets directly activated by Pou5f1 encode known
RODs, of which we analyzed her3 in detail. Expression of
a second, large group of genes encoding developmental
regulators of differentiation normally acting during organogen-
esis (PODs) is temporally shifted during gastrulation stages in
MZ. Our analysis of potential direct transcriptional interac-
tions by suppression of translation of intermediate zygotic
Pou5f1 or Sox targets, enabled us to distinguish SoxB1-
dependent and -independent subgroups of the Pou5f1 tran-
scriptional network. In summary, Pou5f1, rather than control-
ling a small number of decisions, instructs the global gene
regulatory landscape in the embryo by controlling temporal
dynamics of gene expression within diverse developmental
modules by Pou5f1-only and Pou5f1-SoxB1-dependent
mechanisms.

Pou5f1 directly controls ROD

Pou5f1 overexpression experiments in combination with
translational block suggest that Pou5f1 on its own acts directly
as a transcriptional activator. Thus, other direct Pou5f1
targets probably mediate repression of PODs by Pou5f1.
Several genes directly activated by Pou5f1 have previously
been shown to repress differentiation, or to encode transcrip-
tional repressors: Klf4 and Klf2b (Rowland et al, 2005), FoxD3
(Yaklichkin et al, 2007), Her3 (Hans et al, 2004), and Hesx1
(Kazanskaya et al, 1997; Quirk and Brown, 2002). We found
that her3 mRNA injection can suppress the premature
expression of nr2f1, pax6, and sox21b in MZ embryos.
However, we could not directly demonstrate the contribution
of FoxD3 and Her3/Hesx1 to the repression of premature
differentiation in zebrafish, likely because of redundancies
involving other ROD controlled by Pou5f1. M embryos are
devoid of maternal Pou5f1 expression and have an MZ
transcriptional landscape until zygotic transcription starts.
During the first hour after zygotic activation of Pou5f1, its
activity leads to an upregulation of both RODs and prematurely
expressed PODs. However, as RODs appear, expression of
PODs starts to decline, compatible with a Pou5f1-indirect
mode of repression.

Regulatory relationships of Pou5f1, SoxB1,
and their target genes

Our data indicate that Pou5f1 directly controls most SoxB1 and
C activity. As Pou5f1 executes many of its functions with a
SoxB1 protein as its binding partner (Remenyi et al, 2003;
Masui et al, 2007), we evaluated the role of Sox proteins in the

zebrafish Pou5f1 regulatory network, and found that the
SoxB1 group proteins and Pou5f1 coactivate a large target gene
set. SoxB1/Pou5f1 and Pou5f1 targets differ in their spatial
expression: SoxB1/Pou5f1 targets are predominantly restricted
to SoxB1 zygotic expression domains (ectoderm and neural
ectoderm), whereas the majority of SoxB1-independent
Pou5f1 targets are expressed in mesendoderm, a territory
largely free of Sox transcripts.

her3 and foxd3 regulation reveal SoxB1-dependent
and SoxB1-independent Pou5f1 control
mechanisms

We identified a Pou5f1–SoxB1 composite regulatory site
in the proximal her3 promoter, and show that this site is
required for proper activation of her3 expression. Pou5f1 and
Sox2 mutually enhance the binding of the partner protein
to this site, enabling Pou5f1 to activate transcription even
at low levels of Sox2. The SoxB1 site in the her3 proximal
element deviates from the canonical SoxB1-binding site, and
may thus be strongly bound by SoxB1 only in the presence
of Pou5f1. A similar regulation has been previously shown
for composite Sox-Pax sites (Kamachi et al, 2001). Our data
also suggest the existence of distinct SoxB1-dependent
elements outside the her3 proximal promoter, which cause
the activation of her3 by high Sox2 concentration even in
the absence of Pou5f1. Her3 first appears at low levels
directly after zygotic transcription starts, and rises to high
levels in neural ectoderm from midgastrula onwards. Distinct
SoxB1- and Pou5f1/SoxB1-dependent regulatory modules,
with different requirements for SoxB1 protein levels, com-
bined with the dynamics of SoxB1 expression, can explain
this biphasic activation of her3. We hypothesize that other
bimodal Pou5f1 targets may be subject to similar control
mechanisms. In contrast, monophasic direct Pou5f1 targets,
like foxD3, are directly activated by Pou5f1, and strictly
depend on Pou5f1 in their activation—high levels of Sox2
overexpression alone cannot rescue foxD3 expression in
MZ mutants.

Dynamic model of the Pou5f1—Sox network

We evaluated the quantitative contributions of Pou5f1 and the
Sox factors to target gene regulation by mathematical
modeling. The model predicts two qualitatively different
expression behaviors: monophasic expression of genes acti-
vated by Pou5f1 alone and biphasic expression of genes
initially activated by Pou5f1 and subsequently by the Sox
factors. This biphasic pattern requires a dominant quanti-
tative contribution of the Sox factors to the activation of
biphasic targets, as expressed in terms of relative transcription
rate. This requirement correlates with the stronger capacity
of Sox2 to activate the biphasic targets her3 and sox2 in
comparison with Pou5f1 (Figure 5F and G). Interestingly,
the activation threshold of the Sox factors exerts the main
temporal control of biphasic targets. As a consequence,
the timing of the expression of Pou5f1 and Sox-dependent
targets is relatively independent of the maternal Pou5f1 level
(as long as maternal Pou5f1 is above a certain threshold),
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while it is very sensitive to zygotic Sox levels. The surprising
finding that the zebrafish early regulatory network is relatively
independent of total Pou5f1 levels is experimentally validated:
M, Zspg, as well as MZ embryos rescued by Pou5f1 mRNA
injection all develop normally until the end of gastru-
lation, despite the vastly different Pou5f1 activity levels in
these embryos. Thus, in contrast to ES cells, which may be
sensitive to POU5f1/OCT4 levels (Niwa et al, 2000, 2002),
zebrafish embryos are less susceptible to changes in Pou5f1
concentration.

Pou5f1-dependent temporal control
of development

Pou5f1 controls a set of transcriptional repressors specific for
each major embryonic compartment (Figure 4H), which
appears to delay differentiation by repressing differentiation
genes until the end of gastrulation. Our findings emphasize
two distinct mechanisms by which Pou5f1 contributes to this
repression. First, Pou5f1 alone can activate repressor genes
(ROD I, e.g. foxD3, Figure 6A) immediately after midblastula
transition (MBT). Second, Pou5f1 acts together with SoxB1
proteins to activate repressor genes (ROD II, e.g. her3) with
2–3 h of delay after MBT. For this second mechanism, it does
not appear that Pou5f1 concentration alone determines timing,
but that the level of SoxB1 activity is crucial for setting the time
point of target gene activation. This system may provide a
mechanisms to fine-tune the order of Pou5f1/SoxB1 target
gene activation based on changes in the affinity of the SoxB1
regulatory elements: lower affinity elements would drive the
initiation of expression only at later stages when sufficient
SoxB1 activity has accumulated. Both systems together appear
to determine a significant portion of the temporal regulatory
landscape of the embryo as judged from the changes we
observe in timing of target gene activation (Supplementary
Figure 1).

Evolution of the Pou5f1–Sox core regulatory
network

Systematic analysis of the POU5f1/OCT4-dependent stem cell
network in mouse and human ES cells has revealed a
surprising complexity of regulated genes and interactions
(Boyer et al, 2005; Chickarmane et al, 2006; Loh et al, 2006;
Masui et al, 2007; Zhou et al, 2007; Jiang et al, 2008; Kim et al,
2008; Ying et al, 2008). Although a significant level of
mechanistic understanding has been achieved, complexity
and logic of the mammalian stem cell regulatory network has
been difficult to comprehend in the absence of knowledge on
how it may have evolved. The significant overlap between
zebrafish and mammalian Pou5f1 targets (Figure 7) together
with the ability of mouse POU5f1/OCT4 to functionally replace
zebrafish Pou5f1 (Figure 8A–C), suggests that the mammalian
network may have evolved from a basal situation similar to
what is observed in teleosts. We propose models that
emphasize the evolution of Pou5f1-dependent transcriptional
networks during development of the zebrafish (Figure 8D) and
mammals (Figure 8E). Our representation separates the
evolutionary ancient subnetworks downstream of Pou5f1,

which are presumably used for controlling the timing of
differentiation during gastrulation in all vertebrates (Figure 8D
and E, black arrows). In this conserved subnetwork, Pou5f1
switches on the expression of germlayer-specific RODs to
prevent precocious differentiation in mesendoderm, non-
neural and neural ectoderm. We hypothesize that some
components of these core Pou5f1-downstream subnetworks
may have been co-opted for additional evolutionary novel
functions during early developmental stages in mammals. This
functionality may be based on addition of some novel
interacting partners as well as feedback regulatory loops
(Figure 8E, red arrows) to the existing interaction network.
The model predicts lineage-specific differentiation on knock-
out of RODs. Indeed, inducible knockout of FoxD3 in ES cells
and embryoid bodies leads to abnormal differentiation
towards mesendodermal lineages without interfering with
the differentiation towards ectoderm and neuroectoderm (Liu
and Labosky, 2008). Klf-knockout induces lineage-specific
differentiation towards ectodermal fate with simultaneous
downregulation of the self-renewal genes (Jiang et al, 2008).
The phenotype of both knockouts can thus be explained by
evolutionary conservation of tissue-specific functions of
FoxD3 and the Klf factors in the vertebrate lineage.

How could changes between an ancient zebrafish-like
network and the mammalian network have evolved? The
ancient part, including the downstream direct targets Klf,
FoxD3, Sox2, and Her3, and the structure of Pou5f1/SoxB1
enhancers, remains a component of the mammalian network,
and is conserved between zebrafish and mouse. At the
experimental level, this conservation has been confirmed, as
overexpression of mouse Pou5f1/Oct4 can completely rescue
MZ mutant embryos (Figure 8A–C). However, the degree of
this rescue is not reciprocal: zebrafish Pou5f1 replaces mouse
POU5f1/OCT4 function in the maintenance of self-renewal in
mouse ES cells only to a limited extent (Niwa et al, 2008). This
suggests that, although POU5f1/OCT4 has acquired additional
functions specific for mammalian embryogenesis, it may have
also acquired novel interacting partners during evolution to
perform these functions. The self-activation loop of Pou5f1,
characteristic for mammals, is not present in early zebrafish
development, as Pou5f1 or SoxB1 cannot efficiently activate
pou5f1 expression in zebrafish in the presence of CHX
(Supplementary information; Supplementary Figure 6A–C).
In Figure 8E, we have indicated the stem cell maintenance
‘feedback’ components in red, including red arrows back from
Sox2 activating Pou5f1.

One evolutionarily novel component that stabilizes
the system could be Nanog. Nanog in fish is probably
not integrated into a pluripotency regulatory circuit (Camp
et al, 2009). In chick, a nanog ortholog is present, and
chicken Pou5f1 can rescue Pou5f1-deficient mouse ES cells
(Lavial et al, 2007). This new Nanog module may have
contributed to the establishment of a mutual autoregulatory
loop with Pou5f1, and the SoxB1 genes. Interestingly, Klf4 and
Klf2 have also been drawn into this regulatory loop during
evolution.

In summary, our data indicate that elements of the
evolutionarily ancient embryonic Pou5f1-dependent subnet-
works that control developmental timing and differentiation
have been integrated as modules of Pou5f1 pluripotency
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control in ES cells in mammals. As the Pou5f1 downstream
regulatory nodes revealed in our zebrafish model are likely
conserved across vertebrates, we envision that their knowl-
edge will contribute to the effort of directing differentiation of
pluripotent stem cells to defined cell fates.

Materials and methods

Microarray-based transcriptome analysis

For transcriptome analysis, WT embryos of AB � TÜB strain crosses
(http://www.ZFIN.org) and MZ or M embryos carrying the m793
allele of the spg mutation were used (Belting et al, 2001) ZFIN ID: ZDB-
GENE-980526-485, ZDB-GENO-081023-1). Embryos of the genotypes
indicated were precisely staged either following in vitro fertilization
(t¼0 hpf), or using natural crosses and staging at the four-cell stage
(t¼1 hpf).

RNA preparation for microarrays: 60–100 embryos per sample were
snap-frozen in liquid nitrogen, and total RNA was isolated using the
RNA Easy kit (Qiagen). Sample quality was assessed in an Agilent
Bioanalyzer 2100, using the RNA 6000 nano Assay Kit. Samples were
processed by Agilent Technologies Two-Color Microarray-Based Gene
Expression Analysis kit, hybridized with Agilent 22 K zebrafish arrays
(number 015064 with 21527 features), scanned on an Agilent scanner
and processed using the GE-v5_95_Feb07 Agilent protocol. All
experiments were performed in triplicate using three independent
RNA isolations; except the 1 h time point of the developmental curve,
and the WT4, WT5 time points in the M experiment, which were
performed in duplicate. Data were normalized across both time curves
and genotypes using quantile normalization (Genedata). Independent
validation of the Agilent microarray results was performed in three
ways: (1) comparison with an Affymetrix Gene Chip microarray
experiment, (2) real-time QPCR, and (3) in situ hybridization (see
Supplementary information).

The primary microarray data from all Agilent and Affymetrix arrays
generated in this study have been submitted to GEO (http://
www.ncbi.nlm.nih.gov/geo/) and are stored under accession series
number GSE 17667.

Evaluation of expression time-series data
for identification of switch behavior

The estimation of switching times followed the approach of Sahoo et al
(2007). The optimal fit of the temporal expression profile to a reference
pattern including a single transition (¼switch) from high to low or
from low to high level was computed using F-statistics. The switch
time of a gene refers to the transition point of the best matching
reference pattern. The significance level was controlled at an estimated
FDR of 10%. The shift in gene expression between WT and MZ was
calculated by the difference in estimated switching times between both
genotypes. All statistical calculations were performed with MATLAB.

Plasmids used in this study

Zebrafish expression constructs CS2þPou5f1 and CS2þPou5f1-VP16
have been described (Lunde et al, 2004). Mouse expression constructs
CS2þOct4, CS2þmycOct4, and CS2þ Sox2 were kindly provided by
A Tomilin. To obtain Her3 expression construct, CS2þHer3, the Her3
ORF was PCR amplified from cDNA using primers with incorporated
restriction enzyme sites for BamHI and XbaI, subcloned into PCRII-
Topo vector (Invitrogen), sequenced and subcloned into CS2þ vector
(Turner and Weintraub, 1994) via BamHI/XbaI sites. To obtain the
Her3-Luc reporter construct, 2.2 kb upstream of Her3 coding sequence
was PCR amplified from Her3-Gal4 plasmid kindly provided by S Hans
(Hans et al, 2004), using PCR primers with incorporated KpnI/BglII
sites, subcloned into PCRII-Topo vector, sequenced and subcloned into
pGL4.26 (Promega) using KpnI/BglII sites.

Correlation analysis

We used the implementation of Fisher’s exact test (Fisher, 1962)
and Gene Ontology Fisher’s exact test by Genedata Analyst
(Genedata AG, Basel, Switzerland). For details see Supplementary
information.

Cycloheximide experiment

Embryos were injected with mRNA or left non-injected, and were treated
with protein inhibitor cycloheximide (CHX, Calbiochem), 15mg/ml in
egg water, starting from 1.5 hpf until the embryos were frozen for RNA
isolation. In presence of CHX, direct Pou5f1 targets are transcribed, but
these mRNAs are not translated, avoiding indirect downstream
regulatory effects. As genetic control, we used MZ embryos for all
experiments, and re-expressed Pou5f1 by mRNA microinjection at the
one cell stage as indicated. CHX was added at the 64-cell stage to allow
for translation of injected pou5f1 mRNA, but to block translation of the
earliest zygotic transcripts. Loss of ntl expression in CHX embryos was
used as control for efficient inhibition of translation.

Calculation of statistical enrichment for
Pou5f1-binding sites

We used the ExPlain tool (Kel et al, 2006), to look for statistical
enrichment in Pou5f1-predicted binding sites in regulatory regions of
selected genes in comparison with a background set. As background
set for all cases, we used the inclusive set of 6655 gene regions, which
are non-redundant ENSEMBL genes in the Agilent microarray. Putative
regulatory regions (defined as 15 kb upstream and 5 kb downstream
from transcribed sequence) for all genes were obtained via the UCSC
Table browser at http://genome.ucsc.edu/cgi-bin/hgTables. Fore-
ground gene sets were the subsets of this background set. First, we
ran the Match program on our POU_CHX_UP set (Supplementary
Table 8, 247 regulatory regions) using the vertebrate non-redundant
database of Positional Weight Matrices (PWMs). We found that the
PWMs for Oct4, (V$OCT4_02 and V$OCT4_01 (Loh et al, 2006)) are
enriched over the background set with high statistical significance.
Then we used the more rigorous algorithm F-Match to test all of our
gene sets for enrichment in these two matrices (see Supplementary
Table 10).

Mathematical modeling of gene-regulatory
network

The regulatory relationships between the major components of the
early pluripotency network were modeled using a phenomenological
approach based on steep transcriptional responses (Veflingstad and
Plahte, 2007). Within this framework, the regulatory potential of a
transcription factor is characterized by two parameters: (1) the
threshold level (t) for the activation/repression of target gene
expression and (2) the rate of target gene expression (a). Gene
expression is modeled using the Hill function

sðZ; tÞ ¼ Zn=ðtn þ ZnÞ
as the central building block where we choose n¼10 to achieve
steep transcriptional responses. The activation of a target gene X by
a single transcription factor Z is given as aX,Zs(Z, tX,Z), whereas
repression is given by aX,Z(1�s(Z, tX,Z)). Let %aX be the maximal
expression rate of gene X. Starting from zero expression, the maximal
level gene X can attain is %aX/lX, where lX is its degradation rate, which
is related to the half-lifeoX as lX¼ln(2)/oX. As we were only interested
in the temporal shape of gene expression and not interested in absolute
expression levels, we rescaled each gene by its maximal expression
level. As a result, the new dimensionless scale is X0¼X/(%aX/lX) and all
expression levels are confined between 0 and 1. In addition, the
thresholds and expression rates also become relative quantities:
t0X,Z¼tX,Z/(%aX/lX) and a0X,Z¼aX,Z/%aX. For example a threshold of
t0X,Z¼0.01 indicates a highly efficient transcription factor Z that is
already effective at 1% of its maximal level. Similarly, a Z-induced
transcription rate of a0X,Z¼0.3 means a transcriptional activation by
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30% of the maximal transcription rate of X. In the following, we drop
the primes for clarity.

The model includes Pou5f1, targets activated by Pou5f1 (foxD3,
sox11a), targets activated by Pou5f1 and zygotic Sox activity (her3,
sox2), and indirectly repressed targets (PODs, nr2f1 listed as example).
We considered two types of RODs: those regulated by Pou5f1 alone
(example foxd3) and those regulated by Pou5f1 and Sox (example
her3). The model is described by the following set of ordinary
differential equations.

qt½Sox2� ¼ lSox2ðnSox2½Pou� þ ð1� nSox2Þsð½Sox�; tSox2; SoxÞ � ½Sox2�Þ

qt½Sox11a� ¼ lSox11að½Pou� � ½Sox11a�Þ

qt½Her3� ¼ lHer3ðnHer3½Pou� þ ð1� nHer3Þsð½Sox�; tHer3; SoxÞ � ½Her3�Þ

qt½FoxD3� ¼ lFoxD3ð½Pou� � ½FoxD3�Þ

qt½Nr2f1� ¼ lNr2f1ð1� sð½FoxD3�; tNr2f1; FoxD3Þ � ½Nr2f1�Þ
In addition, the following definitions hold.

½Pou� ¼
1 WT
0 MZ
1� expð�lPoutÞ M

8<
:

½Sox� ¼ ð½Sox2� þ ½Sox11a�Þ=2
Note that, Pou5f1 is assumed to be constant in WT conditions,
absent in MZ conditions and replenished with a rate lPou¼ln(2)/oPou

in M conditions. The two transcription rates for Sox2 and Her3 are
defined as nSox2¼1/(1þaSox2,Sox/aSox2,Pou) and nHer3¼1/(1þaHer3,Sox/
aHer3,Pou), respectively. Note that only the relative fraction of the
transcription rates induced by the Sox and Pou factors are important
for our modeling framework.

Parameter estimation
We rescaled each temporal profile of a gene by its maximal expression
level in WTand MZ condition to obtain values between 0 and 1. We fit
the rescaled system of equations to the rescaled data assuming that the
maximal level a gene can attain within our model framework is equal
to the observed maximal level. The minimized functional was

Gð~pÞ ¼
XNVar

j¼1

XNMes

k¼1

ðyWT
j ðtk; ~pÞ � DWT

j ½tk�Þ
2

þ
XNVar

j¼1

XNMes

k¼1

ðyMZ
j ðtk; ~pÞ � DMZ

j ½tk�Þ
2

Here,~p is a vector of all model parameters, yWT
j ðtk; ~pÞ is the solution of

variable j at the kth time point in WT conditions and Dj
WT [tk] is the

mean value of the corresponding measured data point. The same
holds for the MZ condition. The median and interquartile range
(IQR; difference between the 75th and the 25th percentiles) of the
parameter estimates was determined by a bootstrap method. Mean
values of each time point were calculated by sampling with
replacement from the raw data. Model parameters were estimated
from the resulting time series and the procedure was repeated for 200
times giving the median and IQR given in the Table below.

The prediction for M conditions shown in Figure 6B, blue-dashed
curve was calculated with a Pou5f1 half-life of 2 h.

Calculation of expression timing for biphasic targets
We extended the model by an additional Pou5f1/Sox target gene to
quantify the timing of expression for an exemplary biphasic target gene
X in dependence of the Sox threshold (tX,Sox) and the Pou5f1/Sox
regulation (vx¼1/(1þaX,Sox/aX,Pou). The ODE of the exemplary
biphasic target reads

qt½X� ¼ lXðnX ½Pou� þ ð1� nXÞsð½Sox�; tX; SoxÞ � ½X�Þ

The decay rate lX was set to the estimated value for Her3. Note that the
decay rate influences the timing of expression, however, in this context
we are only interested in the impact of the two other parameters nX and
tX,Sox. We characterized the timing of expression of X by the time
needed to reach the half-maximal expression level, starting from zero
expression level at MBT. The resulting values are indicated as gray
levels in Figure 6C. The Y axis depicts the relative expression rate
aX,Sox/aX,Pou. All numerical analysis was performed with MATLAB.
All MATLAB scripts are available upon request.

For further details on statistical analysis and standard techni-
ques (RT–PCR, whole-mount in situ hybridization, luciferase assays,
point mutagenesis, and gel retardation assays), see Supplementary
information.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com/msb).
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