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Abstract

Likelihood ratios are frequently utilized as basis for statistical tests, for model selection crite-

ria and for assessing parameter and prediction uncertainties, e.g. using the profile likelihood.

However, translating these likelihood ratios into p-values or confidence intervals requires

the exact form of the test statistic’s distribution. The lack of knowledge about this distribution

for nonlinear ordinary differential equation (ODE) models requires an approximation which

assumes the so-called asymptotic setting, i.e. a sufficiently large amount of data. Since the

amount of data from quantitative molecular biology is typically limited in applications, this

finite-sample case regularly occurs for mechanistic models of dynamical systems, e.g. bio-

chemical reaction networks or infectious disease models. Thus, it is unclear whether the

standard approach of using statistical thresholds derived for the asymptotic large-sample

setting in realistic applications results in valid conclusions. In this study, empirical likelihood

ratios for parameters from 19 published nonlinear ODE benchmark models are investigated

using a resampling approach for the original data designs. Their distributions are compared

to the asymptotic approximation and statistical thresholds are checked for conserva-

tiveness. It turns out, that corrections of the likelihood ratios in such finite-sample applica-

tions are required in order to avoid anti-conservative results.

Author summary

Statistical methods based on the likelihood ratio are ubiquitous in mathematical model-

ling in systems biology. For example confidence intervals of estimated parameters rely on

the statistical properties of the likelihood-ratio test. However, it is often overlooked that

these intervals sizes rely on assumptions on the amounts of data, which are regularly vio-

lated in typical applications in systems biology. By checking the appropriateness of these

assumptions in models from the literature, this study shows that in a surprisingly large

fraction of confidence intervals might be too small. Using a geometric interpretation of

parameter estimation in the so-called data space, it is motivated why these issues appear
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and how they depend on the identifiability of the model parameters. In order to avoid

such problematic situations, this work makes suggestions on how to adapt the statistical

threshold values for likelihood-ratio test. By this, it can be assured that valid statistical

conclusions are drawn from the analysis, also in situations where only smaller data sets

are available. Such corrections yield for example more conservative confidence interval

sizes and thus decrease a potential underestimation of the parameter uncertainty.

Introduction

An essential characteristic of systems biology is measurement-driven learning about a biologi-

cal process of interest [1, 2]. A typical approach is translating existing knowledge about bio-

chemical interactions in living cells into mathematical models. Then, experimental data is

utilized to check whether the current understanding of a system as represented in the model is

in agreement with observations. In the case of concordance, model parameters can be esti-

mated, the system’s response can be studied by computational approaches, and its behaviour

can be predicted by the model. In the case of mismatch between data and mathematical model,

new interactions and hypotheses might be suggested and tested. For both scenarios, a proper

and efficient statistical analysis is required to assess significance and prevent invalid

conclusions.

For traditional comparisons which are not based on dynamic models, a large number of

well-established statistical tests is available for assessing significance. Some of these tests like

the t-test or analysis of variance (ANOVA) provide valid results for any sample size if paramet-

ric assumptions are met. Other tests like for example Pearson’s chi-squared test for indepen-

dence are derived under the so-called asymptotic assumption, which implies that they are only

valid for a large sample size and only provide approximative results for the finite-sample case

when only limited amounts of data are available [3].

The likelihood is the probability of a data set given some hypothesis which can be applied to

assess agreement of data and model for any kind of noise distribution. The so-called likelihood
principle states that all information contained in the data concerning two hypotheses is com-

prised in the likelihood ratio of those hypotheses [4]. Moreover, the Neyman-Pearson lemma
guarantees that if the assumptions about a null model are valid, tests based on likelhood ratios

have maximal power compared to competing test statistics [5]. This is the reason, why many

traditional tests can be derived by considering likelihood ratios or can be interpreted in terms

of a likelihood-ratio test. This theoretical statement, however, does not provide generally appli-

cable formulas for translating likelihood ratios into p-values or thresholds of the test statistic.

A general statement is only available for the asymptotic, large-sample setting which is usu-

ally applied but not fulfilled in systems biology [6]. For typical modelling applications in sys-

tems biology, e.g. for ordinary differential equation (ODE) models, there are no traditional

statistical tests available which are valid in the finite-sample case. Often, fitted models are

ranked by information criteria such as the Akaike information criterion (AIC), the Bayesian

information criterion (BIC) or variants thereof [7]. They have in common that they are con-

structed by a likelihood term to assess the models agreement with the data and they differ in

the penalization of the model’s complexity, i.e. using the number of model parameters or data

points. It was shown that these criteria could be viewed as equivalent to a likelihood ratio test

with different significance levels, depending on their complexity penalty weights [8]. As a con-

sequence, asymptotic approximations of these criteria do likewise not hold in the finite-sample

case.
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bwHPC and the German Research Foundation

(DFG) through grant INST 35/1134-1 FUGG. C.T

and C.K. were supported financially by the German

Research Foundation (DFG) under Germany’s

Excellence Strategy - EXC-2189 - project ID:

390939984. C.K. was supported financially by the

German Ministry of Education and Research by

grant EA:Sys [FKZ031L0080]. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1011417


The likelihood-ratio test is applied for discriminating between nested models. Moreover, a

number of statistical methods related to likelihood ratios are utilized, for example confidence

intervals for parameters can be calculated based on the profile likelihood which is a continuous

representation of the likelihood-ratio statistic. This approach can also be used for investigation of

parameter identifiability [9], observability analysis [6] as well as for model reduction [10, 11]. To

apply the likelihood-ratio test in such cases, typically the asymptotic theory for the test statistic is

utilized for the finite-sample case, but without checking the appropriateness of the description.

In this work, the appropriateness of such asymptotic assumptions for the distribution of the

likelihood-ratio test is checked using 19 nonlinear ODE benchmark models and realistic data

designs from the literature. Using a parametric bootstrapping procedure, artificial, yet realistic

data realisations are generated and empirical likelihood ratios for practical application scenar-

ios are simulated. The main goal of this work is to evaluate how frequently deviations from the

asymptotic large-sample assumptions occur in these situations.

We observe differences in the resulting distributions to the expected asymptotic theory that

might be relevant for the biological conclusions drawn by the dynamic models. Using a geo-

metrical interpretation of parameter estimation in such models in the data space, we present

an explanation how certain model structures cause such deviations. To cure the issue in realis-

tic scenarios, corrections of the likelihood ratios are suggested which avoid anti-conservative

results of the statistical methods. Moreover, potential adaptations for alternative statistical

thresholds are given and an approach for the re-interpretation of existing studies, which use

the asymptotic threshold, is presented.

Methods

Parameter estimation

Mechanistic models of biological systems can be formulated by ordinary differential equations

(ODEs)

_xðtÞ ¼ f ðxðt; θÞ; uðtÞ; θdynÞ ð1Þ

that describe the dynamics of the models states x depending on the model structure and specif-

ically on the dynamic parameters θdyn, e.g. reaction rate constants. External effects can be

incorporated by an input function u(t). The initial value problem can be solved numerically

and yields solutions x(t) that are non-linear with respect to the parameters. Since the specific

parameter values of the systems are unknown in applications, they need to be estimated from

experimental data. Also initial values of the ODE system x(t = 0) = θinit can be treated as

unknown parameters and can be estimated simultaneously [12].

Typically, quantification of biological counterparts corresponds to sums or fractions of the

model states x(t) and involves indirect measurements of the observed entities such as for

instance relative data. Thus, the experimental data is compared to the model trajectories by

yðt; θÞ ¼ gðxðt; θÞ; θobsÞ þ ϵðtÞ ; ð2Þ

i.e. by observation functions g that incorporate observational parameters θobs such as scalings

and offsets of the quantified signal. Typically Gaussian noise ϵðtÞ � N ð0;σ2Þ with a fixed

standard deviation σ is assumed here, but in general also more complex error models for σ ¼
σðxðtÞ; θsÞ with error model parameters θσ might be considered which yield the desired noise

distribution. In applications, systems are often only partially observed as the quality and

amount of the data is limited and only sparse data sets are available. The experimental design

D summarizes the measured observables, experimental conditions, temporal sampling points

as well as potential replicate measurements [13].
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In systems biology related models the values of the parameters

θ ¼ fθdyn; θinit; θobs; θsg ð3Þ

often cannot be directly inferred but need to be estimated based on a mathematical model and

experimental data [14]. The maximum likelihood estimate (MLE)

θ̂MLE ¼ argmax
θ

LðyyjθÞ ð4Þ

is the most efficient and asymptotically unbiased estimator. It is the parameter vector that

maximizes a likelihood function given the experimental data y† or data realisation of the exper-

imental design D in a simulation setting [15]. For parameter estimation, equivalently the so-

called log-likelihood function LðθÞ ¼ � 2 logðLðθÞÞ can be minimized, which is often numeri-

cally advantageous [12]. The log-likelihood function

LðyyjθÞ ¼
XNobs

j¼1

XNt

i¼1

yyij � gjðxðtiÞ; θobsÞ

sijðθsÞ

 !2

þ 2 logðsijðθsÞÞ þ const:

 !

ð5Þ

quantifies the discrepancy between model output and data yyij at the i-th timepoint and j-th

observable. In the special case of an error model that assumes Gaussian noise, this is equivalent

to the method of weighted least squares [16, 17].

Likelihood-ratio test

For testing hypotheses in parametric models, the likelihood-ratio test can be used [18]. It can

be utilized for example to compare two alternative model structures based on their likelihood

functions, as they comprise all available information about the model and data with respect to

the parameters.

Consider a full model M1 with parameters θ1 2 Θ1 and an alternative model M0 that is a

nested simplification thereof with parameters θ0 2 Θ0, i.e. Θ0� Θ1. The null hypothesis H0 is

formulated such that Θ0 in M0 is a valid simplification of Θ1 in M1. If H0 is rejected, it can be

concluded that the simplification is not valid. The respective likelihood ratio

LR ¼
supfLðθ0jθ0 2 Y0Þg

supfLðθ1jθ1 2 Y1Þg
ð6Þ

yields the test statistic

L ¼ � 2 logðLRÞ ð7Þ

with 0< LR� 1, such that 0< Λ<1 [15]. In the following, mentioning the supremum func-

tion is omitted for readability as always the optimized likelihood function is assumed. That is

the likelihood function LðθÞ at the MLE θ̂, i.e. where its value is maximal, or minimal in terms

of the log-likelihood LðθÞ ¼ � 2 logðLðθÞÞ. Using the latter expression, the test statistic

L ¼ Lðθ̂jθ 2 Y0Þ � Lðθ̂jθ 2 Y1Þ ð8Þ

reduces to a simple difference of the log-likelihoods L and is directly associated to the likeli-

hood ratio in Eq (6) via the test statistic in Eq (7). The difference of the log-likelihoods L is of

great importance for model selection, as discussed in the following.

Depending on the value of the test statistic, the null hypothesis H0 should be rejected if the

likelihood ratio Λ exceeds a critical threshold L > T∗
a
. However, except from special cases, the

distribution of the likelihood ratios and its quantile function cannot be derived theoretically.
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Thus, in applications the exact relationship between critical value and the significance level α
is unknown. As a consequence, translating likelihood ratios into p-values or determining a

critical value Tα of the test statistic remains problematic for realistic applications.

Under mild assumptions on the regularity, this issue can be circumvented by using Wilks’
theorem to approximate the distribution of the likelihood-ratio test statistic in the asymptotic

case. For this, assume that model M1ðθÞ with θ 2Θ1 has r free parameters, while the nested

model M0ðθÞ with θ 2 Θ0 has s free parameters with s< r, that the nested simplification Θ0�

Θ1 is specified appropriately, that all parameters are identifiable and that the true parameters

are not at the boundary of the parameter space [19]. Then, for a sufficiently large number of

data points, the test statistic

L�a w2
df ð9Þ

asymptotically converges to a chi-square distribution w2
df¼r� s with r − s degrees of freedom

equal to the difference of free model parameters r − s, independently from the true parameter

value and independently from the underlying likelihood functions.

By this, the probability distribution of the test statistic Λ in the asymptotic case is available

from the density function of the χ2-distribution ρχ2(x, df). Given a significance level α or confi-

dence level 1 − α, thresholds Ta ¼ Qð1 � aÞ ¼ icdfðw2
1
; 1 � aÞ of the test statistic can be deter-

mined using the quantile function or inverse cumulative distribution function of the χ2-

distribution in the large sample case.

Profile likelihood. Confidence intervals for point estimates are traditionally calculated

from the Fisher information matrix (FIM), which is derived from second-order derivatives of

the likelihood at the MLE and thus represents the local curvature of the likelihood [20, 21].

This yields exact results for linear models but does not account for non-zero higher-order

derivatives of the likelihood with respect to the parameters. In contrast, the profile likelihood
approach represents a generalisation for nonlinear systems. To calculate the profile likelihood

PLðyiÞ ¼ min
~y j6¼i

Lð~θÞ ð10Þ

for one parameter of interest θi that is scanned along its axis around the MLE while re-optimiz-

ing all remaining parameters θi6¼j. Since this approach directly evaluates the likelihood func-

tion, it enables the calculation of reliable confidence intervals of the estimated parameters also

for nonlinear models [9, 22–24].

In analogy to FIM-based standard errors motivated from the analysis of linear models, the

uncertainty of parameter estimates of nonlinear ODE models can be assessed by the profile

likelihood-based confidence interval

CI1� a
PL ðyiÞ ¼ fyi j PLðyiÞ � Lðθ̂Þ þ Dag ð11Þ

for a confidence level 1 − α. It represents the set of acceptable parameter values, characterized

by a profile likelihood value PL(θi) below the threshold Δα compared to the log-likelihood

value Lðθ̂Þ at the MLE θ̂.

This confidence interval can be interpreted as a continuous likelihood-ratio statistic

D ¼ PLðyiÞ � Lðθ̂Þ ð12Þ

for which the null hypothesis cannot be rejected if D < Δα, following the discussed case

with a simplification of nested models with one fixed parameter. Using Wilks’ theorem, the

critical value of the test statistic Tα can be analogously defined. In this line, the threshold Δα
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is calculated under the asymptotic assumption Ndata!1 from the (1 − α)-quantile, i.e.

Da ¼ Qðw2
1
; 1 � aÞ using the w2

df¼1
-distribution with one degree of freedom.

It should be noted, that in addition to the presented so-called frequentist approaches, also

Bayesian methods might be considered as an alternative as they employ a distinct notion of

parameter uncertainty. Bayesian methods involve incorporating prior knowledge and updat-

ing probabilities based on new data, resulting in posterior probabilities. Indeed, Bayesian

methods offer an effective way to handle finite dataset effects, as the posterior does not

encounter issues with finite sample sizes and does not require asymptotic assumptions. Such

approaches e.g. by utilizing extensive Bayesian Markov chain Monte Carlo (MCMC) sampling

have been successfully used for analogous mathematical modelling projects in systems biology

and have been compared to the frequentist profile likelihood approach [25]. In general,

MCMC sampling results have been shown to reliably propagate the uncertainty of parameter

estimates to model predictions, but it has also been discussed that MCMC sampling results

might be misleading in particular in the presence of non-identifiability [26]. In addition, defin-

ing adequate prior probabilities in practical applications for such approaches can be challeng-

ing, even with so-called uninformative priors, as they depend on upper and lower bounds, and

differ when applying transformations to the parameters, e.g. logarithmic transformation. In

the remainder of this work, we apply the discussed frequentist approach for profile likelihood-

based confidence intervals as it was used also in many of the presented benchmark model

examples. An additional advantage of the frequentist framework is that does not require the

specification of priors since it can be performed by maximizing the likelihood calculated from

the experimental data.

In addition to the definition of confidence intervals, the profile likelihood approach also

allows for a data-based identifiability analysis of the estimated parameters. Based on the shape

of the likelihood profile a classification scheme is available, that again depends on the the sta-

tistical threshold in terms of the log-likelihood [9, 27]. A parameter is considered as practically
identifiable if its likelihood profile exceeds the statistical threshold given by Lðθ̂Þ þ Da for val-

ues of θi smaller and larger than the MLE θ̂, i.e. yielding finite profile likelihood-based confi-

dence intervals, as depicted in Fig 1A. If the amount or quality of the available data is not

sufficient to indicate a confidence bound in both directions of θi, the parameter is termed as

practically non-identifiable. In this case, a unique point estimate may be obtained, but the pro-

file does not exceed the threshold Δα in at least one direction and thus does not have a confi-

dence interval with finite bounds, c.f. Fig 1B. A constant profile likelihood for the whole

parameter domain as shown in Fig 1C indicates a structurally non-identifiable parameter. Such

a case arises if the estimated parameters are not unique for the given data set, for example if

the model structure contains a redundant parametrization which cannot be resolved by addi-

tional data.

Corrections of likelihood ratios for finite-data samples

In realistic modeling applications, only a limited number of data points are available, i.e. in

contrast to the assumed asymptotic case, the finite-sample case typically occurs. Thus, the

validity of the approximation of the likelihood-ratio test statistic with the w2
df -distribution from

Eq (9) via Wilks’ theorem cannot be guaranteed in general.

Bartlett correction. An improved approximation of such a test statistic by a χ2-distribu-

tion has been proposed by Bartlett [28]. It relies on a problem-specific Barlett correction factor

C = 1/(1 + df/q), where in the original formulation df is the difference between the dimensions

of the parameter spaces of the model under the alternative hypothesis and the null hypothesis

and q is a constant which needs to be determined for the individual application. It has been
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shown that the modified likelihood ratio statistic

LBC ¼ CL ð13Þ

is closer to the w2
df -distribution in applications than the unmodified statistic, i.e. the first three

cumulants agree up to an error of Oðn� 2Þ [29]. Depending on the actual setting and model for-

mulation, the appropriate Bartlett correction factor is difficult to obtain or may be impossible

to compute in realistic applications [18]. The idea of the Bartlett correction was later general-

ized by Lawley [30] with a generalized expression for the correction factor C as a function of

the moments of the log-likelihood derivatives. The analytical derivation of Lawley’s approach,

however is cumbersome, as it requires joint cumulants of log-likelihood derivatives up to the

fourth order. While there are adaptions for certain model classes that allow a more efficient

calculation of the respective Bartlett correction factor [31–34], no methods are available for

nonlinear ODE models.

Chebyshev’s and Cantelli’s inequality. Critical values of the test statistic are essential as

statistical thresholds for the discussed likelihood-ratio test related methods. In addition to

their derivation based on Wilk’s theorem and calculation from the χ2-distribution, we propose

an alternative and more general attempt of defining such thresholds using Chebyshev’s and

Cantelli’s inequality.

For a simple illustration, let’s first consider a random variable X 2 N ðm; s2Þ generated

from a normal distribution with mean μ and standard deviation σ. Using the so-called empiri-
cal rule, for example for the 3σ neighborhood, the probability P(|X − μ|< 3σ) is known to be

99.7%. A popular implication from this rule is that almost all of the variables of a respective

data sample are contained in the 3σ interval, if the numbers are normally distributed [35].

Moreover, it is approximately valid if the underlying distribution is at least bell-shaped with

mean μ and standard deviation σ. Assuming that the distribution of a two-tailed test statistic

Fig 1. Profile likelihood for identifiability analysis. (A) Illustrative profile likelihood as blue solid line for an identifiable parameter. For

analyses of the identifiability status, the intersection with statistical threshold value (red line) at LðŷÞ þ Da is crucial. Furthermore, profile

likelihood-based confidence intervals can be constructed from the projections of the intersections on the parameter axis, defining the lower

θlb and upper bound θub of the confidence interval, if these intersections exist. The MLE ŷ is indicated by the black asterisk. (B) Profile

likelihood of a practically non-identifiable parameter that is open to the left resulting in an unbounded (C) Likelihood profile of a structural

non-identifiability indicated by a flat line with unbounded confidence interval in both directions.

https://doi.org/10.1371/journal.pcbi.1011417.g001
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would follow such a (approximative) normal distribution, statistical threshold could be con-

structed from the empirical rule according to a significance level α = 1 − P. For such a two-

tailed test statistic a lower and upper statistical threshold T�k ¼ �ks could be used as lower

and upper critical values for the two rejection regions at the outer parts of the distribution’s

tails.

Under much weaker assumptions on the distribution, Chebyshev’s inequality can be utilized

[36]. If the empirical mean μ and standard deviation σ of the sample are finite and known,

Chebyshev’s inequality guarantees

PðjX � mj � ksÞ � 1=k2; ð14Þ

i.e. in average at least (1 − 1/k2) × 100% of random numbers X drawn from the distribution to

be contained in the interval [μ − kσ, μ + kσ]. This is completely independent from the underly-

ing probability distribution and is thus also suitable even in cases when the form of the proba-

bility distribution is unknown.

It can be concluded that a realisation of a random number X of any kind of distribution lies

beyond k = 4.47 standard deviations of its mean in a maximum of 5% of the cases, i.e. with α�
5%. Again, for the rejection region of an hypothesis test an upper bound T �k ¼ m � ks on the

left tail of the distribution can be defined, as well as a lower bound Tþk ¼ mþ ks for the rejec-

tion region on the right tail. Chebyshev’s inequality can be also applied to a positive one-tailed

distribution, if T �k ¼ m � ks > 0, which is valid for the w2
df¼1

-distribution for k >
ffiffiffi
2
p

.

For random variables drawn from single-tailed distributions, a one-sided threshold can be

similarly derived from Cantelli’s inequality [37]. For a realisation of random numbers X in a

sample with empirical mean μ and standard deviation σ, the probability that a single random

number exceeds the sample’s mean by any real number c> 0 is

PðX � mþ cÞ �
s2

c2 þ s2
ð15Þ

regardless of the underlying probability distribution. Motivated from the conclusion of Wilk’s

theorem that the likelihood ratios should be at least asymptotically w2
df -distributed, Cantelli’s

inequality can be used to derive a value for the statistical threshold in the finite-sample case,

i.e. when a certain deviation from the asymptotic distribution is expected. For this, assume an

in detail unknown but w2
n-like distribution with mean μ = n and standard deviation s ¼

ffiffiffiffiffi
2n
p

.

It then follows from Eq (15) that a realisation of a random number X from such a distribution

exceeds a critical value of Tξ = μ + c with probability α� 2n/(c2 + 2n). The same rationale then

applies when assuming an in detail unknown test statistic, which has w2
n-like mean μ = n and

standard deviation s ¼
ffiffiffiffiffi
2n
p

. The critical value threshold Tξ of this test statistic can then be

calculated from Cantelli’s inequality for a significance level of maximal α� 2n/(c2 + 2n). In

conclusion and for n = 1 degrees of freedom, this yields a critical value Tξ = 1 + 6.16 = 7.16 for

the statistical threshold for a maximal 5% significance level under the assumption of the in

detail unknown, but w2
1
-like test statistic. Of note: the threshold of a w2

n¼1
-distribution for a sig-

nificance level α = 0.05 would be Tw2

a¼0:05 ¼ 3:84.

Approach

Realistic data simulation approach

To check the validity of the asymptotic χ2-distribution of the likelihood ratio from Wilks’ theo-

rem as well as the appropriateness of alternative threshold formulations, empirical likelihood

ratios form realistic model examples are employed. For this, in total 19 nonlinear ODE
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benchmark models of different biological systems and with various model properties are used.

Additional data sets are simulated according to the model’s original experimental design using

parametric bootstrapping. The thereof resulting empirical likelihood ratios for each parameter

are used for comparisons to asymptotic theory and a classification scheme based on probabil-

ity-probability plots is developed to assess the conservativeness of the likelihood ratio statistic.

Parametric bootstrapping. Bootstrapping methods are a frequently applied to estimate

the sampling distribution of an arbitrary statistic [38]. An extension to these resampling meth-

ods based on the data sample alone is parametric bootstrapping, which is utilized in the follow-

ing. Therefore, model trajectories are calculated based on the MLE θ̂, which is assumed as

underlying truth. The model trajectories are then used for generation of realisations of artifi-

cial data samples from the distribution of the measurement errors. For the nonlinear ODE

models analyzed here, model trajectories are simulated only from the observables according to

the original experimental design D using the MLE of the original data set. For each model,

Nreal = 500 realisations of artificial data sets are generated from simulations and by adding i.i.

d. noise from the original error model.

It should be noted, that these simulated data sets follow the original experimental design,

but their generation relies entirely on the original data and on the published model structure.

The simulated datasets are generated based on the model trajectories and the distribution of

measurement errors given by the error model that both were determined by estimating the

model parameters according to the original experimental data in the first place. While the sim-

ulated data realizations cannot provide new insights into the true biological system, they are

useful for investigating uncertainties and assessing reliability in terms of coverage. In principle,

also parameter confidence intervals might be calculated from such bootstrap data samples,

albeit in applications they are considered as computationally much more demanding than the

preferred profile likelihood-based confidence intervals [39, 40].

In this study, artificial data sets produced according to the described parametric bootstrap-

ping procedure serve to generate empirical likelihood ratios and to investigate their distribu-

tion. To this end, the model parameters are re-estimated for a bootstrap data realization yyi ,
yielding the value of the log-likelihood function termed as Lðyyi jθ

all
Þ. In the same way, the log-

likelihood value termed as Lðyyi jθ jÞ is determined for a nested model with one fixed parameter

using the same data realization yyi . This is done by fixing each parameter of interest θj to the

value obtained from the fit to the original data, while re-fitting the model by re-optimizing all

remaining parameters.

Since the parameter of interest is fixed to its true value yj ¼ ŷ j, i.e. to the value which gener-

ates the model trajectories from which the artificial data sets are sampled, the model with L(θ|θ
2Θ0) with nesting Y0 ¼ fY1jyj ¼ ŷ jg is a valid simplification of the full model with likeli-

hood function L(θ|θ 2 Θ1). Thus, the likelihood ratio or the difference in terms of log-likeli-

hood according to Eq (8) is constructed from the log-likelihood L of both fits, i.e. the fit of all

parameters and the fit with fixed j-th parameter θj. This yields the empirical likelihood ratios

λij ¼ Lðyyi jθ jÞ � Lðyyi jθ
all
Þ ; ð16Þ

for each parameter θj and data realization yyi from the bootstrapping approach. According to

Wilks’ theorem and due to the difference of free model parameters of one

λij �
aw2

df¼1 ð17Þ

should asymptotically hold with df = 1 degrees of freedom of the chi-square distribution.
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The described parametric bootstrapping procedure as summarized in pseudocode in S1 Fig

is repeated for each of the Nreal = 500 data realisations and for each estimated parameter θj of

the m-th model, yielding the empirical realization of the likelihood ratio λijm for the i-th data

realization. Whether the asymptotic assumption from Eq (17) holds in realistic applications, is

the central question in the analysis of the empirical likelihood ratios from Eq (16) in the

remainder of this study. By calculating the empirical cumulative density function (ECDF) of

λijm over all simulated data samples, the empirical distribution can be related to the theoreti-

cally expected cumulative density function (CDF), for example to the expected w2
df¼1

-distribu-

tion in order to check the appropriateness of the asymptotic approximation. For this,

empirical thresholds of λ for different significance levels α can be compared to the expected

quantiles Ttheo
a
¼ icdfðw2

df¼1
; 1 � aÞ.

Classification of empirical likelihood ratios

In order to draw practically relevant conclusions about the distribution of the empirical likelihood

ratios from the parametric bootstrapping procedure, the empirical cumulative density function

(ECDF) is investigated. A classification scheme is carried out in order to compare the empirical

distribution to the theoretically expected distribution. By this, we check the appropriateness of

Wilks’ theorem for thresholds of the likelihood-ratio test statistic and related statistical methods.

Probability-probability plots (pp-plots). To compare the ECDF of the empirical likeli-

hood ratio samples against the theoretical CDF of the asymptotically expected reference distri-

bution, probability-probability-plots (pp-plots) are utilized [41]. If the sample is distributed

according to the theoretically expected distribution, the approximately identical cumulative

probabilities for the respective quantiles in both the theoretical CDF and in the ECDF will be

observed. For visual inspection, the pp-plot is constructed by plotting the ECDF of the likeli-

hood ratio sample, i.e. the cumulative probability values on the y-axis against the cumulative

probability values of the theoretical CDF on the x-axis of the pp-plot, cf. Fig 2A. A data sample

distributed accordingly to the theoretical CDF would lie on the diagonal, as shown by the red

line in Fig 2A. This outcome is expected for the asymptotic case when the empirical likelihood

ratio sample is indeed distributed as w2
df¼1

.

If however, the cumulative probability of the ECDF is larger than the expected theoretical

CDF, the pp-plot graph lies in the upper left triangle. This case is termed conservative, since

the ECDF implies a smaller empirical threshold value Temp
a

for the significance level α, com-

pared to the expected threshold Ttheo
a

from the theoretical CDF. That is, the same likelihood

ratio corresponds to a larger cumulative probability in the ECDF than for the theoretical CDF.

In other words, the empirical sample contains more smaller values of the likelihood ratios than

expected, i.e. more than the expected 1 − α% of the likelihood ratio values are smaller than the

expected Ttheo
a

of the reference distribution. The consequence of applying such a non-adequate

threshold Ttheo
a

derived from the asymptotic theory to this sample would be for example a too

conservative confidence interval. A respective profile likelihood-based confidence interval

with a threshold Daðw
2
1
Þ :¼ Ttheo

a
would be too large and the true value of a parameter would lie

more often than in 1 − α% of the cases within the confidence interval. The pp-plot graph of

such a conservative case is shown in yellow in Fig 2A. It indicates that the ECDF has a larger

cumulative probability value compared to the value of the theoretical CDF at the chosen confi-

dence level, cf. the example for a confidence level 1 − α = 0.9 in Fig 2A. For the shown example,

more than 90% of the data sample are in fact smaller than the expected Ttheo
a¼0:1
¼ 2:71.

In contrast, the opposite case of a too small threshold is termed anti-conservative and is

identified by a pp-plot graph lying entirely in the lower right triangle, c.f. blue line in Fig 2A.
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Here, a profile likelihood-based confidence interval with Da ¼ Ttheo
a¼0:1
¼ 2:71 would be too

small, since in this example only 71% of the likelihood ratios are smaller than Ttheo, in contrast

to the expected 90%.

Taking into account the course of the whole pp-plot graph, also a mixture of both cases can

occur, as shown by the purple line in Fig 2A. In this alternating case, the graph lies for example

in the conservative triangle for small values of the CDF, but crosses the diagonal in the middle

of the cumulative probability domain of the CDF and remains below the diagonal for larger p-

values in the anti-conservative regime.

Classification of realistic samples. For the further analysis, a classification scheme for

the pp-plots of the empirical likelihood ratios according to the discussed cases is implemented.

This is necessary since realistic samples are less smooth than the graphs depicted in Fig 2A and

even realisations from a w2
df¼1

-distributed random variable show a noticeable deviation from

the expected straight diagonal in the pp-plot (light green line in Fig 2B). For illustration, 1000

random samples each containing Nreal = 500 i.i.d. random variables drawn from the expected

w2
df¼1

-distribution are generated, resulting in pp-plot graphs depicted in shades of gray in Fig

2B. In order to be able to identify empirical likelihood ratios which in fact correspond to the

asymptotic theory, but show a similar deviation from the diagonal, a tolerance region around

the diagonal is constructed for the classification scheme. This area is constructed from fitting a

higher-order polynomial around the 3σ-deviation of the w2
df¼1

samples around the diagonal

This polynomial is bounded at p = 0 and 1 and shows the largest deviation from the baseline at

p = 0.5. The resulting tolerance band contains approximately 95% of the w2
df¼1

-sample graphs.

In the context of the bootstrapping procedure for empirical likelihood ratios, a graph which

remains entirely within this area of the pp-plot is termed as a perfect consensus with the asymp-

totic theory and is classified accordingly.

Fig 2. Empirical likelihood ratio classification. A: Probability-probability plot (pp-plot) with four possible graph scenarios. B: w2
df¼1

-samples show a noticeable

deviation from the diagonal in the pp-plot. The pp-plot in panel B shows graphs from 1000 samples each with Nreal = 500 random numbers drawn from a

w2
df¼1

-distribution. C: Classifications plot with classification regions and classification scheme for mixed cases: the white graph is classified as conservative, although its

upper part lies in the perfect consensus area. Likewise, the light gray graph is identified with the anti-conservative case, while the black graph represents an alternating
case which populates all three areas.

https://doi.org/10.1371/journal.pcbi.1011417.g002
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Graphs lying entirely above or below the red perfect consensus-area are identified either

with the conservative case (yellow) or anti-conservative case (blue), respectively. Despite these

clear cases, also mixed cases needs to be considered. Often, the conservative or anti-conserva-

tive graphs do not lie exclusively in their respective areas, but their tails overlap with the perfect

consensus-area. Such a pp-plot graph with a deviation from perfect consensus-area in only

one direction is assigned to the respective class. For example the white graph in Fig 2C is be

assigned to the conservative case, even if parts of it lie in the perfect consensus-area, but not in

the anti-conservative area. Likewise, the gray graph is identified as an anti-conservative case.

Contrarily, graphs that have parts in both, the conservative and the anti-conservative part

are assigned to the fourth class that is termed alternating graph in the following. This scenario

is illustrated by the black graph in Fig 2C. This characterizes a situation where a general state-

ment about the conservativeness of statistical thresholds for likelihood ratios of the respective

model parameter is not possible.

In fact, the appropriateness of the asymptotic approximation depends on the specific sig-

nificance level for which e.g. a likelihood ratio threshold is derived. For this reason, the fur-

ther analysis of empirical likelihood ratios λ from the parametric bootstrapping procedure

covers both aspects: first, a classification of the whole pp-plots graphs in the presented four

classes. And in a second analysis, an evaluation of the pp-plot graphs at certain relevant
quantiles, i.e. for values of statistical thresholds for specific significance levels α. Such an

example for 1 − α = 0.9 is depicted in Fig 2A, using the same classification areas as indicated

in Fig 2C for the whole pp-plots graph analysis.

Benchmark models

For the following analysis, 19 nonlinear ODE benchmark models from the literature are used

to investigate the empirical distribution of likelihood ratios. Table 1 summarizes all models,

their properties and references.

The collection comprises exclusively models that were published with experimental data

and it covers a broad spectrum of modelled biological systems. Moreover, the models and

their accompanied data sets differ widely in terms of size, e.g. number of estimated parameters

or number of model states. Only the published data sets and the therein applied experimental

design Di, i.e. the choice of observables, of time points and of experimental conditions is used

to simulate additional artificial, yet realistic data realisations as described earlier. All models

share the characteristics of a partially observed nonlinear ODE system, i.e. they are calibrated

using experimental data and thus are limited in the amount and quality of the finite data

sample.

Some of the models exhibit a 100% fraction of observed states. These models should how-

ever also be considered as only partially observed, since for example not all states were

observed also in all possible experimental conditions and perturbations of the biological sys-

tem. Also, only a small subset of time points could be have been used for recording the data of

certain model states. Despite the high fraction of observed states, the accompanied data sets of

these models presumably do not contain the full information about the dynamical system. The

ratio of the number of data points with respect to the number of estimated parameters lies

between 1.3 and 39.4, i.e. at least as many data points are used as estimated parameters.

The selection of systems comprises 16 models which have a systems biology context, where

mainly cellular signaling pathways are described and 14 of them originate from a comprehen-

sive benchmark model collection [59]. In order to cover a broad spectrum of applications of

dynamical models describing biological systems and to potentially reveal differences depend-

ing on the context, the set of systems biology related models is extended by two models that
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describe the dynamics of populations for infectious diseases taken from [11] and by a pharma-

cokinetic model of O2 concentrations in the human brain from [53].

Diverse model sizes with respect to their free parameters are considered. The smallest

model has only 5 parameters to be estimated from 14 data points (17 Tönsing-Flu), while the

largest model has approximately 200 fitted parameters estimated from 1141 data points (11

Merkle). A visualisation of absolute numbers of model parameters and the fraction of certain

parameter types is given in Fig 3A. It appears that likewise to the broad range of model sizes,

also the fraction of parameter types differs noticeably between the models.

The identifiability status of all benchmark model parameters is checked by calculating the

profile likelihood for each model parameter, using the originally published data sets. For this

analysis, the significance level α = 0.05, i.e. the commonly used threshold of Δα=0.05 = 3.84

from asymptotic theory is utilized. Fig 3B summarizes the results of the profile likelihood-

based identifiability analysis.

Throughout all models, no parameter was identified as structurally non-identifiable, i.e.

revealing a completely flat profile likelihood. A fraction of 26.3% of all parameters are however

practically non-identifiable, all other parameters are identifiable with finite bounds of the pro-

file likelihood. Likewise to the bare model properties from Table 1, a broad and evenly distrib-

uted spectrum appears in the fraction of practically identifiable parameters per model. Two

models (17 Tönsing-Flu & 6 Bruno) are fully identifiable and most models have more than

50% identifiable parameters. Mostly dynamic parameters dominate the overall identifiability

Table 1. Table of all analyzed benchmark models.

No. Model name Nx robsx (%) Nc Ndata Nθ Ndata/Nθ Context Reference

1 Alkan 36 77.8 73 1733 44 39.4 SB [42]

2 Bachmann 25 52.0 23 542 113 4.8 SB† [43]

3 Becker 7 85.7 2 85 16 5.3 SB† [44]

4 Boehm 8 62.5 1 48 9 5.3 SB† [45]

5 Brännmark 9 66.7 8 43 22 2.0 SB† [46]

6 Bruno 7 85.7 6 77 13 5.9 SB† [47]

7 Fiedler 6 66.7 3 72 22 3.3 SB† [48]

8 Hass 9 100.0 17 221 49 4.5 SB† [49]

9 Isensee 25 64.0 109 713 46 15.5 SB† [50]

10 Lucarelli 33 100.0 12 1755 84 20.9 SB† [51]

11 Merkle 46 47.8 62 1141 197 5.8 SB† [52]

12 Kurzhunov 3 33.3 1 46 9 5.1 PK [53]

13 Raia 14 100.0 4 205 39 5.3 SB† [54]

14 Schwen 11 54.5 7 292 30 9.7 SB† [55]

15 Sneyd 6 33.3 8 135 15 9.0 SB [56]

16 Swameye 9 33.3 1 46 16 2.9 SB† [57]

17 Tönsing—Flu 3 33.3 1 14 5 2.8 Inf [11]

18 Tönsing—Zika 8 12.5 1 58 9 6.4 Inf [11]

19 Zheng 15 100.0 1 60 46 1.3 SB† [58]

Models are numbered and abbreviated by the last name of the first author. Nx: number of model states, robsx : fraction of observed model states, i.e. states that appear in

the observation function, Nc: number of experimental conditions, Ndata: number of data points, Nθ: number of estimated parameters, SB: Systems Biology model of

cellular signaling pathways or gene regulation networks, Inf: Compartment model for infectious diseases, PK: Pharmacokinetic model,
† : part of the benchmark model collection [59].

https://doi.org/10.1371/journal.pcbi.1011417.t001
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of the models, whereas initial value parameters, observation and error parameters are often

non-problematic in terms of identifiability.

Results and discussion

Observation: Empirical likelihood ratios

The empirical likelihood ratios of the parameters from the 19 benchmark models are analyzed

in the following in order to check the validity of the asymptotic assumptions on their distribu-

tion. For all the in total 768 parameters, the bootstrapping procedure is employed and pp-plots

Fig 3. Overview of benchmark model properties and identifiability status. (A) Estimated parameters of all 19 models and distribution of parameter types. (B)

Identifiability of model parameters based on the profile likelihood using the original data and a threshold of Δα=0.05 = 3.84. Either identifiable parameters with finite

profile likelihood-based confidence intervals (darker colors) or practically non-identifiable parameters (lighter colors) were identified. Structural non-identifiability was

not observed.

https://doi.org/10.1371/journal.pcbi.1011417.g003
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of the resulting empirical likelihood ratios are analyzed according to the discussed classifica-

tion scheme.

The presented procedure has large computational demands. First, the original best fit

parameter set is used as initial guess for a single fit for each of the 19 models with each of the

500 data realisations. The main load however is generated at the second stage by the bootstrap-

ping approach, which requires an additional loop of fits for each fixed parameter value and for

each data realization. Especially large models with respect to the number of estimated parame-

ters already require large amounts of computational resources for the single fits [59].

In total, the presented data sampling, bootstrapping and fitting procedure requires approxi-

mately 250 000 hours of single CPU time. All analyses were conducted using the Matlab-based

Data2Dynamics modelling framework [60] on the Baden-Württemberg High Performance
Cluster (bwHPC) MLS&WISO, where the analysis was completed within approximately 3

weeks of walltime by using up to 100 16-core 2.4 GHz-nodes in parallel.

Analysis of whole pp-plots. In a first step, the whole pp-plots of all parameters are com-

pared to asymptotic theory by assigning their graphs according to the discussed scheme to the

four classes. The results of the classification for all parameters and separately for each parame-

ter type are summarized in Fig 4. Fig 5 shows the pp-plots for all 784 parameters, grouped by

the models and separated in identifiable parameters in the upper panel in Fig 5A and practi-

cally non-identifiable parameters in the lower panel Fig 5B.

The analysis reveals a heterogeneous classification outcome throughout the different mod-

els, covering models with almost all parameters being in the conservative regime or showing a

perfect consensus with theory(8 Hass), but also models with approximately 100% of anti-con-

servative cases(17 Tönsing-Flu). A surprisingly low overall fraction of only 16.6% of the

parameters in the perfect consensus class shows that only few empirical likelihood ratios are

indeed w2
1
-distributed. Only two models (12 Kurzhunov and 18 Tönsing—Zika) have more

than 50% of parameters with a perfect overlap with asymptotic theory. The majority of ana-

lysed model parameters shows a distribution that is not in accordance with asymptotic theory.

However, the non-problematic cases with at least conservative pp-plot graphs represent 51.8%

of all analyzed parameters, shown as positive value bars in Fig 4A. Most models have a consid-

erable fraction of anti-conservative or alternating pp-plot graphs. These problematic cases are

grouped together with negative percentage in Fig 4. In such cases it can not be guaranteed that

the statistical thresholds for the likelihood ratio, e.g. for confidence intervals, are at least con-

servative. With 6.8% of all parameters, only a small fraction shows an alternating profile, i.e.

with parts of the pp-plot graph in the conservative and in the anti-conservative part above or

below the diagonal in the pp-plot.

An impression of the effect size of the pp-plot graph deviation from asymptotic theory is

given in Fig 6, which shows the average distance between the actual pp-plot graphs and the

diagonal. For this, the vertical distance from to the graph to the diagonal is averaged over all

500 empirical likelihood ratios, i.e. data realisations for one parameter and normalized to the

maximal possible deviation. The results are ordered with respect to the classification ranking

for all parameters from Fig 4A. It shows a similar trend of the mean of the distances per model

and the classification ranking, although the variance within the models is rather high. How-

ever, most pp-plot graphs show a relatively low distance to the diagonal, as indicated by the

gray histogram on the right hand side in Fig 6. If graphs show a large deviation from the diago-

nal, they tend to be more likely in the upper conservative region than in the lower anti-conser-

vative region. In some cases in the conservative part, however, they reach the maximal value of

the distance. Contrarily, in the more problematic case of pp-plot graphs in the anti-conserva-

tive region, they stay rather close to the diagonal in the perfect consensus region.
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When comparing the classification results for all parameters in Fig 4A with the results for

only dynamic parameters in Fig 4B, it appears that the partitioning of pp-plot graph classifica-

tions changes slightly, but would result in a similar ranking of models based on the fraction of

non-problematic cases. Dynamic parameters dominate the overall classification of the models,

but their non-problematic fraction is slightly higher. Initial value and observational parameters

in Fig 4C and 4D show a similar, yet less pronounced correlation with the overall results from

Fig 4A. A comprehensive statement concerning the appropriateness of the asymptotic assump-

tion for these parameter types remains vague, since many models do not have either initial

value or observational parameters (cf. Fig 3A).

Error parameters are in most cases classified as anti-conservative, meaning that they fall in

the problematic case where a statistical threshold for the likelihood-ratio test from asymptotic

theory following Wilks’ theorem is too small compared to the empirical likelihood ratios from

Fig 4. Classification results of whole pp-plots graphs compared to the χ2
df¼1-distribution. Results are sorted by the percentage of non-problematic, i.e.

conservative and perfect consensus cases. The anti-conservative and alternating fraction of cases is indicated by a negative sign. (A) Overall results for all model

parameters and (B-E) results separately for each model parameter type.

https://doi.org/10.1371/journal.pcbi.1011417.g004
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the bootstrapping procedure. It follows that, e.g. profile likelihood-based confidence intervals

would be too small, regardless of the chosen significance level α. Thus, the uncertainty of the

estimated error parameters would be underestimated and consequently the error model pre-

dicts the uncertainty to be smaller than it actually is. Interestingly, error parameters share the

preferable property of being rather often identifiable which is desirable, but at the same time

their pp-plots are mostly anti-conservative, which represents a rather problematic case.

A similar observation can be made concerning the relation between identifiability status

and pp-plot classification, when observing at the actual pp-plots in Fig 5 where identifiable

and practically non-identifiable parameters are shown separately. Within the identifiable

Fig 5. All pp-plots graphs of the estimated model parameters, separated by their identifiability status. (A) identifiable parameters and (B) practically non-identifiable

based on their profile likelihoods. All graphs are classified in perfect (red), conservative (yellow), anti-conservative (blue) or alternating (purple) cases.

https://doi.org/10.1371/journal.pcbi.1011417.g005
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parameters in in the upper panel Fig 5A, all four classes are present, but only few models (2

Bachmann, 9 Isensee, 10 Lucarelli and 16 Swameye) show a considerable amount of more than

five conservative cases (yellow lines). Contrarily, in the lower panel Fig 5B showing the non-

identifiable parameters almost all pp-plots indicate conservative pp-plot graphs. In contrast,

anti-conservative parameters occur only in rare occasions for practically non-identifiable

parameters (blue lines in Fig 5B), while almost every model exhibits at least one identifiable,

yet anti-conservative parameter in Fig 5A.

Perfect consensus graphs are merely visible in Fig 5B ecause these graphs are concentrated

on a rather small region around the diagonal in the pp-plots. Absolute numbers are given for

each class on top of the plots. Conservative and anti-conservative graphs are clearly visible,

since they are spread over the whole plotting area. More precisely, it can be noted that the blue

anti-conservative graphs touch the lower or right hand sided axes of the plots only in few

cases. In contrast, the yellow graphs of conservative and non-identifiable parameters in Fig 5B

predominantly show a profile which instantaneously increases for p = 0 of the theoretical CDF

indicating a rather large number of data realisations with very small empirical likelihood ratios

close to zero.

Analysis of relevant quantiles. In practice, not all quantiles of the test statistic are rele-

vant, since usually study results do not report the whole confidence distribution [61], but

rather confidence intervals for a specific significance level α or confidence level 1 − α. Thus in

this second analysis, the empirical likelihood ratios are examined only at specific thresholds

values of the test statistic for typical assumed confidence levels. In contrast to the analysis of

the whole pp-plot graph, here, only the specified confidence levels are employed in the pp-plot

graphs, cf. Fig 2A. For this, the three classification regions from Fig 2C are used, but only at

Fig 6. Average distance of pp-plot graphs from the diagonal. Distances are normalized by the maximal possible distance value, i.e. a graph lying on the

upper x-axis at pemp = 1 for all pemp in the pp-plot. Models are ordered according to the ranking of the classification results from Fig 4A. The histogram on

the right shows the distribution of average distances from the diagonal summarized for all parameters.

https://doi.org/10.1371/journal.pcbi.1011417.g006
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the specific significance levels, corresponding to the respective quantiles of the test statistic.

Consequently, the class of alternating graphs becomes obsolete, since at a specific level it is

either in one of the non-problematic (perfect consensus or conservative) or in the anti-conser-

vative region.

Fig 7 shows the results for the frequently applied threshold of the test statistic for a signifi-

cance level of α = 0.05. For this, the pp-plots of the empirical likelihood ratios are classified

only at the confidence level of 1 − α = 0.95. Specifically, it is assessed whether the calculated

statistical threshold Ta¼0:05 ¼ icdfðw2
1
; 0:95Þ ¼ 3:84 of the test statistic’s distribution under the

asymptotic assumptions holds by checking if at least 95% of the empirical likelihood ratios

from the bootstrapping procedure are smaller than 3.84. This is done by checking, if the pp-

plot graph of the empirical CDF at ptheo = 0.95 lies within the perfect consensus region, below

or above it. Compared to the results from the whole pp-plot analysis (cf. Fig 4), the analysis at

the 0.95-quantile in Fig 7 shows a similar ranking of the models, although considerably more

parameters reveal the preferable perfect consensus case. However, the overall amount of anti-

conservative cases remains at a similar level and most models again show a heterogeneous pat-

tern, with in the majority of models at least one third of as anti-conservative classified

parameters.

The same kind of analysis is repeated for a set of specific confidence levels, in order to

check if the appropriateness of the asymptotic assumption improves when considering the

whole range of possible confidence levels, including the prominent 68% and 99% levels. Since

the ideal situation of mostly perfect consensus cases is not reachable anyhow, the following

analyses examine non-problematic cases, i.e. perfect consensus and conservative cases versus

the problematic anti-conservative parameters. For this, the conservativeness ratio

CR ¼
#perfect consensus casesþ #conservative cases

#total cases analyzed
ð18Þ

is defined, which serves as a measure for the appropriateness of the assumed test statistic distri-

bution. In other words, the CR is the fraction of parameters with a pp-plot graph not in the

Fig 7. Classification results of pp-plots graphs at the 95% confidence level. Results are sorted by the percentage of non-problematic, i.e. conservative and perfect

consensus cases. The model ranking remains similar to the whole pp-plot graph analysis (cf. Fig 4).

https://doi.org/10.1371/journal.pcbi.1011417.g007
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anti-conservative region for a given confidence level. A CR-value close to 1 indicates a good

asymptotic approximation of the likelihood ratio statistic at the respective confidence level.

Fig 8A shows the conservativeness ratio CR for a range of confidence levels for all analyzed

parameters of the benchmark models, separated in their parameter type, their identifiability

status and for the individual models. In the heatmap in Fig 8A it can be observed that the CR
indeed varies with the confidence level. As a general trend, it can be concluded that lower con-

fidence levels show higher values of the CR, meaning that they are more often in accordance

with asymptotic theory than higher confidence levels.

For a better overview of the results and to assess whether an individual tile of the heatmap

in Fig 8A Corresponds to an acceptable CR or if the asymptotic approximation is inappropri-

ate for this combination of confidence level and model or parameter group, two threshold cri-

teria for the CR are constructed.

The first criterion is the stricter one and requires that the asymptotic approximation is valid

in at least 95% of the pp-plots at the, regardless of the considered confidence level. The heat-

map in Fig 8B indicates that this requirement of CR� 95% is fulfilled for almost no model at

any confidence level. Precisely, only for a very small confidence level of 10%, at least 95% of

the model parameters show a sufficient accordance with asymptotic theory. Of course, the for-

mulation of such low confidence levels is troublesome, as it corresponds to a not desirable type

Fig 8. Appropriateness of the χ2
df¼1-distribution for empirical likelihood ratios at specific confidence levels. (A) Heatmap of conservativeness ratio CR,

i.e. fraction of non-problematic cases in the respective parameter group or model. CR-values close to 1 indicate a good agreement with asymptotic theory,

while lower values occur in situations where the asymptotic approximation might not be appropriate. (B) Parameter groups or models with CR larger than

95% at the confidence level are indicated by black tiles in the upper panel. (C) A less strict criterion checks if the CR value is larger than 1 − α% of the

respective confidence level and parameter groups or model.

https://doi.org/10.1371/journal.pcbi.1011417.g008
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I error of e.g. 90%. Two exceptions are model ‘6 Bruno’, which does not reach a CR� 0.95 for

any of the analyzed confidence levels and model ‘8 Hass’, which exhibits the opposite case of a

sufficient CR� 0.95 for all analyzed confidence levels.

The second, yet weaker criterion for a sufficient CR is motivated from having the same type

I error at all stages of the analysis, i.e. for the likelihood ratio statistic, the respective confidence

intervals, and for the appropriateness of the choice of the w2
df¼1

-distribution. This translates

effectively into a lower threshold for most tiles: a CR� 1 − α would be a sufficient condition

for a valid asymptotic assumption per heatmap tile. For example, at the 68%-confidence level,

only 68% of the empirical likelihood ratios need to be non-problematic. Fig 8C shows the

results for this criterion applied on the heatmap from panel A. It appears that considerable

more tiles pass this weaker criterion. However, already for a confidence level of 1 − α� 0.5,

many parameter groups or models do not show an acceptable CR and thus, neither for the

95% criterion nor for the weaker criterion can the general validity of the asymptotic approxi-

mation from Wilks’ theorem be assumed.

These results confirm what was already concluded from the previous analysis of the pp-

plots: The validity of the asymptotic assumption in Wilks’ theorem applied to realistic ODE

models cannot be guaranteed, neither for the whole pp-plot, nor for typically utilized quantiles

of the distribution, such as e.g. 0.68, 0.9, 0.95 or even 0.99. By comparing the CR results for the

error model parameters with the average CR or other parameter types, it appears that they

show considerably less agreement with the χ2-distribution. More precisely, error model

parameters rather exhibit the anti-conservative case, in which confidence intervals tend to be

too small. Furthermore, also the group of identifiable parameters are more often problematic,

when compared to the CR of practically non-identifiable parameters. Interestingly, practically

non-identifiable parameters rather exhibit the conservative case, i.e. confidence intervals tend

to be too large (see also Fig 5). Looking at the individual models, the analysis reveals a large

heterogeneity in the CR-values. There are models that show a good agreement of the asymp-

totic assumption (e.g. model 8 Hass) over all quantiles, or at least for quantiles up to 0.68 or

0.8. But it can be observed that there are also models where the asymptotic assumptions even

for a confidence level of 1 − α = 0.5 holds at least conservatively in only 50% of the cases. It

should be further noted as conclusion of the analysis at the relevant quantiles, that approxi-

mately 50% of the parameters are classified as anti-conservative at the commonly utilized con-

fidence level of 0.95, cf. Fig 7.

Cause: Data space interpretation

To motivate a possible explanation, how the different classification results and pattern in

the pp-plot graphs are related to the model and data properties, a geometrical interpretation of

parameter estimation utilizing the concept of the data space is introduced in a short digression.

For linear models, fitting a model to the data is typically realized by using the pseudo-inverse

of the design matrix [62]. The pseudo-inverse can be interpreted as a projection operator

which minimizes the Euclidean distance between the so-called model manifold and a point in

the so-called data space.

The data space for n data points is represented by the n-dimensional space S ¼ Rn, where

each data point corresponds to one dimension of S. Thus, one data set, i.e. one specific noise

realization of all data points corresponds to a single point in the n-dimensional data space.

Multiple data realisations of the same experimental design D can be displayed side by side in

the data space by individual data space vectors. Contrarily, an additional measurement which

extends the data set, i.e. for an alternative experimental design D 0
would introduce an addi-

tional dimension to the data space S.
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The model in the data space is represented by a manifold M with dimension m� n. Resid-

uals resi(θ) = ydata(ti) − ymodel(ti, θ) quantify the deviation of the observation ydata from the

model prediction ymodel at time point ti for a parameter vector θ. The objective function value

LðyÞ ¼
X

i

resiðyÞ
si

� �2

; ð19Þ

i.e. the sum of squared weighted residuals, corresponds to the Euclidean distance in the data

space between data point and model manifold. The standard deviation σi thus corresponds to

a re-scaling of the respective data space axis. For an additive Gaussian error model, the re-sam-

pled data is distributed spherically in the n-dimensional data space. Thus, the data realisations

are centered around the true parameter value on the model manifold. Model fitting to such a

data realization is the local orthogonal projection on the closest tangent of the model manifold.

In other words, parameter estimation is equivalent to finding the minimal Euclidean distance

between data and model in the data space. Differences in terms of the objective function are

reassembled by the Pythagorean theorem [63, 64].

Fig 9A shows an illustrative example of a one-dimensional model with one model parame-

ter θ and with two observations t1 and t2. The model predictions at t1 and t2 can be interpreted

in the two-dimensional data space by

mðy; tÞ ¼
ð2y � 1:5Þ

t1 � ð2y � 1:5Þ
t1 � 2

ð2y � 1:5Þ
t2 � ð2y � 1:5Þ

t2 � 2

 !

ð20Þ

yielding a nodal curve as model manifold (motivated by [65]). Interpreted as function of the

true parameter value θ, the model manifold yields different local shapes, which have character-

istic consequences for the model fitting, as the shape of the manifold influences the distances

between data and model prediction as discussed in the following. For the illustration, four sce-

narios are defined by four different values of the model parameter θ, indicated by a blue cross

on the model manifold in Fig 9A, 9D, 9G and 9J. Data is generated by sampling from an addi-

tive Gaussian error model, yielding data realisations in the data space that are indicated by

gray crosses. A fit of the model to such a data point is an orthogonal projection of the data

point in the data space on the model manifold, shown as red circles. Analogously to the likeli-

hood ratio or the differences in terms of the log-likelihood (cf. Eq (8)), distances of the model

fits (red circle) to the location of the model prediction for the true parameter value, i.e. maxi-

mum likelihood estimate (blue cross) are displayed in the histograms in Fig 9B, 9E, 9H and

9K. If the asymptotic assumptions about the likelihood ratios hold, these distances are expected

to be w2
df¼1

-distributed following Wilks’ theorem. As a reference, a w2
df¼1

-like distribution is

depicted in the histograms as a red line. The distances in the data space, i.e. the analog to

empirical likelihood ratios for different data realisations are compared against the expected

w2
df¼1

-distribution in pp-plots in Fig 9C, 9F, 9I and 9L according to the previous analysis and

classification of empirical likelihood ratios from the bootstrapping procedure for nonlinear

ODE models.

In the first scenario I, the local shape of the model manifold, i.e. the surface region popu-

lated by the single fits (red circles), is almost uncurved and thus, the outcome is similar to a lin-

ear model. In higher dimensions such a model manifold would be a flat n − 1-dimensional

hyperplane. In accordance to asymptotic theory, the empirical objective function distances are

indeed w2
df¼1

-distributed, as verified by a perfect consensus graph in the pp-plot, almost identical

to the diagonal in Fig 9C.
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Further increasing the value of the true model parameter θ moves the point from which the

N = 200 data realisations are sampled towards the intersection of the nodal curve (scenario II),

cf. Fig 9D. As a consequence, the estimated model parameters populate a more complex sur-

face of the nodal curve when being projected to the model manifold in vicinity of the intersec-

tion. Since in this situation the model manifold lies more densely in the data space, the

probability of having the manifold in close vicinity around an individual data realization is

Fig 9. Data-space representation of four different scenarios using the nodal curve model manifold example. (A,D,G,J) Different shapes of the model manifold

(black solid line) in the data space with a choice of data realisations (N = 25 out of 200, gray crosses) drawn from a n-ball around the true parameter (blue cross) and fit

onto the model manifold (gray solid line and red circles). Distances between the true parameter and the fits (N = 200) correspond to the empirical likelihood ratio. (B,E,

H,K) Corresponding histograms to each scenario illustrate the distribution of the distances, i.e. likelihood ratios compared to a w2
df¼1

-distribution (red line). (C,F,I,L)

The pp-plot panel allows for a detailed comparison of the empirical likelihood ratios to a w2
df¼1

-distribution (N = 200).

https://doi.org/10.1371/journal.pcbi.1011417.g009
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higher than for the linear model case. Compared to the flat manifold from the first scenario

however, the distribution of distances between individual fits and the true parameter on the

model manifold changes towards more increased distances, while the distances between data

realisations and individual fits tend to decrease. The effect is depicted in the histogram in Fig

9E that differs from the exponential decay-like shape in scenario I, as it is more uniformly dis-

tributed. As a consequence, the pp-plot unambiguously reveals an anti-conservative graph, i.e.

indicating that a statistical threshold for a test statistic distributed as w2
df¼1

would be too small

compared to the actual empirical distribution, which contains more larger distances.

Scenario III illustrates the effects of boundaries at the model manifold in the data space,

which can be caused by two conditions. Either it originates from boundaries of predefined

parameter constraints or from boundaries caused by the model’s nonlinearity. The latter case

appears for example when increasing or decreasing the value of a model parameter or a combi-

nation thereof does not change the model output at a specific data point. Such a scenario

might appear even in simple models. Thinking of an exponential decay f(κ, t) = e−κt or a satu-

ration dynamics f(κ, A0, t) = A0(1 − e−κt), where for example the value of the functions at a cer-

tain time point is bounded, but a noisy data point might lay beyond this boundary, of the

model manifold. For instance, the model prediction for the exponential decay is bounded to

values larger than zero, whereas the trajectory of the saturation dynamics does not exceed the

saturation level A0, even when tuning the parameter κ to extreme high values. Such effects can

cause a practical non-identifiability, where the parameter κ might only be constrained in one

direction by the data, i.e. its profile likelihood exceeds a Δα-threshold only for one tail of the

profile. However, tuning the parameter to more extreme values on the other side of the profile

does not change the discrepancy between data and model prediction, i.e. the objective function

and thus the profile likelihood stays constant without hitting the Δα-threshold.

The part of the model manifold selected for Fig 9G shows this setting of a parameter at the

boundary of the manifold. As the value of the model parameter θ from Eq (20) is increased,

the model trajectories of the two considered data points y(t1) and y(t2) will not exceed the

point mbound = (1.25, −1.875) in the data space, although noise realisations of the data may lie

behind this point. Two groups of data realisations can be identified for scenario III in Fig 9G.

Data points of the first group in the upper left part are projected on the linear-like part of the

model manifold, similar to the case of the almost uncurved model manifold in Scenario I.

These fits result in estimated parameters values (red circles) with individual and finite dis-

tances to the true parameter at the boundary (blue cross). On the contrary, all data points from

the second group in the lower right region of the data space are projected onto the same point

of the model manifold, which coincides with the model manifold’s boundary mbound. In other

words, all these data points imply a model fit with the same model prediction (blue cross), but

different objective function values (gray lines). In addition, all these model fits lie on the same

point in the data space, but do not restrict the model parameter θ to upper values, since all

parameter values beyond this value yield the same model prediction, as already discussed e.g.

for the saturation dynamics with a very large parameter κ. This characterizes a practical non-

identifiability. All fits of this second group share a zero value for the distances between the fit-

ted parameter value and the true parameter value. The mismatch to the assumed w2
df¼1

-like dis-

tribution of these distances is reflected by a huge peak in the bin distances at zero in the

histogram in Fig 9H. Correspondingly, the graph of the pp-plot in Fig 9I shows a sudden

increase for a probability p� 0 of the theoretically expected CDF, similar to the typical shape

of the observed non-identifiable conservative parameters in Fig 5B in the previous analysis.

Here, a statistical threshold based on asymptotic theory would be too large in comparison to

the empirical bootstrapping sample, i.e. it would be classified as conservative.
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Strong bending of the model manifold is shown in Fig 9J for Scenario IV, where the true

model parameter is located in the turning point of the nodal curve at the most left-handed side

of the data space. To illustrate the strong bending effect using the model from Eq (20), the t2
axis is squeezed by using a smaller σ2 for the additive noise. Likewise to scenario III, roughly

two groups of data points can be identified, while their separation line is rather a transition

region and less pronounced than in the previous scenario. Data points with y(t1)> −1 have a

projection direction almost parallel to the t2-axis and roughly reassemble the fit to a flat model

manifold as in scenario I. The remaining data points with y(t1)< −1 are projected to roughly

the same region on the model manifold in very close vicinity of the turning point of the model

manifold, where the true model parameter is located. Thus, distances between the model pre-

diction of the estimated parameters for the latter group of data points and the model predic-

tions of the true parameter value are smaller than expected from asymptotic theory. This

discrepancy is similar to scenario III, but less extreme, as can be seen from the histogram and

w2
df¼1

-reference in Fig 9K. In the same fashion, the pp-plot graph reveals a less extreme conser-

vativeness, i.e. it clearly deviates from the diagonal, but does not show the sudden increase for

lower probabilities of the theoretical CDF. This indicates, that the bending is not as extreme,

so that the data points are not projected exactly on the same model manifold turning point,

but small distances to the true parameter value on the model manifold occur. This effect would

change for the case of a more extreme curvature, where the upper and lower arm of the mani-

fold in Fig 9J would almost fall together. The resulting model manifold would look like a single

flat line with a boundary similar to the manifold from scenario III. In such a case, all left-

handed data points would be projected to exactly the same point, yielding a pp-plot graph sim-

ilar to the Fig 9I. It should be noted, however, that this case does not represent a model mani-

fold boundary for practically non-identifiable parameters, whose value can be increased

without changing the objective function. In fact, such a case would yield a single point estimate

and a profile likelihood of the estimated parameter with a unique minimum and finite profile

likelihood-based confidence intervals, which would be conservative, though. These extreme

curvatures, which might be even more pronounced for models with more parameter dimen-

sions and in a high-dimensional data space, help to explain why identifiable parameters

show pp-plot graphs similar to Fig 9L, although they are not located at a model manifold

boundary as in scenario III.

Cure: Adapted statistical thresholds

Impact of increased data sample size. After observing the deviation from asymptotic the-

ory in a considerable fraction of cases and having formulated a geometrical explanation of its

origin, three approaches handling the finite-sample case are discussed. First of all, the transi-

tion from the finite-sample case towards the asymptotic limit is inspected, showing on the one

hand that indeed the amount of information contained in the data is the reason for the devia-

tion and on the other hand highlighting that increasing the number of data points does cure

the issue for the selected models and experimental designs for the presented models and exper-

imental designs.

To this end, the impact on the pp-plots of an altered experimental design Dþ with addi-

tional data points in the benchmark models is investigated. Using a rather straightforward

approach, the original experimental design Doriginal is extended by simply simulating additional

data data points for time courses of observables which were already contained in the original

design. This is done for example by doubling the temporal sampling of all observables. Fig 10

shows the results of two experimental designs Dþi with increased temporal sampling for three

models and compares the results to the original design.
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By shifting the design towards the asymptotic case, i.e. by increasing the number of data

points, it can be observed that the classification of the whole pp-plot indeed tends to a higher

number of parameters with non-problematic cases for the three models. For the model ‘17

Tönsing-Flu’, the classification even changes from completely anti-conservative to desirable

100% perfect consensus. It can be further observed for the models ‘3 Becker’ and ‘13 Raia’ that

the average distances from the diagonal change only slightly, while the classification result

indicates a clear improvement of the appropriateness of the asymptotic assumptions. However,

a certain amount of conservative and anti-conservative cases persists, even for large amounts

of data, compared to the original design. In these cases, the asymptotic regime is not yet

reached by this very basic approach of increasing the temporal sampling. Presumably, even

very large amounts of additional data points would not be sufficient to reach the asymptotic

limit for all parameters, while the incorporation of comparatively few data points from addi-

tional observables might carry more relevant information about the systems and would yield a

more suitable asymptotic experimental design. Other models did not show such a large effect in

the pp-plots by using the increased temporal sampling design. In this line, it should be made

clear that in general it is not guaranteed that a simple increase of data points of an experimen-

tal design, the asymptotic regime is rapidly reached.

The question how an improved design with additional data and additional observables that

drives the setting closer to the asymptotic limit could be constructed, remains open in general,

but might be guided by adapting existing optimal experimental design principles cf. [66, 67].

Another practical limitation to the experimental designs arises in typical systems biology

Fig 10. Impact of experimental designs with increased amounts of data. Whole pp-plot graph classification results and average

normalized distances from the pp-plot graphs to the diagonal for three illustrative benchmark models. The outcome for the

originally published design Doriginal, and two artificial designs Dþ
1

and Dþ
2

with increased temporal sampling is shown. The

respective number of estimated parameters, total number of data points and their ratio is given below.

https://doi.org/10.1371/journal.pcbi.1011417.g010
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related projects, where the increase of the sample size is not a viable option, since data genera-

tion in molecular biology is often laborious and costly. Changing the experimental design by

including additional observables might also be impossible for example due to missing antibod-

ies for certain compounds. Therefore, we discuss in the following two different approaches to

cope with the finite-sample case when analyzing likelihood ratios.

Bartlett correction by extensive search. In order to correct for the deviation of the likeli-

hood ratio distribution from the asymptotic limit, the Bartlett correction can be used.

Although it is not possible to calculate the appropriate correction factor in advance from the

model properties in realistic applications of nonlinear ODE models investigated here, an

approximate can be derived based on the results from the bootstrapping procedure. For this,

the previous analysis of pp-plot classes at the 95%-quantile is repeated but with altered empiri-

cal likelihood ratios

λBC
ij; x ¼ Cx λij ¼ Cx

�
L
�
yyi jθ j

�
� L
�
yyi jθ all

��
ð21Þ

using a set of 600 Bartlett-like correction factors Cξ 2 [0.1, . . ., 1, . . ., 600], cf. Eqs (13) and

(16). Corresponding pp-plots are calculated, evaluated at the 95%-quantile and assigned to

either the perfect consensus, conservative or anti-conservative case, according to the previ-

ously discussed scheme. Despite the large number of results from the 600 correction factors

for each of the 784 parameters, this enables for a relatively cheap exhaustive search for an opti-

mal Bartlett-like correction factor Cx̂ .

For all except one parameter, at least one individual Bartlett-like correction factor C can be

found within the set of Cξ 2 [0.1, . . ., 1, . . .600], yielding a perfect consensus pp-plot at the

95%-quantile. Only in one special case, a parameter from the model ‘18 Tönsing-Zika’, which

implements prior knowledge information, is assigned to the conservative case for all applied

corrections factors even in an extended range of C 0
x
2 ½10� 4; :::; 104�. As expected from the pre-

vious analysis (cf. Fig 7), the procedure yields approximately 41.2% of the parameters revealing

a perfect consensus for uncorrected likelihood ratios with factor C = 1. For the remaining

parameters, the individual optimal correction factor is defined as the Cξ 6¼ 1 closest to 1, that

yields a perfect consensus pp-plot at 95%.

Fig 11A shows the 95%-pp-plot classification result as coloured tile for all correction factors

Cξ as indicated on the y-axis and for all analyzed parameters shown on the x-axis. These

parameters are sorted by their individual optimal correction factor as indicated by the black

line in the heatmap. Thus, each column shows the effect on the pp-plot classification for the

specific model parameter with varying correction factors. It appears that the Bartlett correction

affects the classification results in a non-monotonic way: the non-problematic perfect consen-

sus and conservative cases fluctuate for smaller correction factors, whereas there is a sharp sep-

aration between the problematic cases and the anti-conservative classification. When sorting

the parameters with respect to their optimal correction factors, an approximative conserva-

tiveness ratio (aCR) for a specific correction factor appears from the percentage of parameters

on the right hand side of the intersection between the specified correction factor and the black

line of optimal correction factors. For example, the white horizontal line in Fig 11A indicates

the uncorrected scenario with correction factor C = 1. It intersects with the black line of the

parameters’ optimal correction factors and a conservativeness ratio CR of 52% can be read off

the x-axis, since this fraction of the parameters reveal a perfect consensus or a conservative

classification, whereas most of the parameters at the right hand side of the intersection are clas-

sified as anti-conservative. Exceptions from the anti-conservative classification on the right

hand side occur when the classification is non-monotonic with respect to the correction factor,

i.e. when a parameter is classified as conservative for the respective correction factor (C = 1),
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Fig 11. Bartlett correction results of pp-plot classifications at the 95% confidence level. Heatmap colors according to pp-plot classification for each

Bartlett correction factor as indicated on the y-axis. Black tiles show optimal Bartlett correction factor closest to 1 of the individual parameter in each

column. Since columns are ordered by this correction factor, the x-axis corresponds to the approximative conservativeness ratio aCR. White line and black

bold numbers indicate the uncorrected outcome for C = 1, whereas green line and numbers show overall optimal Bartlett correction for a CR� 95%.

Deviations from 0.95 on x-axis originate from binning issues. (A) Results for all 768 parameters, (B) same results grouped by parameter type and (C)

identifiability status. (D) Outcome for individual models reveal that a comprehensive overall optimal correction factor is difficult to determine. (E) Overall

optimal Bartlett correction factors C* from exhaustive search with resulting thresholds TC∗
a¼0:05

for the likelihood ratio statistic.

https://doi.org/10.1371/journal.pcbi.1011417.g011
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but the optimal correction factor for a perfect consensus is larger. For this reason, only an

approximative conservativeness ratio aCR is available in this visualisation from the projection

of the intersection on the x-axis of the heatmap. It slightly differs from the previously calcu-

lated conservativeness ratio CR as for example in Fig 7.

The heatmaps in Fig 11 Allow to determine an overall optimal Bartlett-like correction factor

C* for all analyzed parameters, but also separate overall correction factors C* of the groups of

the specific model parameter types, based on their identifiability status or individually for each

benchmark model. This overall optimal correction factor C* is defined such that an appropri-

ate correction yields a conservativeness ratio CR = 0.95 or close to this value. This corresponds

to 95% of the parameters in the heatmap classified preferably as perfect consensus case or at

least conservative. The overall optimal Bartlett-like correction factor C* can be visually deter-

mined in the heatmaps by intersecting the vertical green line at aCR = 0.95 or its closest value

with the black curve of individual optimal correction factors. This procedure implies that all

parameters on the left-hand side of the intersection are classified as at least conservative for the

respective correction factor.

In fact, for all examples in Fig 11, the approximative conservativeness ratio aCR matches

the exact conservativeness ratio CR, since the non-monotonic classifications occur only for the

upper (right hand sided) 5% of the columns. The green numbers on the y-axis of the heatmaps

indicate the C* of the respective parameter subset.

The respective statistical threshold TC∗
a¼0:05

for the likelihood-ratio test can be determined

from the Bartlett correction factor when assuming that the corrected likelihood ratio with the

respective overall optimal correction factor, is now w2
df¼1

-distributed, cf. Eq (21). Fig 11E sum-

marizes the overall optimal correction factors for each parameter group and model with the

resulting alternative statistical thresholds TC∗
a¼0:05

which could be used in applications instead of

the typically assumed Tα = 0.05 = 3.84 from Wilks’ threorem. The analysis of the individual

benchmark models shows a large variability with corrected alternative threshold values TC∗
a¼0:05

ranging from approximately 3.9 to 18.5.

It appears that a generally applicable correction factor C*, i.e. for all parameter types as well

as for the group of only dynamic parameters would be C* = 0.52. For the parameter groups of

only observational and initial value parameters are closer to the uncorrected scenario with C*
= 0.66 and C* = 0.69, respectively. Error parameters, however, require a rather strong correc-

tion of the likelihood ratios, indicated by a Bartlett correction factor of C* = 0.21, resulting in a

rather high value of the threshold TC∗
a¼0:05

¼ 18:5.

The overall analysis analysis for all investigated parameters yields TC∗
a¼0:05

¼ 7:56 for an

alternative Bartlett-corrected statistical threshold. However, the analysis of parameter groups

and individual models reveals a large variability of the optimal correction factors, depending

on the specific application, i.e. model and experimental design setting. Thus, despite the

detailed and extensive search approach it remains difficult to identify a reliable overall Bart-

lett-like correction factor and threshold that is generally applicable in most situations.

Adapted thresholds using Chebyshev’s and Cantelli’s inequality. In order to enable a

more appropriate description of the likelihood ratio statistic, another approach for an alterna-

tive approximation of their unknown distribution is employed that might be used in realistic

application scenarios.

While the empirical rule allows for approximative boundaries for e.g. confidence intervals

in the case of Gaussian or approximatively bell-shaped distributions, Chebyshev’s and Cantelli’s
inequality can be used for any kind of distribution under mild conditions. Here, they are spe-

cifically used to draw valid conclusions about the statistical thresholds also in the finite-sample

case. For the empirical likelihood ratios, it was shown in the previous analyses that a
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w2
df¼1

-distribution in principle is a reasonable choice to describe the likelihood-ratio test statis-

tic. Thus, the idea is to use both inequalities with an in detail unknown, but w2
n-like distribu-

tion. Only the mean μ = n = 1 and the variance σ2 = 2n = 2 of such a w2
n-like distribution with

n = 1 degrees of freedom need to be plugged into both inequalities for the following conclu-

sions. This reduces the required distributional assumptions drastically without discarding the

in principle appropriate w2
n¼1

-assumption entirely.

It follows from Chebyshev’s inequality in the kσ-neighbourhood for k = 4.47 around the

mean that the probability of a random variable drawn from this in detail unknown distribution

is P(X =2 [0, 7.32]) < 0.05. Using k = 4.47 this leads to an alternative threshold of TCheby
a¼0:05 ¼ 7:32

for a 5% significance level or by using k = 3.16 a threshold TCheby
a¼0:1 ¼ 5:27 for a 10% significance

level. Likewise, the typically assumed asymptotic threshold Tw2

a¼0:05 ¼ 3:84 for a significance

level α = 0.05 following Wilk’s theorem corresponds to an alternative Chebyshev-adapted

threshold TCheby
a¼0:2477 ¼ TCheby

1� a¼75:23 % ¼ 3:84 with significance level α = 0.2477. This corresponds to

an actual confidence level of only 75.23% instead of the desired 95%.

In contrast to Chebyshev’s inequality, Cantelli’s inequality is restricted to a positive one-

tailed distribution. It yields similar, yet slightly smaller values for the thresholds TCantelli
a¼0:05

¼ 7:16

and TCantelli
a¼0:1

¼ 5:24. The asymptotic theory threshold value for α = 0.05 yields an alternative

Cantelli-adapted threshold TCantelli
a¼0:1987

¼ TCantelli
1� a¼80:13%

¼ 3:84 for significance level α = 0.1987.

Again the resulting confidence level under these assumptions is only 80.13% instead of the

expected confidence level of 95% from asymptotic theory.

Using these alternative thresholds, the conservativeness ratio CR is evaluated for the empiri-

cal likelihood ratios from the bootstrapping procedure and visualized in Fig 12 for the previ-

ously discussed parameter groups and also for the individual models. In terms of the pp-plot it

is checked whether the graph at ptheo = 0.95, implying a threshold of T = 3.84 in the theoretical

χ2-distribution corresponds to an empirical cumulative probability of at least pemp>

0.8013 = 1 − α for the Cantelli-adapted threshold TCantelli
1� a¼80:13%

¼ 3:84. In this scenario, the

empirical sample has at least pemp> 80.13% of its values below the threshold T = 3.84. The pp-

plots are analyzed and classified as described earlier, so that a conservativeness ratio CR can be

derived for the respective parameters. Fig 12C illustrates the results for the threshold value

T = 3.84 with the Cantelli interpretation of the confidence level. Likewise, it is shown how

often the non-problematic classifications occur for the empirical likelihood ratios of the

respective parameter groups or models for T = 3.84, but with the probability interpretation

from asymptotic theory in Fig 12A and and from Chebyshev’s inequality in Fig 12F. For larger

values of the alternative thresholds, e.g. in Figs 9E, 9G, 9H and 12D the same pp-plots are eval-

uated at the corresponding larger ptheo-values of the theoretical CDF of the w2
df¼1

-distribution

and checked against the probabilities pemp = 0.9 or pemp = 0.95 of the ECDF of the empirical

likelihood ratios.

Overall, these adapted thresholds show a preferable conservativeness ratio CR for most

parameter groups and models. In contrast, the asymptotic theory threshold in Fig 12A does by

far not reach either the CR> 0.95, nor the CR> 1 − α limit, except for one single model espe-

cially error parameters are far off from a desirable CR. The largest confidence level for which at

least CR> 1 − α holds on average for all investigated parameters using asymptotic theory is 1

− α = 0.6, cf. Fig 12B. Using the adapted thresholds, the weaker limit of CR> 1 − α is reached

for both, the Chebyshev- and the Cantelli-based re-interpretation of the asymptotic threshold

value T = 3.84 in all parameter groups and models. Both criteria are met for the overall CR for

all parameters and for most models. Error parameters, which were often classified as problem-

atic during this study, now show a conservativeness ratio, which is sufficient for the CR> 1 −
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Fig 12. Conservativeness ratio CR at asymptotic and adapted thresholds. (A) Histogram of conservativeness ratio CR for the typically utilized 95%-threshold from

asymptotic theory for all analyzed parameters, separately for parameter groups and individual models as a reference. (B) Table summarizes the CR for all parameters for

alternative confidence levels using asymptotic theory and for adapted thresholds or adapted confidence levels using Chebyshev’s or Cantelli’s inequality. (C, F) All blue

histograms including panel (A) share the same threshold value T = 3.84, but differ in the interpretation of the confidence level. (D, G) The green histograms correspond

to a confidence level of 90% with slightly different thresholds using Chebyshev’s or Cantelli’s inequality. (E, H) Likewise, purple histograms correspond to a confidence

level of 95%. Vertical black solid lines in the histograms indicate the CR> 1 − α and CR> 0.95 limit, which coincides for the asymptotic case.

https://doi.org/10.1371/journal.pcbi.1011417.g012
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α criterion in Fig 12C and 12F. When increasing the confidence level, however, error parame-

ters remain problematic, also when using the Chebyshev- or Cantelli-adaptation.

In general, the adapted threshold for a confidence level of 95% shows only a minor devia-

tion in the CR from the required 95%-limit on average for all parameters, cf. Fig 12B, 12E and

12H. Thus, TCantelli
a¼0:05

¼ 7:16 could serve as an appropriate alternative threshold for likelihood

ratios in the finite-sample case for the 95%-confidence level in the future. For existing studies,

the typically utilized threshold value of T = 3.84 for an originally assumed confidence level of 1

− α = 95% could be re-interpreted in this line for the finite-sample case using the alternative
confidence level 1 − α� 80.13% from the Cantelli-adaptation.

Conclusions

The analysis of empirical likelihood ratios from 19 nonlinear ODE benchmark models reveals

a general deviation of their distribution from asymptotic theory for more than half of the esti-

mated parameters. Thus, the usage of Wilks’ Theorem as an asymptotic approximation of the

likelihood-ratio test might be problematic in typical ODE modeling applications with limited

amounts of experimental data. In this finite-sample case, the typically utilized asymptotic

thresholds of the test statistic are anti-conservative in approximately 45% of the analyzed cases.

For these parameters, for example profile likelihood-based confidence intervals tend to be

underestimated, i.e. the confidence intervals are too small.

While we specifically selected benchmark models mainly related to systems biology and

considered the properties and limitations of data from quantitative molecular biology, also

mechanistic population models from other domains, such as models of infectious diseases or

pharmacokinetic models. The results of these additional models were consistent with our find-

ings from the systems biology-related models. The mathematical prerequisites for exhibiting

the effects discussed in our work are shared by all mechanistic models based on nonlinear

ODEs of comparable complexity and with sparse and noisy observations, regardless of the spe-

cific domain or application area. Therefore, we expect that similar patterns and results would

emerge in mechanistic models from other fields that meet the aforementioned criteria.

The appropriateness of the asymptotic assumption depends on the actual model system and

the experimental setup. The results of this work show a large variability between the bench-

mark models and between the parameters within the models. No pattern in the model or

parameter properties could be identified that indicates a preferable accordance of the asymp-

totic thresholds for the likelihood ratios in realistic applications. The only exception are error

model parameters, which have been identified as rather problematic, i.e. they are anti-conser-

vative in most cases and thus require special attention.

The results of this study provide a detailed report on the non-appropriateness of the asymp-

totic assumption for likelihood ratios and e.g., confidence intervals which are derived based on

likelihood ratios. However, our findings might be used to advise researchers on how to pro-

ceed with likelihood-ratio statistic-based measures during modelling projects with a finite data

samples. Since the magnitude of the deviation from the asymptotic case was small enough in

most investigated cases, suitable corrections can be suggested in order to increase the fraction

of at least conservative cases. In principle, the Bartlett correction could be applied in such sce-

narios, but for nonlinear ODE models these correction factors are only available through a

numerical search approach. The presented comprehensive analysis of all analyzed parameters,

yields a candidate for an finite-sample corrected threshold for the likelihood ratios through a

Bartlett correction factor for which 95% of all parameters show at least conservative results.

The threshold value from this extensive search Bartlett correction is close to another alterna-

tive threshold adaptation, motivated from Cantelli’s inequality. There, the adapted threshold
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for the 95%-confidence level in typical application settings has a value of TNd�1
a¼0:05 ¼ 7:16 and

could be used as a finite-sample alternative for the asymptotic threshold of TNd!1
a¼0:05 ¼ 3:84 for

future studies.

Such an alternative threshold formulation can be likewise utilized for a re-interpretation of

results in existing studies, which employ the asymptotic threshold T = 3.84 for the likelihood-

ratio test for example in likelihood profiles. When utilizing the asymptotic threshold value

T = 3.84, a re-interpretation of the confidence level based on Cantelli’s inequality of approxi-

mately 80% in a typical finite-sample case seems more appropriate in contrast to the com-

monly assumed confidence level of 95%.

In order to tackle the presented issues of the non-appropriateness of the asymptotic

assumption in practical applications, we suggest three modi operandi in decreasing order of

recommendation: It is most recommended to adopt statistical methods based on likelihood

ratios and to use one of the adapted thresholds values, for example TNd�1
a¼0:05 ¼ 7:16 motivated

from Cantelli’s inequality instead of Tα = 0.05 = 3.84, in order to avoid anti-conservative cases.

Alternatively and preferable for results in existing studies, the commonly assumed asymptotic

threshold TNd!1
a0¼0:2 ¼ 3:84 is utilized, but the results are re-interpreted by a more realistic confi-

dence level of only 80% instead of 95%. Lastly and least favorable, nothing is changed in the

usage of the asymptotic threshold value of Tw2

a¼0:05 ¼ 3:84 and assuming a 95% confidence level,

but the presence of approximately 47% of anti-conservative cases and for example too small

confidence intervals simply needs to be accepted. Even if the suggested alternative thresholds

would not be used in future research, we hope that the presented study raises awareness for the

correct interpretation of conclusions drawn on the basis of likelihood ratios in the finite-sam-

ple case.
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Methodology: Christian Tönsing, Bernhard Steiert, Jens Timmer, Clemens Kreutz.

Software: Christian Tönsing.
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59. Hass H, Loos C, Raimúndez-Álvarez E, Timmer J, Hasenauer J, Kreutz C. Benchmark problems for

dynamic modeling of intracellular processes. Bioinformatics. 2019; 35(17):3073–3082. https://doi.org/

10.1093/bioinformatics/btz020 PMID: 30624608

60. Raue A, Steiert B, Schelker M, Kreutz C, Maiwald T, Hass H, et al. Data2Dynamics: a modeling environ-

ment tailored to parameter estimation in dynamical systems. Bioinformatics. 2015; 31(21):3558–3560.

https://doi.org/10.1093/bioinformatics/btv405 PMID: 26142188

61. Xie M, Singh K. Confidence distribution, the frequentist distribution estimator of a parameter: A review.

International Statistical Review. 2013; 81(1):3–39. https://doi.org/10.1111/insr.12000

62. Bjerhammar A. Application of Calculus of Matrices to Method of Least Squares: With Special Reference

to Geodetic Calculations. Elander Göteborg; 1951.
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