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Detecting and differentiating central and obstructive respiratory
events is an important aspect of the diagnosis of sleep-related
breathing disorders with respect to the choice of an appropriate
treatment. The purpose of this study was to evaluate the perfor-
mance of a new algorithm for automated detection and classifica-
tion of apneas and hypopneas, compared with visual analysis of
standard polysomnographic signals. The algorithm is based on
time series analysis of nasal mask pressure and a forced oscillation
signal related to mechanical respiratory input impedance, mea-
sured at a frequency of 20 Hz throughout the night. The method
was applied to all-night measurements on 19 subjects. Two ex-
perts in sleep medicine independently scored the corresponding
simultaneously recorded polysomnographic signals. Evaluating
the agreement between two scorers by a weighted kappa statistic
on a second-by-second basis, we found that inter-expert variability
and the discrepancy between automatic analysis and visual analy-
sis performed by an expert were not significantly different. Imple-
mentation of this algorithm in a device for home monitoring of
breathing during sleep might aid in the differential diagnosis of
sleep-related breathing disorders and/or as a means for follow-up
and treatment control.
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In recent years, the high prevalence of sleep-related breathing
disorders has been increasingly recognized by epidemiologic
studies (1, 2). One important aspect of the diagnosis of sleep-
disordered breathing (SDB) with respect to the choice of an
appropriate treatment is the detection and classification of dif-
ferent respiratory events, in particular, separating obstructive
from central apneas. Diagnosis of SDB is usually performed
by polysomnography (PSG) in a sleep laboratory, consisting
of the measurement and recording of numerous signals used
to analyze sleep and breathing. Whereas PSG currently repre-
sents the standard for the diagnosis of SDB, it is expensive,
and access is limited. Moreover, the unfamiliar environment
encountered in a sleep laboratory often impairs the patient’s
sleep. Therefore, efforts have been made to develop diagnos-
tic approaches that rely on noninvasive, unsupervised mea-
surements in the home of the patient (3).

One widely used approach consists of nocturnal outpatient
measurements, including estimation of respiratory flow using
thermistors or nasal prongs and monitoring of breathing effort

(Received in original form June 6, 2001, accepted in final form January 13, 2002)

Supported by a research grant from Deutsche Atemwegsliga. Gottlieb Wein-
mann GmbH+Co., Hamburg, Germany, provided parts of the equipment.

Correspondence and requests for reprints should be addressed to Holger Stelt-
ner, Center for Data Analysis and Modeling, Eckerstr. 1, D-79104 Freiburg, Ger-
many. E-mail: steltner@fdm.uni-freiburg.de

This article has an online data supplement, which is accessible from this issue’s
table of contents at www.atsjournals.org

Am | Respir Crit Care Med Vol 165. pp 940-944, 2002

DOI: 10.1164/rccm.2106018
Internet address: www.atsjournals.org

by thoracic and abdominal strain gauges or respiratory inductive
plethysmography. Using such devices, it is possible to distinguish
central and obstructive apneas. However, signal quality may be
reduced by dislocation of belts or due to patients’ obesity (4).

Two other methods that have been extensively investigated
in this context are the recording of pressure at the airway
opening, mostly via nasal cannula (5-8), and the measurement
of signals related to mechanical respiratory input impedance
by the forced oscillation technique (FOT) (9-18). Both meth-
ods are highly sensitive with respect to the detection of dis-
turbed breathing during sleep (5, 12, 13, 16). Moreover, both
signals are simultaneously accessible via a nasal mask.

FOT signals in particular have been proposed as promising
tools for classifying respiratory events as central or obstructive
(10, 12). Argod and associates (19) have also suggested that
central and obstructive hypopneas could be distinguished by
analyzing nasal pressure recordings. Whereas episodes with
decreased amplitude and a rounded contour are supposed to
indicate a central origin, obstructive hypopneas should be as-
sociated with a flattened contour. However, this approach has
not yet been investigated in a quantitative manner. Following
a different approach, cardiogenic oscillations in nasal pressure
signals during apneas could be used as indicators of their cen-
tral origin. Ayappa and colleagues (20) have found cardio-
genic oscillations in the continuous positive airway pressure
(CPAP) flow signal during 60% of central apneas but never
during obstructive apneas.

A further step toward a time-saving procedure for ambula-
tory diagnosis of SDB consists of developing an algorithm for
automatic analysis of signals measured by a simple and robust
device that can be easily applied by the patient. By providing
time of onset, duration, and class of respiratory events, such
an algorithm could quickly yield essential information about
severity and type of possible sleep-related breathing disorders
from data obtained during nocturnal home monitoring. Exam-
inations using home recording equipment could thereby close
a gap between screening, e.g., by oximetry, and full PSG or
could sometimes even serve as substitutes for PSG in the sleep
laboratory.

We have developed diagnostic software for off-line detec-
tion and classification of respiratory events on the basis of
time series analysis of nasal mask pressure and of a FOT sig-
nal measured at a frequency of 20 Hz throughout the night.
The goal of this study was to assess the quality of the underly-
ing algorithm. For that purpose, we evaluated the agreement
between the results of that algorithm and those of visual anal-
ysis of polysomnographic recordings performed by experts in
sleep medicine. This agreement between automatic and visual
analysis is compared with inter-expert agreement.

METHODS

Subjects

Nineteen male subjects were studied during an all-night PSG in the
sleep laboratory of the Department of Pneumology at Freiburg Uni-
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versity Hospital. Demographic data and sleep characteristics are sum-
marized in Table 1. All subjects were patients formerly referred to the
sleep laboratory with suspected SDB and diagnosed on the basis of
polysomnographic examinations. Subjects younger than 18 years were
excluded from the study, as were subjects with hypercapnic respira-
tory failure or severe arrhythmia. The study was approved by the Hu-
man Ethics Committee of Freiburg University Hospital, and written
informed consent was obtained from all subjects before participation.

Polysomnography

PSG was performed using a SIDAS-GS polygraph (Heinen and
Lowenstein, Bad Ems, Germany) and consisted of neurologic moni-
toring, including two electroencephalogram (EEG) channels (C3A2,
C4A1), left and right electrooculograms, submental and tibial elec-
tromyograms (EMG), a unipolar electrocardiogram for cardiac moni-
toring, and respiratory monitoring, including an oronasal thermistor.
Also measured were thoracic and abdominal movements by respira-
tory inductive plethysmography, arterial oxyhemoglobin saturation
(Sap,) by a finger pulse oximeter, nasal mask pressure, snoring sounds
by a microphone, and body position.

The FOT was applied using the “ODS-Messbox” device (Wein-
mann, Hamburg, Germany). A low-amplitude flow oscillation at a
frequency of 20 Hz is applied at the airway opening via a nasal mask.
The FOT signal, which is related to mechanical respiratory input im-
pedance, is obtained by processing the 20-Hz component of measured
nasal pressure. For further technical details on the FOT setup, see the
work by Ficker and colleagues (16). Nasal CPAP (Somnotron 4; Wein-
mann) at a level of 4 cm H,O was simultaneously applied to avoid re-
breathing of expired CO,, thereby enabling the patient to breathe vir-
tually normally while awake.

Clinical Analysis

Polysomnograms were analyzed visually by a staff physician of the
sleep laboratory in the Department of Pneumology at Freiburg Uni-
versity Hospital. Sleep staging was performed on the basis of the crite-
ria of Rechtschaffen and Kales (21) and according to the scoring rules
concerning EEG arousals developed by the American Sleep Disor-
ders Association (22).

Apneas and hypopneas were detected and classified according to
the following criteria adapted from the American Academy of Sleep
Medicine Task Force (23).

¢ All events have to last 10 seconds or longer.

e Hypopnea: A decrease below 50% from baseline in the amplitude
of thermistor signal or mask pressure, or a clear amplitude reduc-
tion not reaching the previous criterion but associated with an oxy-
gen desaturation value greater than 3%, or an arousal. Baseline is
the mean amplitude of stable breathing and oxygenation in the two
minutes preceding onset of the event or the mean amplitude of the
three largest breaths in the two minutes preceding onset of the
event (the latter for individuals without a stable breathing pattern).

e Obstructive apnea: Cessation of respiratory airflow, i.e., zero ther-
mistor signal and constant mask pressure, with persisting thoraco-
abdominal movements.

e Central apnea: Cessation of respiratory airflow, i.e., zero thermistor sig-
nal and constant mask pressure, without thoracoabdominal movements.

e Mixed apnea: Cessation of respiratory airflow, i.e., zero thermistor
signal and constant mask pressure, without thoracoabdominal move-

TABLE 1. DEMOGRAPHIC AND SLEEP CHARACTERISTICS OF
PARTICIPATING SUBJECTS

Mean = SD
Age, year 56.9 £10.6
BMI, kg/m? 320+ 6.4
Recording time, minutes 350.3 +87.7
Total sleep time (TST), minutes 270.1 = 89.1
Stage 1, 2, %TST 62.4 +14.3
Stage 3, 4, %TST 16.5+11.6
REM sleep, %TST 21.2+8.5

Definition of abbreviations: BMI = body mass index; REM = rapid eye movement.
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ments at the beginning but with recurring thoracoabdominal move-
ments at the end of the event.

Applying these definitions, the beginning and end of respiratory
events observed in a PSG recording were marked and stored using a
software package for computer-supported visual analysis of polysom-
nograms. Each second of a PSG recording was thereby attributed to
one of the following categories: normal breathing (N), hypopnea (H),
obstructive apnea (OA), mixed apnea (MA), or central apnea (CA).

Inter-Scorer Agreement

The weighted kappa statistic is applied to evaluate agreement between
two scorers. A weighted kappa «,,(scorerl, scorer2) is calculated for a
PSG recording analyzed by two scorers, scorerl and scorer2, following
the procedure outlined in Appendix A in the online data supplement.
Although «,,(scorerl, scorer2) is not to be misinterpreted as fractional
agreement, its maximum possible value of one reflects perfect agree-
ment between the two scorers. On the other hand, a value of zero
stands for no agreement better than by chance. For further details on
the weighted kappa statistic, refer to the work of Altman (24).

K,,(scorerl, scorer2) is evaluated on a second-by-second basis: Us-
ing the previously stored results of PSG analysis performed by scorer!
and scorer2, a 5 X 5-matrix, the table of occurrences n is constructed.
A cell n;; of this table of occurrences contains the number of seconds
of the recording that has been attributed to category i by scorerl and
to category j by scorer2, i and j representing one of the five categories
N, H, OA, MA, or CA. For example, npa ca contains the number of
seconds that belonged to obstructive apneas according to scorerl and
to central apneas according to scorer2.

Automatic Analysis

Detection and classification of respiratory events by automatic analy-
sis of mask pressure and FOT time series is based on the evaluation of
local features of these signals, the properties of which are reflected
during apneas and hypopneas.

Obstructive respiratory events are characterized by upper airway
narrowing. As a consequence, they are always associated with a base-
line of the FOT signal higher than that during the breaths preceding
and following the event, the modulus of mechanical respiratory input
impedance being inversely related to upper airway diameter. Varia-
tions of the FOT signal due to breathing efforts are less pronounced
during obstructive apneas than during hypopneas.

During central apneas with open airways, the FOT signal is con-
stant at a low level compared with time intervals immediately before
and after the event. However, upper airway narrowing can also occur
during central apneas (25, 26), leading to a higher FOT level. In this
case, oscillations reflecting cardiac activity visible in the FOT signal
can be used to distinguish central from obstructive apneas. These car-
diogenic oscillations have frequently been observed in respiratory sig-
nals during central apneas (20, 27, 28), but never in the course of ob-
structive events (20).

The algorithm is described in more detail in Appendix B in the on-
line data supplement. A first version has been published in part (29).
Briefly, FOT and mask pressure time series are analyzed on a breath-
by-breath basis. Features reflecting pressure amplitude, FOT ampli-
tude and baseline, and presence of cardiogenic oscillations in the FOT
signal are extracted. Comparison of these features with thresholds
constituting the parameters of the algorithm leads to detection and
classification of hypopneas as well as obstructive, mixed, and central
apneas. By storing onset time, duration, and class of respiratory
events detected by automatic analysis in a recording, each second of
this recording is attributed to one of the five classes N, H, OA, MA, or
CA. Thus, the results of automatic analyses of FOT and mask pressure
time series can be compared with visual analysis of the corresponding
PSG recording using the weighted kappa statistic outlined previously.

Comparison of Visual and Automatic Analyses

Two experts in sleep medicine independently scored respiration dur-
ing sleep by analyzing each of the 19 PSG recordings. They were ex-
plicitly advised to closely follow the aforementioned definitions to
achieve the best possible agreement. Both scorers were not allowed to
see the tracing of the FOT signal or the results of the analysis per-
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formed by the other scorer. Onset, duration, and class of all detected
events were stored for further analysis.

We used the weighted kappa statistic computed on a second-by-
second basis to evaluate the agreement between scorers and auto-
matic analysis instead of the more common procedure consisting of
comparing the respective numbers of events detected in a recording.
Weighted kappa computed on a second-by-second basis is more sensi-
tive to subtle differences between two analyses that are due to varying
interpretations concerning onset and duration of a particular event.
On the other hand, the fact that k,, implicitly reflects the degree of
concordance with respect to detection, classification, and length of ap-
neas and hypopneas in one single number is an important aspect for
the optimization of the algorithm used for automatic analysis. Fur-
thermore, the second-by-second approach guarantees that k,, is a rela-
tively smooth function of the parameters of the algorithm, which is a
prerequisite for reliable optimization.

To evaluate the agreement between visual and automatic analysis,
each of the 19 PSG recordings served as a test set for cross-validation once.
Therefore, the 19 recordings were divided 19 times in rotation into a train-
ing set consisting of 18 recordings and a test set formed by the remaining
one. For each of the 19 divisions, the following two steps were taken:

e FOT and mask pressure time series of the training set recordings
were subjected to automatic analysis. The parameters of the algo-
rithm were successively optimized to yield the maximum k. (auto,
scorerl), i.e., the best possible agreement between automatic analy-
sis and the first scorer when analyzing the training set.

e Using these parameters, the algorithm was applied to the remaining
test set, yielding the results of automatic analysis to be used for
cross-validation.

These results were used to compute k,,(auto, scorerl) for each test set
recording to quantify the agreement between the first scorer and au-
tomatic analysis. Furthermore, the agreement between the second
scorer and automatic analysis was evaluated by calculating k,,(auto,
scorer2) in a similar manner, using the same parameters.

Moreover, the AHIs (AHl[scorerl], AHl[scorer2], and AHI[auto])
were computed, reflecting the respective numbers of events detected
per hour of a recording.

RESULTS

The agreement of visual analysis of 19 PSG recordings per-
formed by experts in sleep medicine with automatic analysis of
the corresponding mask pressure and FOT signals is depicted in
Figure 1, together with inter-expert agreement. Automatic anal-
ysis yielded results that are comparable to those of visual anal-
ysis of polysomnograms; the different values of the weighted
kappa statistic are within their respective standard deviations
(ky[auto, scorerl] = 0.45 = 0.15, k,,[scorerl, scorer2] = 0.50 =
0.21, k,,[auto, scorer2] = 0.40 = 0.19, mean = SD).

The same result is obtained when AHIs are compared. Here,
automatic analysis is on average in between the two scorers
(AHI[scorerl] = 34.2 = 17.4, AHI[scorer2] = 254 * 19.6,
AHI[auto] = 30.5 = 18.5, mean *= SD). Taking into account
the predominant nature of detected events, three identical
tentative diagnoses (mostly central, predominantly obstruc-
tive, or only hypopneas) would have been obtained by the dif-
ferent analyses for all recordings, except for one data set in
which scorer2 exclusively detected hypopneas, whereas scorerl
and auto found obstructive apneas.

The weighted kappa statistic is most sensitive with respect
to disagreements on single events if the total number of respi-
ratory events in a recording is low. For example, the most prom-
inent discrepancies between «,,(auto, scorerl) and k,(scorerl,
scorer2) are observed in a recording with an AHI of 5.1 per hour
according to scorerl and 5.3 per hour according to auto, al-
though similar severities of SDB were estimated by both auto-
matic and visual analyses.

Examples of respiratory events and the respective classifi-
cations attributed by automatic analysis and scorers are pre-
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Figure 1. Agreement between automatic analysis and two scorers (au-
tomatic—scorer1, scorer1-scorer2, and automatic-scorer2) for record-
ings of 19 patients with SDB; weighted kappa was computed on a sec-
ond-by-second basis using the weights displayed in Table E1 in the
online data supplement.

sented in Figure 2. It shows obstructive apneas with paradoxi-
cal excursions of thorax and abdomen. The FOT signal is
almost constant during these obstructive apneas at a high level
compared with the periods of normal breathing preceding and
following the event; no cardiogenic oscillations can be observed
in any respiratory signal. Two examples displaying central ap-
neas are given in the online data supplement. Event-by-event
agreement between scorers and automatic analysis after opti-
mization is presented in Table 2. The different numbers of
events as detected and classified by one scorer (scorerl, scorer2,
or auto) in all 19 recordings and the respective classifications
as assigned by another scorer are displayed as: (a) auto and
scorerl, (b) scorerl and scorer2, (c) auto and scorer2. For ex-
ample, the number printed in bold in Table 2a indicates that a
total of 97 events has been attributed to the category of hy-
popneas by automatic analysis, but classified as obstructive
apneas by the first scorer.

The second scorer detected fewer events than both the first
scorer and the algorithm. On the other hand, he judged a
higher percentage of the detected events to be apneas rather
than hypopneas. This is caused by different interpretations of
the definitions for respiratory events, in particular of the terms
“clear amplitude reduction” and “cessation of respiratory air-
flow”.

Some events were classified as central apneas by scorers
but as hypopneas by automatic analysis. This is due to the
rather elevated variability of mask pressure during these
events, caused by cardiogenic oscillations, but misinterpreted
as breathing by the algorithm. Most of these events (140 of 199
in Table 2a, 175 of 223 in Table 2c) were observed in the re-
cording of one subject. Nevertheless, automatic analysis re-
vealed the central nature of these events in low levels of the
FOT signal reflecting open airways.

DISCUSSION

As a main result of the present study, we found automatic detec-
tion and classification of sleep-related respiratory events on the
basis of nasal mask pressure and FOT to be feasible and reliable.
The algorithm provides results comparable to those of visual
analysis of polysomnographic recordings performed by experts
in sleep medicine. Discrepancies between two scorers (see Table
2) are mainly due to differing opinions concerning the duration
of particular events and the extent of respiratory airflow.

Most events classified as mixed apneas by experts were as-
signed to obstructive apneas by automatic analysis, mainly due
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Figure 2. Examples of obstructive apneas. Three minutes extracted from a polysomnographic recording with submental (EMG1) and tibial (EMG2)
EMG, two EEG channels, left and right electrooculograms (EOG1, EOG2), oronasal thermistor (Therm), thoracic (Thor) and abdominal (Abdo) in-
ductance plethysmography, snoring sounds (snor), oxyhemoglobin saturation (Sae,) as a percentage, electrocardiogram (ECG), estimated modu-
lus of respiratory input impedance measured by FOT, and nasal mask pressure (p) in cm H,O. The three bottom tracings show onset, end, and
class of respiratory events as detected by automatic analysis of FOT and mask pressure as well as by visual analysis of full PSG except FOT signal
performed by two scorers. H denotes hypopnea, and OA, obstructive apnea.

to the shortness of the central period at the onset of such
events in our data sets. Occasionally, visually detected central
apneas were classified as hypopneas by automatic analysis.
This situation mainly occurred in the recording of one subject,
where very pronounced cardiogenic oscillations in the mask
pressure signal were observed during these events. However,
as the algorithm correctly revealed the central origin of these

TABLE 2. OCCURRENCES FOR RESPIRATORY EVENTS AS
DETECTED AND CLASSIFIED BY (a) AUTOMATIC ANALYSIS AND
FIRST SCORER, (b) FIRST AND SECOND SCORER, (c) AUTOMATIC
ANALYSIS AND SECOND SCORER

a. scorer 1

auto N H OA MA CA
N 959 15 0 11
H 626 1,829 97 8 199
OA 4 163 286 45 22
MA 0 17 9 1 6
CA 12 92 47 9 142

b. scorer 2

scorerl N H OA MA CA
N 186 9 0 5
H 1,125 1,558 245 4 97
OA 11 41 367 27 9
MA 1 0 46 12 2
CA 32 10 22 14 302

C. scorer 2

auto N H OA MA CA
N 400 21 3 6
H 1,006 1,300 206 9 223
OA 20 87 353 42 17
MA 3 5 18 0 6
CA 31 23 79 5 163

events, the basic concern with respect to the choice of an ap-
propriate treatment was fulfilled.

Esophageal pressure represents the gold standard for dis-
tinction of obstructive from central apneas and hypopneas;
however, many patients refuse to be diagnosed by esophageal
manometry (30). Because of its invasive nature, esophageal
pressure monitoring is suspected to have negative side effects
on sleep quality and upper airway dynamics (30, 31), the latter
also influencing mechanical respiratory input impedance. More-
over, one goal of this study was to evaluate the agreement be-
tween our algorithm and experts in sleep medicine, and to
compare this agreement with inter-expert variability, as en-
countered in a routine clinical setting. Routine examinations,
however, do not include esophageal pressure monitoring in
most sleep laboratories. As a consequence of all these aspects,
we did not incorporate esophageal pressure into the set of sig-
nals monitored within the scope of PSG for this study.

A crucial issue is how the automatic analysis can deal with
artifacts due to mask leaks, mouth breathing, swallowing, or
yawning. Because we mainly addressed the fundamental pos-
sibility of automatically detecting and distinguishing obstructive
and central apneas and hypopneas, our algorithm currently
does not contain any features to reject such artifacts. Some of
these artifacts, potentially misinterpreted as respiratory events
by automatic analysis, can be indirectly detected on the basis
of EEG, EMG, and Sag, when they occur during wakefulness
or are followed neither by an arousal nor by oxygen desatura-
tion. In our data, however, this situation never occurred to an
extent seriously deteriorating the agreement between auto-
matic and visual analyses, possibly because the required dura-
tion of apneas and hypopneas is limited to a range of 10 to 240
seconds. Some other situations may also be identifiable using
additional routines that could be included into the diagnostic
software. For example, nasal inspiration and oral expiration re-
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sults in asymmetric nasal pressure tracings and increased re-
spiratory impedance during expiration (13). Clearly, the man-
agement of such artifacts represents a point that will have to
be thoroughly evaluated before routine application of the pre-
sented approach. A further possible extension of the algo-
rithm concerns the automatic detection of snoring, e.g., by
band-pass filtering of the nasal pressure signal.

We would expect the main benefit of the presented ap-
proach to consist of closing a gap between screening and full
PSG within the familiar environment, i.e., in the patient’s home.
After screening by other methods for outpatient monitoring of
nocturnal respiration, such as pulse oximetry or nasal cannula,
our method could establish the mainly central or obstructive
origin of sleep-related breathing disorders. Circumventing the
necessity of a baseline nasal CPAP by using FOT setups as de-
scribed by Badia and colleagues (12) or Hannhart and col-
leagues (32), the present method could even be applied within
the framework of a stand-alone screening device.

All aspects considered, the suggested approach can be use-
ful when implemented as a device designed for outpatient dif-
ferential diagnosis and/or treatment control of sleep-related
breathing disorders. It relies on monitoring of only two signals
that are measured via a nasal mask that can be applied by the
patient, automatic analysis of the data is completed within
about one minute, and reveals information about the central
or obstructive origin of detected respiratory events. In particu-
lar, this approach could be of advantage when it is not possible
to clearly distinguish between central and obstructive apneas
by outpatient monitoring of thoracic and abdominal move-
ments, e.g., due to obesity. In certain cases, it could even make
PSG dispensable. For instance, patients with SDB of clearly
established central origin such as Cheyne-Stokes respiration
caused by congestive heart failure could be subjected to treat-
ment without having to wait for a polysomnographic examina-
tion. Furthermore, the method could be applied to monitoring
the effectiveness of CPAP treatment of patients with obstruc-
tive sleep apnea-hypopnea syndrome, thereby avoiding regu-
lar visits to a sleep laboratory.
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