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Power of surrogate data testing with respect to nonstationarity
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Surrogate data testing is a method frequently applied to evaluate the results of nonlinear time series analysis.
Since the null hypothesis tested against is a linear, Gaussian, stationary stochastic process a positive outcome
may not only result from an underlying nonlinear or even chaotic system, but also from, e.g., a nonstationary
linear one. We investigate the power of the test against nonstatior[&it§63-651X98)14610-X]

PACS numbds): 05.45+b, 02.50.Fz

I. INTRODUCTION arity introducing some time dependency of the oscillating
dynamics, e.g., a modulation of frequency or amplitude,
The field of nonlinear dynamics introduced the fascinat-seems to be a natural violation of the null hypothesis.
ing idea that an apparently random behavior of a time series If the process is linear and the time dependency of the
m|ght have been generated by a low-dimensional determinParameters, and thus, the autocovariance function is periodic
istic system[1]. Based on the notions of chaos theory, dif-in time, these processes are called cyclostatiorf@Q.
ferent algorithms have been invented to infer if an observedany other types of nonstationarity in oscillatory processes
time series is a realization of a chaotic system, e.g., the egre imaginable. We choose cyclostationary processes be-
timation of the largest Lyapunov expondi®], the correla- cause they allow a simple way to find a parametric violation
tion dimension[3], and nonlinear predictiof4]. There is  Of the null hypothesis. Formally, these processes can be ex-
hope to gain deeper insights into complex systems like thoseressed as higher-dimensional autonomous nonlinear sto-
from biology and physiology by applying these methods. chastic processes. A special version of surrogate data testing
However, the application of these methods to a finite, of-2cting on segments of the data has been suggested to analyze
ten noisy set of measured data is not straightforward, sesuch datg21].
e.g.,[5-9], and references therein. For example, in order to In the next section we informally discuss the class of cy-
claim a finite, fractal correlation dimension, a scaling regionclostationary processes and introduce the two specific ex-
of sufficient length has to be established. Determining thi#gmples we use in Sec. Il to investigate the power of surro-
scaling region by eye or some algorithm may lead to erronegate data testing with respect to these types of
ous evidence of chaotic behavior. In order to evaluate th&onstationarity.
analysis, it has become popular to apply the method of sur-
rogate datd5]. Therefore data are generated which have the Il. CYCLOSTATIONARY PROCESSES
same linear statistical properties as the original data but not
the possible nonlinear ones. For many realizations of these
data, the same algorithm as to the original data is applied. &
significant difference between the distribution of the nonlin- p
ear feature _for_the_ surrogate data and the o_riginal da_lta is x(t)=2 ax(t—p)+e(t), e(t)~N0,02?) 1)
taken as an indication that the process underlying the original i=1
data is deterministif10], nonlineaff{11-13, or even chaotic

The parameters; and o of a linear stochastic autore-
ressive(AR) process«(t):

[14-16. determine the autocovariance functiB(r):
The explicit null hypothesis of surrogate data testing for
linearity is that the data were generated by a linear, stochas- R(7) = (x()x(t+7)). @)

tic, Gaussian stationary process, including a possible invert-
ible nonlinear observation function. Thus a rejection of this
hypothesis does not necessarily mean that the data cont@®
from a chauotic, i.e., some kind of stationary, nonlinear deter-
ministic, process. They might also originate from a nonlinear S(w)= 2 e‘i‘”R( 7). 3
stochastic or even simply from a linear, stochastic, nonsta-

tionary process. In_ this paper we investigate the power OIA possible first step to nonstationarity is to define a time
surrogate data testing against nonstationarity. As a nonhne}E

he spectrun(w) is given as Fourier transform of the au-
ovariance function:

feature we use the correlation dimension. The behavior o ependent spectru(t, ») and, correspondingly, a time de-

. . . . ; . endent autocovariance functi®&{t, 7):
correlation dimension estimates has been investigated for the &it, 7)

1/f¢, a=1 type of linear nonstationarifyi7,18. For physi- R(t,7) = (X()X(t+ 7). (4
ological data, such 1/behavior has been observed in heart

rate [19]. Often, physiological data are characterized byA cyclostationary process of periodicityis defined by
some kind of oscillatory behavior like EEG, hormone secre-

tion, breathing, or tremor. For such data, types of nonstation- R(t,7)=R(t+L,7). (5)
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modulation, corresponding by E¢(P) to a periodicity of the
variance of the driving noise. Based on the stationary AR2

FIG. 1. Realizations of the processes investigatadAR2 pro-  processx(t), the amplitude modulated procesg,{t) is
cess satisfying the null hypothesi®) Amplitude modulated pro- given by
cess with modulation depth of 0.8&) Period modulated process,

relative amplitude of modulation is 15%. Xamg 1) = [ 1+ MampSin(270/ T pod) 1Xo(1). (10

Time

For the AR process of Eq1) this means that the parameters M,,,,, the modulation depth, parametrizes the violation of
a; and o> may change periodically. the null hypothesisT ,,,q determines the modulation period.
As a process satisfying the null hypothesis of surrogatérigure ib) displays a realization of this process with,oq
data testing for linearity, we chose an autoregressive process250 andM,y,,=0.3 for three periods of the modulation.

of order 2: Compared to Fig. (B), the nonstationarity is hardly visible.
Due to the long modulation period compared to the period of
Xi=a;X_1+aX_r+t e, ~NO0,0?). (6)  the process, its spectrum is not distinguishable from that of

] . the stationary process in Fig. 2.

In terms of physics, AR processes can be interpreted as a For the second violation of stationarity, we chose a modu-
combination of linear relaxators and linear damped oscillajation of the periodT of the AR2 process with period,.g
tors driven by noise. For an AR process of order 2 whichyng amplitudeM; around the mean perioByeq= 10. This
describes a damped oscillator, the parameters are related i qs to a time dependency of the paramaieof the AR2

the relaxation timer and periodT by process:
a; =2 cos2m/T)exp(— 1/7), (7 T(t) =Tmearit Mt SIN 27/ Trod), (12)
a;=—exp(—2/7). 8 a;(t)=2 co§2x/T(t)]exp— 1/7). (12
The variance of the process Vaj) is given by M parametrizes the violation of the null hypothesis. Ac-
cording to Eq.(9), the time dependency af;(t) causes a
o2 time dependency of the variance of the process. The effect of
Var(x) = 9 a changing variance is already covered by the first process,

2 2 2 '
1-aj—a;—2ajay/(1-ay) Eq. (10). To investigate only the effect of a changing period
of the process here, we use H§) to adjust the variance
a?(t) of the driving noise such that the variance of the pro-

cess is constant:

We choose an AR2 process with=10, =50, ando
=1 as processgy(t) that satisfies the null hypothesis. Figure
1(a) displays a realization of this process. The oscillatory
behavior with a mean period of ten time steps is clearly o2
visible as well as the natural variability of period and ampli- a?(t)= 5
tude. Figure 2solid line) shows the estimated spectrum of 1-a)
the process. The spectrum was estimated by averaging 100
periodograms, i.e., the squared absolute value of the Fourier 5 2 2a,(t)%a,
transform of the data. A broad peak, typical for a stochasti- X|{1-ay(t)—ay— 1-a,
cally driven linear damped oscillator can be seen. Based on 2 (14)
Egs. (7)—(9) we now introduce two parametrized violations
of this stationary, linear, stochastic process in order to inveswherea, ando? denote the parameters of the procesd)
tigate the power of surrogate data testing with respect tsatisfying the null hypothesis. Figurécl displays a realiza-
nonstationarity. tion of this process withr =250 and M;=1.5. Again,
For the first violation of stationarity in the frame of cy- compared to Fig. (), the nonstationarity is hardly visible.
clostationary processes, we choose a simple amplitudeigure 2(dashed ling shows the estimated spectrum of the

13
—a2—2a%a,/(1-a,) 49
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process. The spectrum shows two peaks at the corresponding 15 "
frequencies due to the specific type of modulation chosen. [T
I1l. POWER OF THE TEST 10

As a nonlinear feature to investigate the power of surro- ~
gate data testing against the two violations of stationarity we

use the correlation dimension. The phase space is recon- St
structed by delay embedding. The delay is chosen equal to
the lag at which the autocorrelation function first crosses
zero. 0 0 10
The correlation dimensioD, is defined by Embedding dimension
Do fim dinC(r) (15 FIG. 3. Results of the simulation study for the amplitude modu-
2 0 dinr ’ lated process. Shown sin dependence on the embedding dimen-

sion for different degreesv,y, of violation (¢ =0, +=0.1, O

whereC(r), the correlation integral, is given by =02,x=03,A=04,*=05).
N-w N - not feasible here. The above procedure has the drawback that
C(f)=COHSt_Z 2 O(r—[x(i)=x(j)]), (16  the results depend on the single realization that is used as a
=1 =it basis for the surrogates. We repeated the analysis reported

including the Theiler corrections [22] which we chose below for independent realizations and found no qualitative

equal to the mean period, i.e., ten time steps. The canonicgl'ﬁlfrer:ﬁesf.fo; d_|ff|ert<_ant refatlrllzano“sh thesi .
procedure to establish a finite correlation dimension is to or the first violation of the null Nypotnesis, we incréase

show the existence of a scaling region for srmalthere Eq. Mampin EQ. (1.0) f'rom' Z€ro, 1.6, N0 V|oIat'|on, 0 0.51in ;teps
(15) holds and stays constant for a high enough embeddir::’%; 0.1. The distribution qf these_data is not Gaussian for
dimensions. For all processes investigated here, the true cor: amp>0. Thus, thg amplitude ac.jju.sted surrogate d_ate} algo—
relation dimension is infinity. Following the idea of surrogate rithm [S] was applled..The_ deviation from GaUSS|ar'!|ty IS
weak for the range of violations chosen. We also applied the

data testing, we fix an algorithm to obtain a finite value from laorith th litude ad 4 did find si
the correlation integral and look for differences to the origi-a_g_Orlt m without amplitude adjustment and did not find sig-
nificantly different results.

nal data. Therefore we apply Theiler and Lookman’s “rule : ) . .
We apply ! . Figure 3 displays the result of the simulation study. In

of five” chord estimatof23] and chose theiR, equal to the q q h bedding di is. displaved f
standard deviation of the data. For such a l&Rgeve do not ependence on the embedding dimensiois, displayed for
different degrees of violation of the null hypothesis. As ex-

examine the small scale behavior of Ef5) anymore. We . o L
Kg5) any rpected, without any violation, thevalues stay within the @

are aware that we should not call this quantity correlatio . . .
dimension anymore. It has been termed “dimensional com!€9'0N given byz=1.96. A modulation depth\/lamp_of 01
plexity” [24]. and 0.2 leads to results at the border of 5% significance.

The surrogate data are produced by the Fourier transformterting fromMgp;=0.3, see Fig. (), the null hypothesis
(FT) algorithm[5]. For each degree of violation of the null 'S clearly rejected at the 5% level of significance whenever
hypothesis 50 independent surrogate data sets of length 81§3¢ €mbedding dimension is large enough to reconstruct the

were generated. Denoting the “correlation dimension” Ofsecon_d ordgr process appropriately. L .
the original data byf, the mean of the distribution of this To investigate the effect of a variation in the period of the

feature for the surrogate data I, and its variance by I|£12ea; StOChaSt'Ct prt(r)]cess,Tv;/]e |3_crte_%sf? n Efq?r.](ll) 3”? .
Ugurrl the result is displayed as (12) from zero to three. The distribution of these data is

f— 20
7= ﬂ (17)

T surr

15

It was confirmed that the distribution of the feature is

sufficiently well described by a Gaussian distribution. Thus 10

can be related to a confidence interval, since for 50 realiza-
tions thet distribution of (f— wsum/osur IS Well approxi-

mated by a Gaussian distribution ard 1.96 corresponds to 5T
the 5% level of significance.
In general, in power of the test investigations a procedure 0
different from that outlined above is chosen. For a certain 0 10

L ) . . Embedding di i
significance level, e.g., 5%, and different degrees of violation mboedding dimension

of the null hypothesis, numerous realizations, e.g., 1000, of F|G. 4. Results of the simulation study for the period modulated
the process are generated and the fraction of rejected nifkocess. Shown isin dependence on the embedding dimension for
hypotheses is reported. Due to the high computational burdifferent degrees\; of violation (¢ =0, +=1, =15, X =2,
den for calculating the correlation integral, this procedure isA =3).
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Gaussian independent from the value.'of;. Thus no am- IV. CONCLUSION

plitude adjustment was necessary. Again, the distribution of

the feature is sufficiently well described by a Gaussian dis- The simulation studies reported in this paper indicate that

tribution. Figure 4 displays the result of the simulation study.surrogate data testing for linear, stochastic, Gaussian station-
For all degrees of violation, the violation is not detectedary processes is powerful against a violation of the assump-
when the embedding dimension is too small to unfold thetion of stationarity. Thus a significant result of the test does

dynamics in phase space. Otherwise, a modulation of thaot necessarily indicate a nonlinear or even chaotic process
period of 15%, see Fig.(&), leads to a clear rejection of the underlying the data. It might simply be caused by a nonsta-

null hypothesis at the 5% level of confidence. tionarity of the process.
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