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Surrogate data testing is a method frequently applied to evaluate the results of nonlinear time series analysis.
Since the null hypothesis tested against is a linear, Gaussian, stationary stochastic process a positive outcome
may not only result from an underlying nonlinear or even chaotic system, but also from, e.g., a nonstationary
linear one. We investigate the power of the test against nonstationarity.@S1063-651X~98!14610-X#

PACS number~s!: 05.45.1b, 02.50.Fz

I. INTRODUCTION

The field of nonlinear dynamics introduced the fascinat-
ing idea that an apparently random behavior of a time series
might have been generated by a low-dimensional determin-
istic system@1#. Based on the notions of chaos theory, dif-
ferent algorithms have been invented to infer if an observed
time series is a realization of a chaotic system, e.g., the es-
timation of the largest Lyapunov exponent@2#, the correla-
tion dimension@3#, and nonlinear prediction@4#. There is
hope to gain deeper insights into complex systems like those
from biology and physiology by applying these methods.

However, the application of these methods to a finite, of-
ten noisy set of measured data is not straightforward, see,
e.g.,@5–9#, and references therein. For example, in order to
claim a finite, fractal correlation dimension, a scaling region
of sufficient length has to be established. Determining this
scaling region by eye or some algorithm may lead to errone-
ous evidence of chaotic behavior. In order to evaluate the
analysis, it has become popular to apply the method of sur-
rogate data@5#. Therefore data are generated which have the
same linear statistical properties as the original data but not
the possible nonlinear ones. For many realizations of these
data, the same algorithm as to the original data is applied. A
significant difference between the distribution of the nonlin-
ear feature for the surrogate data and the original data is
taken as an indication that the process underlying the original
data is deterministic@10#, nonlinear@11–13#, or even chaotic
@14–16#.

The explicit null hypothesis of surrogate data testing for
linearity is that the data were generated by a linear, stochas-
tic, Gaussian stationary process, including a possible invert-
ible nonlinear observation function. Thus a rejection of this
hypothesis does not necessarily mean that the data come
from a chaotic, i.e., some kind of stationary, nonlinear deter-
ministic, process. They might also originate from a nonlinear
stochastic or even simply from a linear, stochastic, nonsta-
tionary process. In this paper we investigate the power of
surrogate data testing against nonstationarity. As a nonlinear
feature we use the correlation dimension. The behavior of
correlation dimension estimates has been investigated for the
1/f a, a>1 type of linear nonstationarity@17,18#. For physi-
ological data, such 1/f behavior has been observed in heart
rate @19#. Often, physiological data are characterized by
some kind of oscillatory behavior like EEG, hormone secre-
tion, breathing, or tremor. For such data, types of nonstation-

arity introducing some time dependency of the oscillating
dynamics, e.g., a modulation of frequency or amplitude,
seems to be a natural violation of the null hypothesis.

If the process is linear and the time dependency of the
parameters, and thus, the autocovariance function is periodic
in time, these processes are called cyclostationary@20#.
Many other types of nonstationarity in oscillatory processes
are imaginable. We choose cyclostationary processes be-
cause they allow a simple way to find a parametric violation
of the null hypothesis. Formally, these processes can be ex-
pressed as higher-dimensional autonomous nonlinear sto-
chastic processes. A special version of surrogate data testing
acting on segments of the data has been suggested to analyze
such data@21#.

In the next section we informally discuss the class of cy-
clostationary processes and introduce the two specific ex-
amples we use in Sec. III to investigate the power of surro-
gate data testing with respect to these types of
nonstationarity.

II. CYCLOSTATIONARY PROCESSES

The parametersa i and s2 of a linear stochastic autore-
gressive~AR! processx(t):

x~ t !5(
i51

p

a1x~ t2p !1e~ t !, e~ t !;N~0,s2! ~1!

determine the autocovariance functionR(t):

R~t !5^x~ t !x~ t1t !&. ~2!

The spectrumS(v) is given as Fourier transform of the au-
tocovariance function:

S~v !5( e2ivtR~t !. ~3!

A possible first step to nonstationarity is to define a time
dependent spectrumS(t,v) and, correspondingly, a time de-
pendent autocovariance functionR(t,t):

R~ t,t !5^x~ t !x~ t1t !&. ~4!

A cyclostationary process of periodicityL is defined by

R~ t,t !5R~ t1L,t !. ~5!
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For the AR process of Eq.~1! this means that the parameters
a i ands2 may change periodically.

As a process satisfying the null hypothesis of surrogate
data testing for linearity, we chose an autoregressive process
of order 2:

x t5a1x t211a2x t221e t , e t;N~0,s2!. ~6!

In terms of physics, AR processes can be interpreted as a
combination of linear relaxators and linear damped oscilla-
tors driven by noise. For an AR process of order 2 which
describes a damped oscillator, the parameters are related to
the relaxation timet and periodT by

a152 cos~2p/T !exp~21/t !, ~7!

a252exp~22/t !. ~8!

The variance of the process Var(x t) is given by

Var~x t!5

s2

12a1
2
2a2

2
22a1

2a2 /~12a2!
. ~9!

We choose an AR2 process withT510, t550, ands
51 as processx0(t) that satisfies the null hypothesis. Figure
1~a! displays a realization of this process. The oscillatory
behavior with a mean period of ten time steps is clearly
visible as well as the natural variability of period and ampli-
tude. Figure 2~solid line! shows the estimated spectrum of
the process. The spectrum was estimated by averaging 100
periodograms, i.e., the squared absolute value of the Fourier
transform of the data. A broad peak, typical for a stochasti-
cally driven linear damped oscillator can be seen. Based on
Eqs. ~7!–~9! we now introduce two parametrized violations
of this stationary, linear, stochastic process in order to inves-
tigate the power of surrogate data testing with respect to
nonstationarity.

For the first violation of stationarity in the frame of cy-
clostationary processes, we choose a simple amplitude

modulation, corresponding by Eq.~9! to a periodicity of the
variance of the driving noise. Based on the stationary AR2
processx0(t), the amplitude modulated processxamp(t) is
given by

xamp~ t !5@11Mampsin~2p/Tmodt !#x0~ t !. ~10!

Mamp, the modulation depth, parametrizes the violation of
the null hypothesis.Tmod determines the modulation period.
Figure 1~b! displays a realization of this process withTmod
5250 andMamp50.3 for three periods of the modulation.
Compared to Fig. 1~a!, the nonstationarity is hardly visible.
Due to the long modulation period compared to the period of
the process, its spectrum is not distinguishable from that of
the stationary process in Fig. 2.

For the second violation of stationarity, we chose a modu-
lation of the periodT of the AR2 process with periodTmod
and amplitudeMT around the mean periodTmean510. This
leads to a time dependency of the parametera1 of the AR2
process:

T~ t !5Tmean1MT sin~2p/Tmodt !, ~11!

a1~ t !52 cos@2p/T~ t !#exp~21/t !. ~12!

MT parametrizes the violation of the null hypothesis. Ac-
cording to Eq.~9!, the time dependency ofa1(t) causes a
time dependency of the variance of the process. The effect of
a changing variance is already covered by the first process,
Eq. ~10!. To investigate only the effect of a changing period
of the process here, we use Eq.~9! to adjust the variance
s2(t) of the driving noise such that the variance of the pro-
cess is constant:

s2~ t !5

s2

12a1
2
2a2

2
22a1

2a2 /~12a2!
~13!

3S 12a1~ t !2
2a2

2
2

2a1~ t !2a2

12a2
D ,

~14!

wherea1 ands2 denote the parameters of the processx0(t)
satisfying the null hypothesis. Figure 1~c! displays a realiza-
tion of this process withTmod5250 andMT51.5. Again,
compared to Fig. 1~a!, the nonstationarity is hardly visible.
Figure 2~dashed line! shows the estimated spectrum of the

FIG. 1. Realizations of the processes investigated.~a! AR2 pro-
cess satisfying the null hypothesis.~b! Amplitude modulated pro-
cess with modulation depth of 0.3.~c! Period modulated process,
relative amplitude of modulation is 15%.

FIG. 2. Estimated spectra of the processes shown in Fig. 1. The
spectra corresponding to Figs. 1~a! and 1~b! are not distinguishable
~solid line!. Period modulated process~dashed line!.
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process. The spectrum shows two peaks at the corresponding
frequencies due to the specific type of modulation chosen.

III. POWER OF THE TEST

As a nonlinear feature to investigate the power of surro-
gate data testing against the two violations of stationarity we
use the correlation dimension. The phase space is recon-
structed by delay embedding. The delay is chosen equal to
the lag at which the autocorrelation function first crosses
zero.

The correlation dimensionD2 is defined by

D25 lim
r→0

d ln C~r !

d ln r
, ~15!

whereC(r), the correlation integral, is given by

C~r !5const(
i51

N2m

(
j5i1m

N

Q„r2uxW~ i !2xW~ j !u…, ~16!

including the Theiler correctionm @22# which we chose
equal to the mean period, i.e., ten time steps. The canonical
procedure to establish a finite correlation dimension is to
show the existence of a scaling region for smallr where Eq.
~15! holds and stays constant for a high enough embedding
dimensions. For all processes investigated here, the true cor-
relation dimension is infinity. Following the idea of surrogate
data testing, we fix an algorithm to obtain a finite value from
the correlation integral and look for differences to the origi-
nal data. Therefore we apply Theiler and Lookman’s ‘‘rule
of five’’ chord estimator@23# and chose theirR0 equal to the
standard deviation of the data. For such a largeR0 we do not
examine the small scale behavior of Eq.~15! anymore. We
are aware that we should not call this quantity correlation
dimension anymore. It has been termed ‘‘dimensional com-
plexity’’ @24#.

The surrogate data are produced by the Fourier transform
~FT! algorithm @5#. For each degree of violation of the null
hypothesis 50 independent surrogate data sets of length 8192
were generated. Denoting the ‘‘correlation dimension’’ of
the original data byf , the mean of the distribution of this
feature for the surrogate data bymsurr, and its variance by
ssurr

2 , the result is displayed as

z5

u f 2msurru

ssurr
. ~17!

It was confirmed that the distribution of the feature is
sufficiently well described by a Gaussian distribution. Thusz
can be related to a confidence interval, since for 50 realiza-
tions the t distribution of (f 2msurr)/ssurr is well approxi-
mated by a Gaussian distribution andz51.96 corresponds to
the 5% level of significance.

In general, in power of the test investigations a procedure
different from that outlined above is chosen. For a certain
significance level, e.g., 5%, and different degrees of violation
of the null hypothesis, numerous realizations, e.g., 1000, of
the process are generated and the fraction of rejected null
hypotheses is reported. Due to the high computational bur-
den for calculating the correlation integral, this procedure is

not feasible here. The above procedure has the drawback that
the results depend on the single realization that is used as a
basis for the surrogates. We repeated the analysis reported
below for independent realizations and found no qualitative
differences for different realizations.

For the first violation of the null hypothesis, we increase
Mamp in Eq. ~10! from zero, i.e., no violation, to 0.5 in steps
of 0.1. The distribution of these data is not Gaussian for
Mamp.0. Thus, the amplitude adjusted surrogate data algo-
rithm @5# was applied. The deviation from Gaussianity is
weak for the range of violations chosen. We also applied the
algorithm without amplitude adjustment and did not find sig-
nificantly different results.

Figure 3 displays the result of the simulation study. In
dependence on the embedding dimension,z is displayed for
different degrees of violation of the null hypothesis. As ex-
pected, without any violation, thez values stay within the 2s
region given byz<1.96. A modulation depthMamp of 0.1
and 0.2 leads to results at the border of 5% significance.
Starting fromMamp50.3, see Fig. 1~b!, the null hypothesis
is clearly rejected at the 5% level of significance whenever
the embedding dimension is large enough to reconstruct the
second order process appropriately.

To investigate the effect of a variation in the period of the
linear stochastic process, we increaseMT in Eqs. ~11! and
~12! from zero to three. The distribution of these data is

FIG. 4. Results of the simulation study for the period modulated
process. Shown isz in dependence on the embedding dimension for
different degreesMT of violation (L50, 151, h51.5, 352,
n53).

FIG. 3. Results of the simulation study for the amplitude modu-
lated process. Shown isz in dependence on the embedding dimen-
sion for different degreesMamp of violation (L50, 150.1, h

50.2, 350.3, n50.4, *50.5).

PRE 58 5155BRIEF REPORTS



Gaussian independent from the value ofMT . Thus no am-
plitude adjustment was necessary. Again, the distribution of
the feature is sufficiently well described by a Gaussian dis-
tribution. Figure 4 displays the result of the simulation study.
For all degrees of violation, the violation is not detected
when the embedding dimension is too small to unfold the
dynamics in phase space. Otherwise, a modulation of the
period of 15%, see Fig. 1~c!, leads to a clear rejection of the
null hypothesis at the 5% level of confidence.

IV. CONCLUSION

The simulation studies reported in this paper indicate that
surrogate data testing for linear, stochastic, Gaussian station-
ary processes is powerful against a violation of the assump-
tion of stationarity. Thus a significant result of the test does
not necessarily indicate a nonlinear or even chaotic process
underlying the data. It might simply be caused by a nonsta-
tionarity of the process.
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