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1 Introduction

Technicalities:

• Which semester ? Any master students ?

• Script and communication on homepage

• Exercises ,Wednesday �exible, not a Hacker course

• Slides available after a few weeks

• Script is meant as a table of contents

• If something is not clear⇒Ask Questions!
Literature:

• On statistics

� A. Bevan. Statistical Data Analysis for the Physical Science [6]

� J. Honerkamp. Stochastic Dynamical Systems [25] Kap. 1-3.
Condensed showcase of the basics of statistics relevant for physicists

� J. Hartung. Statistik [24] A classic, very detailed

� L. Sachs. Applied Statistics [59] Compendium, applied

� D.R. Cox, D.V. Hinkley. Theoretical Statistics [12] easy to read theoretical
literature

• On numerics

� W. Press et al. Numerical Recipes [50]:
The Bibel, optimal for physicists

� J. Stoer. Einführung in die Numerische Mathematik I & II [66, 67]
Mathematically orientated classic

� Additional books from the �eld of 'Computational Physics' and 'Monte-
Carlo Methods' : [8, 17,18,36] Franklin modern
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Part I

Statistics

Fundamentals on the topic of statistics:

• Some things need to be understood.

• Much should be known.

• Many things you just have to be able to look up.

• Applied statistics is not a case of mathematics.

2 Distributions

2.1 Random variables

Random variable X:

• Something with a probability distribution pX(x)

• Probability to observe a realization of x in (x, x+ dx) is pX(x)dx

• pX(x) ≥ 0,
∫
pX(x) dx = 1
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Figure 2.1: Example of a probability distribution

• In physics, coincidence comes from:

� Qunatum mechanics, rather rare in macroscopic complex systems

� Chaos, also rare, realized e.g. by rolling a dice

� A lot of in�uences like Brownian Motion, most common.

• There are also discrete distributions p(xi), (think back to the dice)

In the following, if the relation is clear: pX(x) = p(x), X = x

2.2 Moments and Cumulants

• Expectation value 〈f(x)〉

〈f(x)〉 =

∫
f(x) p(x) dx

Expectation value is a number

• Moment µk

µk = 〈xk〉 =

∫
xk p(x) dx
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• 1. Moment: Mean

µ1 = x̄ = µ = 〈x〉 =

∫
x p(x) dx

• 2. Moment

µ2 = 〈x2〉 =

∫
x2 p(x) dx

� Variance: σ2 = 〈(x− x̄)2〉 = µ2 − µ2
1

� Standard deviation: σ

� While adding independent random variables, variances, as opposed to
standard deviations, are additive.

• 3. Moment

µ3 =< x3 >=

∫
x3p(x) dx

Skewness:
κ = 〈(x− µ)3〉

Measure of asymmetry.

• 4. Moment

Curtosis (bellyness):
γ = 〈(x− µ)4〉/σ4 − 3

�-3� will become clear further down the road.

• Characteristic function or generating function

G(k) =< eikX >=

∫
dx eikxp(x)

Fourier transform of the density p(x)

• If the moments exist, i.e. < Xn ><∞, Taylor evolution

G(k) =
∞∑
n=0

(i k)n

n!
< Xn >
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is G(k) known, the moments are calculated via:

dnG(k)

dkn

∣∣∣∣
k=0

= in < Xn >

• Evolution of log(G(k)) by k, follows:

log(G(k)) =
∞∑
n=1

(ik)n

n!
κn

with the Accumulants κi

κ1 = µ1

κ2 = µ2 − µ2
1 = σ2

κ3 = µ3 − 3µ2µ1 + 2µ3
1

. . .

Important characteristics:

� Accumulants are additive , therefor natural values

Let

Y =
N∑
i=1

Xi

then follows

κn(Y ) =
N∑
i=1

κn(Xi)

variance is additive, not standard deviation

� It can be shown:

∗ Either: All accumulants except the �rst two disappear

∗ Or there exist ∞ many
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2.3 Examples of distributions

• Gaussian or normal distribution:

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2

� Notation: N(µ, σ2)

Standard Gaussian distribution (normal distribution) µ = 0, σ2 = 1:
N(0, 1)

In ±1σ lies 68 % of the mass

In ±1.96σ lies 95 % of the mass

� Moments of N(0, 1) :

〈xk〉 =

{
0 for k uneven

1× 3× · · · × (k − 1) for k even

Therefor it is clear where the �-3� in the kurtosis comes from.

� Characteristic function:

G(k) = eiµk−
1
2
σ2k2

Only the �rst two accumulants are 6= 0

Shows why the SDG is so special!

Central limit theorem:

If the �rst two moments exist, the (normalized) sum of independent, identically
distributed (iid) random variables strives toward a normal distribution.

Consider N identical random variables Xi with

� κ1(Xi) =< Xi >= 0

� κ2(Xi) = µ2 − µ2
1 = σ2

� κn(Xi) <∞ ∀n,

Form:

Y =
1√
N

N∑
i=1

Xi
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For accumulants follows:

κn(Y ) =
1

Nn/2

N∑
i=1

κn(Xi)

Especially:

κ2(Y ) =
1

N

N∑
i=1

κ2(Xi) = κ2 = σ2

n > 2 : κn(Y ) = κn(Xi)
1

N (n−2)/2

� The higher accumulants disappear with N .

� Distribution tends towards normal distribution, which is why µ and σ are
so important.

� Holds also for non-identical Xi

� Convergence rate, i.e. how quickly the convergence to the normal distri-
bution happens, depends on the skewness.

Averaging:

Y =
1

N

N∑
i=1

Xi

κn(Y ) = κn(Xi)
1

Nn−1

κ2(Y ) =
σ2

N

The importance of the central limit theorem is not to be underestimated.

• Even distribution U(a, b) : χ2
r-distribution with r = 1, 2, 3, 4, 5 degrees of free-

dom.

p(x) =

{
1/(b− a) for a ≤ x ≤ b

0 else
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• Exponential distribution

p(x) =
1

τ
e−x/τ

It holds:

µ = τ

σ2 = τ 2

Estimation value and variance are not independent parameters.

Obtained for �constant decay rate�

• χ2
r distribution with r degrees of freedom:

Sum of r squared normal distributions

�χ2
r =

∑r
i=1(N(0, 1))2�

Y ∼ χ2
r, Xi ∼ N(0, 1) = pG(xi)

p(y) =

∫
dx1 . . . dxr δ(y − (x2

1 + . . .+ x2
r))

r∏
i=1

pG(xi)

=

∫
dx1

1√
2π
e−x

2
1/2dx2

1√
2π
e−x

2
2/2 . . . dxr

1√
2π
e−x

2
r/2 δ(y − (x2

1 + . . .+ x2
r))

=
yr/2−1e−y/2

2r/2 Γ(r/2)
, Γ(z) =

∫ ∞
0

tz−1e−t dt

It holds:

〈χ2
r〉 = r

V ar(χ2
r) = 2r ,

Meaning expectation value and variance are not independent parameters
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Figure 2.2: χ2
r distribution with r = 1, 2, 3, 4, 5 degrees of freedom

χ2 distributions are additive:

�χ2
r1

+ χ2
r2

= χ2
r1+r2

�

From the central limit theorem follows:

lim
r→∞

χ2
r = N(r, 2r)

Remarks :
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� χ2
2 = 1

2
e−x/2 is an exponential distribution with τ = 2.

� χ2
2 will be important in 13 Spectral analysis.

• t-distribution

t(r, x) =
N(0, 1)√
χ2
r/r

=
1√
r

1

B(1/2, r/2)

(
1 +

x2

r

)− 1
2

(r+1)

, B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

r: Number of degrees of freedom

See chapter 3.1: t-Test: Tests for equality of averages of two normal distribu-
tions.

lim
r→∞

t(r, x) = N(0, 1), good approximation for r = 30

• F distribution

F (r1, r2, x) =
χ2
r1
/r1

χ2
r2
/r2

= ...

r1, r2: Respective number of degrees of freedom

F test: Tests for equality of variances of two normal distributions.

• Cauchy(Lorenz) distribution:

pCauchy(x, a, γ) =
1

π

γ2

(x− a)2 + γ2

13



Figure 2.3: Cauchy distribution (red) in comparison to the normal distribution
(blue)

� Moments don't exist!

� Characteristic function:

G(k) = eika−|k|γ

There exists no Taylor evolution around k = 0

� a is a Localization parameter, but no mean.

� Cauchy-distribution plays a role in the increase of share prices.

Optional excursion: Black-Scholes
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� Central limit theorem is not valid for the Cauchy- distribution.

However there are limit theorems for distributions with non-existent mo-
ments. Keyword �stable distributions �

� Reference to the t-distribution:

t(1, x) = pCauchy(x, 0, 1)

With t distribution one can transition between Cauchy (no moments exist)
and Gaussian (all moments exist).

� Cauchy distribution known in physics as Breit-Wigner distribution.

• Multivariate normal distribution

p(~x) =
1

(2π)d/2
√
|C|

exp

(
−1

2
(~x− ~µ)TC−1(~x− ~µ)

)
, d = dim(~x)

with covariance matrix C

C = 〈(~x− ~µ)(~x− ~µ)T 〉

15



Figure 2.4: 2D-normal distributed random numbers with C1 = (0.71 0; 0 0.70),
C2 = (0.78 0.39; 0.39 0.28), C3 = (0.79,−0.39; −0.39, 0.28)

� 1 D Normal distribution:
68 % of the mass in [−σ, σ]
99 % of the mass in [−3σ, 3σ]

� 10 D Normal distribution, C = 1:
99 % of the mass outside of the [−3σ, 3σ]-sphere.

� Intuition:

∗ Integration over the angles

∗ Leaves, d = dim (~x)

Mass inside of radius r ∼
∫ r

0

rd−1 e−r
2/2 dr

� There are practically only the longest distances, the space is empty, �curse
of dimensionality�, comes back in Chap. 12 Core estimator.
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Figure 2.5: χ2
r-distribution with r = 1, 2, 3, 4, 5 d.o.f.

1. week

• Binomial distribution

B(n, p, k) =

(
n
k

)
pk(1− p)n−k, k = 0, 1, . . . n

Two possible events: x1, x2; p = prob(x1)

For n executions of the experiment, B(n, p, k) is the probability of realizing x1

k times.
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• Poisson distribution

P (k, λ) =
e−λλk

k!
, k ∈ N0

� Probability for k events in a time interval

� λ: Average number of events in time interval

� Important for point-processes with constant rate, think of �ring neurons
or photon counting processes

� Explain connection to dynamical systems by means of integrate-and-�re
neuron

Figure 2.6: Integrate-and-Fire-neuron

� For Poisson distribution holds

µ = σ2 = λ

� Furthermore it is the limit distribution of the binomial distribution:

lim
n→∞

B(n, k, p) = P (k, λ) wobei lim
n→∞

np = λ

Describes �rare events�
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� Poisson distribution for small λ very asymmetric. For large λ>30, it tends
towards a normal distribution

P (k, λ) =
1√
2πλ

exp

(
−(k − λ)2

2λ

)
Cumulative distributions

• De�nition:

cum(x) =

∫ x

−∞
dx′p(x′)

• xα with
cum(xα) = α

is called (100α) % Quanta.
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Figure 2.7: Cumulative distribution of the normal distribution with 90%-quanta

• Important for test theory, Chap. 3

• De�nition of the median:

cum(xMedian) = 0.5

The mean value of the distribution

20



2.4 Estimation of parameters from distributions

General parameter estimation theory in chapter 4

De�nitions:

• True parameter : Θ0

• Estimator for parameter : Θ̂, this is a random variable

• Bias : 〈Θ̂〉 −Θ0

• Variance of the estimator : 〈(Θ̂− 〈Θ̂〉)2〉

• Mean quadratic error : 〈(Θ̂−Θ0)2〉 = bias2 + variance of the estimator

• Con�dence interval: Area around Θ̂, where the true value lies Θ0 with a certain
probability.

Gaussian distribution N(µ, σ2) :

• Let every X ∼ N(µ, σ2)

• Estimator for the mean µ

µ̂ =
1

N

N∑
i=1

Xi

As sum over normal distributions µ̂ is normal distributed

< µ̂ >=
1

N

N∑
i=1

< Xi >=< X >= µ

Estimator is unbiased. Is correct on average.

Variance of the estimator

V ar(µ̂) =
1

N2

N∑
i=1

V ar(Xi) =
1

N
V ar(X) =

1

N
σ2
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In summary: µ̂ is a normal random variable with

< µ̂ > = µ

V ar(µ̂) =
1

N
σ2

σ(µ̂) =

√
1

N
σ �Standard error of the mean�

With this follows: ±σ (=68%) con�dence interval for true µ:

[µ̂− σ(µ̂), µ̂+ σ(µ̂)]

or [
µ̂−

√
1

N
σ, µ̂+

√
1

N
σ

]

With increasing amounts of data points the mean can be determined ever more
accurately.

Estimator unbiased and con�dence interval decreases with
√

1
N
:

Estimator is consistent.
Consistent: For N →∞ everything is going to be �ne

• Three estimators S2
k , k = 1, 2, 3, for the variance

� Let the mean be unknown

First try:

S2
1 =

1

N

N∑
i=1

(Xi − µ̂)2

Looking at one of the summants and skillfully adding 0

< (Xi − µ̂)2 > = < ((Xi− < X >)− (µ̂− < X >))2 >

= V ar(X)− 2 < (Xi− < X >)(µ̂− < X >) >

+V ar(µ̂)
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From before: V ar(µ̂) = 1
N
V ar(X)

and

< (Xi− < X >)(µ̂− < X >) > =
1

N

N∑
j=1

< (Xi− < X >)(Xj− < X >) >

=
1

N
< (Xi− < X >)2 >

=
1

N
V ar(X)

All together

< (Xi − µ̂)2 > = V ar(X)− 2
1

N
V ar(X) +

1

N
V ar(X)

= (1− 1/N)V ar(X)

=
N − 1

N
V ar(X)

Therefore:

< S2
1 >=

1

N

N − 1

N

N∑
i=1

V ar(X) =
N − 1

N
V ar(X) = V ar(X)− 1

N
V ar(X)

Ergo: Estimator S2
1 has a bias of

Bias(s2
1) =

1

N
V ar(X)

Only �asymptotically undistorted �, meaning for N →∞
Discussion asymptotic

� Second try

S2
2 =

1

N − 1

N∑
i=1

(xi − µ̂)2

Same calculation as above

< S2
2 >= V ar(X)

Justi�cation:
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∗ The calculation of the mean costs one d.o.f.

∗ x1, . . . , xN underlie the constraints :

N∑
i=1

xi = µ̂

∗ Factor 1
N−1

is called Bessel correction

� Let the mean µ be known

S2
3 =

1

N

N∑
i=1

(xi − µ)2

Same calculations as before

< S2
3 >= V ar(X)

Con�dence interval for p of the binomial distribution

B(n, p, k) =

(
n
k

)
pk(1− p)n−k, k = 0, 1, . . . n

• With m = #x1, the estimator is

p̂ =
m

n

asymptotically normal distributed :

p̂ ∼ N(p,
1

n
p(1− p))

Normal distributed because of the central limit theorem

• 95 % con�dence interval:[
m

n
− 1.96

√
1

n

m

n
(1− m

n
),
m

n
+ 1.96

√
1

n

m

n
(1− m

n
)

]
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• Asymptotic holds for n p(1− p) > 10

Discussion asymptotic

Figure 2.8: Binomial distribution with p1 = 0.5, p2 = 0.1, p3 = 0.9
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• Scewness must become smaller by averaging, is slower on the edge.

Figure 2.9: p(1-p): Responsible for variance of the estimator, �1-p� must be called
�variance�

• For n p(1− p) < 10: Look up Pearson-Clopper values.

Lessons learned:

• Random variables have a distribution, realizations are a number.

• Normal distribution is important because of the central limit theorem.

• High dimensional spaces are basically empty.

• Estimators are random variables.

• Consistent estimators are great.
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3 Hypothesis tests

... or The �ve dilemmas of testing

3.1 Parametric tests

More often than not questions will amount to statistical tests.
Everything else will be shown with the example of the t-test.

The procedure

• Formulate a null-hypothesis H0:

Here:

The means µ1, µ2 of 2 normal distributions with equal variance σ2 are equal.

Note: This contains three assumptions

Test is parametric, because parametric distributions, here normal distributions,
are assumed.

• Calculate (analytic/simulate) distribution of a test size under the null hypoth-
esis.

Here analytical:

� Estimate means µ̂1, µ̂2 for N measurements x1
i and x

2
i :

µ̂k =
1

N

N∑
i=1

xki , k = 1, 2

Corresponding variances σ̂2
1, σ̂

2
2:

σ̂2
k =

1

N − 1

N∑
i=1

(xki − µ̂k)2, k = 1, 2

� Calculate the mean :

Ŝ2 =
σ̂2

1 + σ̂2
2

2

And the standard error of the mean:

ŜM = Ŝ

√
2

N

27



� Under the validity of H0

t := (µ̂1 − µ̂2)/ŜM

t-distributed with r = 2N − 2 d.o.f.

�−2� because 2 means are estimated from the data

� Reminder: De�nition of t-distribution:

t(r, x) =
N(0, 1)√
χ2
r/r

� Normalization in the asymptotic:

lim
r→∞

t(r, x) = N(0, 1)

t̃ ∼ N

(
0,

1

2N − 2
σ2

)
, µ = 0 because µ1 = µ2

� Consider:

∗ Usually one wants to reject H0: Drug is better than placebo. Here
µ1 6= µ2

∗ Under the alternative H1 test statistic (hopefully) has a di�erent dis-
tribution than under H0

∗ Here: Normalized asymptotic distribution of t under alternative µ1 6=
µ2:

t̃ ∼ N

(
µ1 − µ2,

1

2N − 2
σ2

)

28



Figure 3.1: Null-Hypothesis H0 and alternative H1

• Dilemma I of testing: Everybody can belong

� Execution of the test, yield concrete numbers for µ̂1, µ̂2, ŜM and thus for
t

� Test surmounts to question:
Does a value belong to - the realized t-value - to the - here - t-distribution
?

� Problem:

29



This cannot be denied !

In principal every value of the test-statistic - here t- can occur under H0.

� p-value: Probability for value bigger t:

p = 1−
∫ t

−∞
p(x) dx

Per construction: Under H0: p value of the test-statistic is equally dis-
tributed on [0,1].

� Way out: discard null hypothesis H0 : µ1 = µ2 for extreme events:

p-value very small, p-value very large

� Therefor: choose signi�cance levels α.

Reject H0, when p-value < α

� Typical values for α: 0.05 or 0.01

Applied statistic is not a case of mathematics!
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Figure 3.2: Null hypothesis H0 and alternative hypothesis H1 with signi�cance
levels α

� Two kinds of errors can happen:

Error of the 1. kind: H0 is rejected even though true: False positive

Error of the 2. kind: H0 is not rejected even though false: False negative

� Error of the 2. kind costs a good paper

� Error of the 1. kind costs the career

• Power of the test: Frequency of rejections of a test, when H0 is false.
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Figure 3.3: Power of the Test

• Actual frequency of errors of 1. kind < α: Test is conservative.

• Actual frequency of errors of 1. kind > α: Test is garbage.

Varieties of the t-test:

• Is one mean larger than another ?

One sided and two sided test, discussing power

• Random sample-t-test: Is a distribution in agreement with a certain mean?

• Variances of two normal distributions are di�erent

• Number of samples is di�erent
2. week

Exercise :
The power of the t-test

Dilemma II: Dichotomy of Kakutani [28]
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• When H0 is not true, an alternative H1 with distribution pH1(x) applies

• Now holds:

lim
N→∞

∫
pH0(X) pH1(X) dX =


0
or
1

For N →∞ distributions pH0(X) and pH1(X) become ever narrower.

� If pH0(X) 6= pH1(X) there will eventually not be any common carriers left.

� If pH0(X) = pH1(X) nothing happens anyway.

• When a test has any power at all, H0 will always be rejected with increasing
number of data points.

�All null hypotheses are wrong� (Fischer, 1925) �... but some are useful!�

Dilemma III: Statistical signi�cance vs. content relevance

• Patients with pulses of 180 ± 10 beats/min

• A drug reduces pulse to 170 ± 10 beats/min

• Perform t-test with N patients through:

N=5 : n.s.
N=10 : p = 0.03
N=100 : p < 10−7

N=1000 : p < 10−20

� Any small violation of the null hypothesis lead to signi�cant di�erences if
a su�cient amount of measurements N are available.

� Before performing the test one should consider, to what extend a violation
of the null hypothesis is relevant for content.

� From this it can be determined how many measurements N are necessary
to proof a sensible violation.

� Case number calculation
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• Here:

� What is a clinically relevant decrease in pulse?

� How many measurements/patients N are needed to reject the null hy-
pothesis H0: �Drug has no e�ect.� ?

� If H0 is afterwards rejected: Drug is useful.

� If H0 is not rejected based on N measurements/patients:

On a content relevant scale the drug has no e�ect.

Dilemma IV: Multiples tests

• Setting: Based on m parameters it shall be tested , whether two species di�er.

• H0 : There is a di�erence

• Procedure: Perform m t-Tests, each at signi�cance level α.

• Probability α̃, to reject H0 :

α̃ = 1− (1− α)m (1)

• Example: α = 0.01

m = 10 =⇒ α̃ = 0.1

m = 100 =⇒ α̃ = 0.63

m = 1000 =⇒ α̃ = 0.99996

Solution 1:

• Bonferroni - correction:

• Solve eq. (1) for α:

α = 1− (1− α̃)1/m ≈ α̃

m

• Calculate for desired (global) α̃ the needed α for the single tests.
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• Problem :

� α becomes very small,

� Test become very conservative, no power
=⇒ many errors of the 2. kind.

• Variation: Bonferroni-Holm: Correct in every step j with j/m.

Solution 2:

• An experiment (m) to generate hypothesis,

• Yields m′ � m candidates.

Some correctly positive, some false positive.

• A second experiment to test with m′.

Variation for this topic:

• AIDS Test

• First (cheap) sensitive test, which is not highly speci�c

• If positive, then multiples (expensive) tests, which are highly speci�c but not
as sensitive.

Solution 3:

• Use binomial distribution B(m,α, k) to estimate the number of false positives:
False discovery rate

〈#(false positive)|H0〉 =
m∑
k=1

kB(m,α, k)

• If there are many more positives, there is a di�erence.

Or Bootstrap-method : [5, 74]

Special case: ANOVA
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• Consider: Experiment examines several conditions in the same respect.

• For example placebo, drug1, ..., drugM with respect to # red blood cells

• ANalysis Of VAriance (ANOVA) is the alternative to M(M−1)
2

t-tests.

Derivation:

• H0 : No e�ect.

• M conditions, N observations each: xij

• Average per condition

x̄i. =
1

N

N∑
j=1

xij

Average over all:

x̄.. =
1

M

M∑
i=1

x̄i.

Variance of all data, called SStotal, SS for sum of squares, is:

SStotal =
M∑
i=1

N∑
j=1

(xij − x̄..)2

=
M∑
i=1

N(x̄i. − x̄..)2 +
M∑
i=1

N∑
j=1

(xij − x̄i.)2

• First summant: Variance of the group means with respect to total average
SSbetween with M − 1 d.o.f. .

Second summant: Variance in the di�erent group means SSwithin with (N−1)M
d.o.f.

• Under validity of the null hypothesis their quotients follow a F (M − 1, (N −
1)M) distribution.
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Figure 3.4: Di�erent drugs in ANOVA-test: Drug 2 works, drugs 1 and 3 and the
placebo show no e�ect

In case of rejection:

• If ANOVA is signi�cant, it poses the question: Who did it?

• A posteriori test (Tukey-Kramer or Sche�é) yields critical di�erence which the
means must surpass to be considered signi�cant.

• Considers that the data used in ANOVA have already been statistically used
once.
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• A posteriori test always has smaller power than a single t-test between for
example the largest mean di�erences. It is therefor important 1 to determine
prior to an experiment what the minimum hypothesis to be tested should be.
Otherwise one runs the risk of not being able to statistically prove present
e�ects.

Generalization for

• Di�erent variances

• Di�erent sample sizes

• Multiples parameters, so called factors, drugs and genders

Short version of ANOVA: Compare ,the variance of group means to the total mean,
to the variance of the di�erent group means (F-test). That way one can save M(M−1)

2

t-tests.

Paired tests

• Previous assumptions: Distributions are independent.

• If data is recorded from the same individuals, this has an e�ect on the variance:

1but sadly not common
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Figure 3.5: Paired values

This must be considered.

• One can speaks of paired tests.

• As in the case of paired t-tests, a repetition of tests can also be con-
sidered for ANOVA e.g. for the dependency of sample size to the dif-
ferent experimental conditions. This happens for example through the
Greenhouse-Geisser-correction.

3.18

3.2 Non-parametric tests

Previously:

• t-test assumed normally distributed samples: Parametric Test

• If distribution drops a lot slower than normal distribution e.g. Cauchy-
distribution, t-test loses it's power ,see exercise
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Discuss �Outliers�, shit happens

• Alternative: Non-parametric tests

• Those are robust against violations of the assumption distribution

• Instead of mean comparison ⇒ location comparison.

p1(x) = p2(x+ ∆) H0 : ∆ = 0

Here :

• t-test works following Wilcoxon rank sum test (or U -test, Mann-Whithney-test)

• Null hypothesis: The distributions are identical.

Or: The ranks of both samples are equally distributed with respect to the
ensemble

Is N1 = N2 = N . Ranks Rk
i , k = 1, 2, i = 1, . . . N : Is

x1
i = (−6.7,−1, 5) x2

i = (−5,−2.2, 7)

then
R1
i = (1, 4, 5) R2

i = (2, 3, 6)

• Calculate the ranks R1
1, . . . , R

1
N of the �rst sample with respect to the total.

• Under H0 applies:〈
N∑
i=1

R1
i

〉
= N2 + 0.5N, V ar

(
N∑
i=1

R1
i

)
=

1

6
N3 +

1

12
N2

• With central limit theorem:

W =

(
N∑
i=1

R1
i − (N2 + 0.5N)

)
/

√
1

6
N3 +

1

12
N2 ∼ N(0, 1)

Good approximation for N ≥ 20

• For N < 20, exact values can be obtained through combinatorics but are time-
consuming to calculate, are tabulated
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• Reason for robustness: Lowest value has rank= 1, highest value has rank= 2N ,
no matter whether normal or Cauchy distribution are underlying or if there are
�outliers�.

• Paired case: Wilcoxon-sign-rank-test

Non-parametric ANOVA: Kruskal-Wallis test or also H-test.

E�ciency

• If data is normal distributed, parametric t-test recognizes a di�erence in aver-
ages with fewer data as Wilcoxon-test or with equal N with smaller di�erences,
t-test has higher power.

• The smaller power of non-parametric test as compared to parametric test if
parametric assumption is valid, is given by the e�ciency:

Eff =
Power(NP − test)
Power(P − test)

given the validity of the parametric distribution.

• Wilcoxon-test has an e�ciency of 0.95 compared to the t-test, meaning the
t-test has with 95% of the data the same power as the Wilcoxon-test is the
data is normally distributed.

• Since wrong distribution assumptions lead to a loss of power in parametric
tests but non-parametric tests have an e�ciency< 1, it follows:

Dilemma V : Power vs. E�ciency

• Since they have an e�ciency near 1 and are robust against violations of distri-
bution assumptions, non-parametric tests are preferred nowadays.
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Lessons learned:

• Crucial: Derivation of the distribution of a test statistic under H0

• The �ve Dilemmata of testing:

� Everyone can be part of it, necessity of a signi�cance level

� With increasing number of data points every null hypothesis will be re-
jected

� Statistical signi�cance vs. content relevance

� Multiples tests

� Power vs. e�ciency in parametric vs. non-parametric tests

• Signi�cance levels are not a case of mathematics but of risk assessment

3. week
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4 Parameter estimation

Literature:

• D.R. Cox and D.V. Hinkley: Theoretical Statistics [12]

• E.L. Lehmann: Theory of Point Estimation [39]

Motivation: Easiest model: Linear regression, see Chap. 10.1

yi = axi + εi, εi ∼ N(0, σ2)

Two questions, answers are going back to Gauÿ:

(i) Given N data pairs (xi, yi), how does one determine a ?

Keyword: Point estimation

(ii) How precisely is a determined by the data?

Keyword: Con�dence interval

ad (i)

• Intuition: Choose â in a way that y = axi lies as close as possible to the data

• This means minimizing the distances, i.e.

â = argmin
N∑
i=1

(yi − axi)2

Least squares estimator

ad (ii)

• Intuition: When σ2 large, a is badly determined

43



Figure 4.1: Linear regression on two data samples with (a) σ2 = 4 and (b) σ2 = 36
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• If σ2
i is weighted instead of σ2

a = argmin
N∑
i=1

(yi − axi)2

σ2
i

Weighted least squares estimator

N∑
i=1

(yi − axi)2

σ2
i

aka χ2. For true a it is also distributed as such.

Examples for models:

• Regression models

� Linear in parameters, nonlinear in x, the independent variable

y = a0 + a1x+ a2x
2 + a3x

4 + . . .+ ε, ε ∼ N(0, σ2)

p(yi|a, xi) =
1√
2πσ

e−
(yi−

∑n
j=0 ajx

j
i
)2

2σ2

see Chap. 10.2

� Nonlinear in parameters

y = sin ax+ ε, ε ∼ N(0, σ2)

p(yi|a, xi) =
1√
2πσ

e−
(yi−sin axi)2

2σ2

see Chap. 10.3

• Dynamical models

� Partially observed ordinary di�erential equations

ẋ = f(x, p), x(0) = x0 dim(x) = n

y(ti) = g(x(ti, p)) + ε(ti), dim(y) = m

m < n
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p(y(ti)|p, x0) =
1√
2πσ

e−
(y(ti)−g(x(ti,p,xo))

2

2σ2

� Stochastic partial di�erential equation

� Time discrete state space model

x(t) = Ax(t− 1) + ε(t), ε(t) ∼ N(0, σ2
ε )

y(t) = Cx(t) + µ(t), µ(t) ∼ N(0, σ2
µ)

Keyword: Kalman-Filter

� Hidden Markov model, time discrete

Discrete states x1, . . . xs

p(x(t+ 1)|x(t), x(t− 1), . . .) = p(x(t+ 1)|x(t))

Transition probabilities

aij = p(x(t+ 1) = j|x(t) = i)

Noisy observations
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Figure 4.2: Hidden Markov model

Keyword: Baum-Welsh algorithm, Viterbi algorithm

• Particle physics

Model for background in Higgs boson search: Highly complex calculations and
simulations

Common feature of all models: They produce a probability p(z, a) for observations
z dependent on the parameter a
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4.1 Maximum Likelihood Estimator

Remember:

• Bias (Distortion) : 〈Θ̂〉 −Θ

• Variance of the estimator : 〈(Θ̂− 〈Θ̂〉)2〉, determines con�dence interval

• Mean square error : 〈(Θ̂−Θ)2〉 = bias2 + variance of the estimator

Let X be a parametric random variable with density p(x, a).
Given N realizations

L(x1, . . . , xN |a) =
N∏
i=1

p(xi, a)

is called the Likelihood

• L(x1, . . . , xN |a) is to be read in dependence of a

• Data is given

• Likelihood: �For an assumed a, what is the probability given the data?�

• Likelihood is not a probability, since
∫
p(x, a) da not normalized. As opposed

to
∫
p(x, a) dx = 1

Maximum Likelihood Estimator (MLE):

• Choose parameter a so that Likelihood is maxed

• Intuitively sensible

• Formally:
∂L(x1, . . . , xN |a)

∂a
= 0

• Logarithmic:

L(a) = logL(a) =
N∑
i=1

log p(xi, a)

Since logarithm monotonous, the value of the maximum does not change.
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Replaces di�cult multiplication with manageable sum.

Usually addition of a minus sign, doesn't change value for maximum anyway.

Minimization of log-likelihood instead of maximization of likelihood

• M.k.z.: MLE under mild conditions, asymptotically unbiased. Proof of contra-
diction (Cox/Hinkley p. 288f, pretty)

• M.k.z.: MLE under mild conditions, asymptotically normal distributed.

√
N(θ̂ − θ0) ∼ N (0,Σ)

with

Σ = −N

(
∂2L(θ̂)

∂θi∂θj

)−1
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Figure 4.3: Maximum Likelihood Estimator in 2D

Cramér-Rao barrier

• In the following, all indices suppressed

• Consider score V :

V :=
∂

∂a
L(x, a) =

∂

∂a
log p(x, a) =

1

p(x, a)

∂

∂a
p(x, a) (2)
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• Lemma 1: < V >= 0

< V > =

∫
dx p(x, a)

∂

∂a
log p(x, a)

=

∫
dx p(x, a)

1

p(x, a)

∂

∂a
p(x, a)

=

∫
dx

∂

∂a
p(x, a)

=
∂

∂a

∫
dx p(x, a)

= 0

• Lemma 2: V ar(V ) =
〈
− ∂2

∂a2
L(x, a)

〉
V ar(V ) :=

〈(
∂

∂a
L(x, a)

)2
〉

Consider derivation with respect to a of

< V >= 0 =

∫
dx p(x, a)

∂

∂a
log p(x, a)

0 =

∫
dx

∂

∂a
p(x, a)

∂

∂a
log p(x, a) +

∫
dx p(x, a)

∂2

∂a2
log p(x, a)

With Eq. (2) follows for 1. summant:∫
dx p(x, a)

(
∂

∂a
log p(x, a)

)2

= V ar(V )

and thus:

V ar(V ) =

〈
− ∂2

∂a2
L(x, a)

〉
〈
− ∂2

∂a2
L(x, a)

〉
called Fischer information matrix.
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• Consider unbiased estimator θ̂(x) for parameter a, i.e. < θ̂(x) >= a.

Lemma 3: < V θ̂(x) >= 1

< V θ̂(x) > =

∫
dx p(x, a)

1

p(x, a)

∂

∂a
p(x, a)θ̂(x)

=

∫
dx

∂

∂a
p(x, a)θ̂(x)

=
∂

∂a

∫
dx p(x, a)θ̂(x)

=
∂

∂a
< θ̂(x) >

=
∂

∂a
a

= 1

• Consider Cauchy-Schwarz inequality:

< (V− < V >)(θ̂− < θ̂ >) >2 ≤ < (V− < V >)2 >< (θ̂− < θ̂ >)2 >

< V θ̂ − V < θ̂ > − < V > θ̂+ < V >< θ̂ >>2 ≤ V ar(V )V ar(θ̂)

< V θ̂ >2 ≤ V ar(V )V ar(θ̂)

V ar(θ̂) ≥ 1

V ar(V )
=

1

<
(
− ∂2

∂a2
L(x, a)

)
>

The Cramér-Rao barrier

• Curvature of Log-Likelihood determines estimator.

Variance of estimator yields con�dence interval.
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Figure 4.4: The Cramer-Rao-barrier for one parameter

• M.k.z.: Maximum Likelihood Estimator assumes lower limit, therefor

V ar(θ̂MLE) =
1

<
〈
− ∂2

∂a2
L(x, a)

〉
>

• E�ciency: Let Θ̂. be a non-MLE, then

Eff(Θ̂.) =
V ar(ΘMLE)

V ar(Θ.)
≤ 1
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MLE are top notch, retrieve the most information from the data.

Concrete examples:

• Normal distribution

p(xi|µ, σ) =
1√
2πσ

e−
(xi−µ)

2

2σ2

Likelihood:

L(x1, . . . , xN |µ, σ) =
N∏
i=1

1√
2πσ

e
(xi−µ)

2

2σ2

Log-Likelihood

L(µ, σ) = −N log σ −N log
√

2π − 1

2σ2

N∑
i=1

(xi − µ)2

� Estimator for the mean

∂L(µ, σ)

∂µ
=

1

σ2

∑
i

(xi − µ)
!
= 0

Therefor:

µ̂MLE =
1

N

N∑
i

xi das beruhigt :-)

Variance of the estimator:

∂2L(µ, σ)

∂µ2
=

1

σ2

∑
i

−1 = −N
σ2

σ2 dictates curvature of the Likelihood: Larger σ2 yield smaller curvatures
and thus larger variances of the estimators.

V ar(µ̂) = − 1
∂2L(µ,σ)
∂µ2

=
σ2

N

SEM =
1√
N
σ

Typical 1√
N
-dependency
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� Estimator for the variance

∂L(µ, σ)

∂σ
= −N

σ
+

1

σ3

∑
i

(xi − µ)2 !
= 0

Nσ̂2 =
∑
i

(xi − µ̂)2

σ̂2 =
1

N

∑
i

(xi − µ̂)2

Remember Chap. 2.4: Unbiased estimator has 1
N−1

MLE in general only asymptotically unbiased.
Calculation of V ar(σ2): Home work

• Linear regression:

yi = axi + εi, εi ∼ N(0, σ2)

p(yi|a, xi) =
1√
2πσ

exp

(
−(yi − axi)2

2σ2

)
Log-Likelihood

L(a) ∝
N∑
i=1

(yi − axi)2

Read from front to back: If one estimates based on (weighted) least squares, one
has assumed a normal distribution

∂L(a)

∂a
=
∑

(yi − axi)xi
!
= 0

∑
(yixi − ax2

i ) = 0

âMLE =

∑
i yixi∑
i x

2
i

Further treated in chap. 10.1 and chap. 10.2
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• Exponential distribution

p(x, τ) =
1

τ
e−x/τ , λ =

1

τ
, p(x, λ) = λe−λx

L(λ) =
N∏
i=1

λe−λxi

L(λ) =
N∑
i=1

log
(
λe−λxi

)
=

N∑
i=1

(log λ− λxi) = N log λ− λ
N∑
i=1

xi

dL(λ)

dλ
=

N

λ
−

N∑
i=1

xi
!
= 0

λ̂ =
N∑N
i=1 xi

=
1

x̄
, τ̂ = x̄

d2L(λ)

dλ2
= −N

λ2

V ar(λ̂) =
λ2

N

4.2 Methods of Moments

• Likelihood sometimes di�cult or impossible to calculate

• In those cases, Methods of Moments is an alternative

• Ansatz:

Calculate moments µk ...

� ... from the data: µempk

� ... and from the model, parameterized theoretical moments µtheok (θ).

• De�ne estimator as:

µempk = µtheok (θ̂MM), k = 1, . . . ,m

resp.

θ̂MM = argmin

m∑
k=1

(µempk − µtheok (θMM))2
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• As a rule

V ar(θ̂MM) ≥ V ar(θ̂MLE)

If the problem is linear in the parameters, the uncertainties are gaussian and
considering �rst and second moments, it holds:

θ̂MM = θ̂MLE, V ar(θ̂MM) = V ar(θ̂MLE)
4. week

4.3 Bayesian approaches

Up until now frequentistic: There are true parameters
Bayesian world:

• Parameters are also random variables

• All probabilities are conditional probabilities

Conditional probability

p(A|B) =
p(A,B)

p(B)
probability for A given B

Consider dice: A = {1, 2}, B = {1, 2, 3}

• p(A,B) = p(A ∩B)

• p(A) = 1/3, p(B) = 1/2, p(A,B) = 1/3

• p(A|B) = 2/3

p(A|B) =
p(A,B)

p(B)

p(B|A) =
p(A,B)

p(A)

p(A|B) =
p(B|A) p(A)

p(B)
Bayes theorem

With A = θ and B = Daten and p(Daten) = const follows

p(θ|data) ∝ p(data|θ) p(θ) (3)
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• The Likelihood p(data|θ) is decorated by the prior p(θ).

• The prior p(θ) is also a conditional probability, based on priorknowledge

• p(θ|data) is called a posteriori distribution

• Gives Maximum a posteriori (MAP) estimator and its distribution.

Figure 4.5: In�uence of prior leads to bias, but smaller variance, but not in this
Graph :-)
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• Taking the logarithm of Eq. (3)

log p(θ|data) ∝ log p(data|θ) + log p(θ) =
N∑
i=1

log p(xi, a) + log prior(a)

In�uence of Likelihood : O(N), In�uence of prior : O(1),

Asymptotically prior has no in�uence

• Problem: Prior usually unknown

• Gives (in frequentistic view) biased estimator in the in�nite

• Advantage of Bayesian approach: Prior can introduce useful prior knowledge

Accumulation of information through series of experiments, experimental de-
sign [38], empirical Bayes

Especially important in ill-posed inverse problems

• Simplest example:

y = Ax+ ε

x̂ = A−1y

y is measured, x should be determined

• Is A singular or ill conditioned, i.e. almost singular, large

Condition number =
largest eigenvalue
smallest eigenvalue

x is estimated unbiased but estimator has huge variance and therefor large
mean square error

MSE =< (θ̂ − θ)2 >= Bias2 + V ar(θ̂)

• Prior can (strongly) reduce V ar(θ̂) but leads to (small) Bias.

Keyword: Regularization

59



Figure 4.6: Behavior of bias and variance depending on the in�uence of the prior

Sensible priors:

• small |a|: p(a) ∝ e−|a|

• estimation of a function f(x, a).

Let f(x, a) be smooth: p(f(x, a)) ∝ exp(− ∂2

∂x2
f(x, a))

Calculation of p(θ|Daten)

• Leads to complicated highly-dimensional integrals
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• Monte Carlo Markov Chain Method [20,29,49], see Chap. 14

• Stochastic processes on the parameters

• Stationary density is the desired sample

4.4 Pro�le Likelihood

Con�dence intervals ar based on the Fisher information matrix:

Figure 4.7: Pro�le Likelihood

• Strong assumptions on the asymptotic : quadratic approximation has to be
true Only holds globally for linear models

y =
∑
i

aix+ε

Otherwise only locally in the optimum
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• If this holds , two possible statements:

� Quadratic: Finite con�dence intervals

� Flat: Parameter not identi�ed: Structural non-identi�ability

∗ Parameter can not be identi�ed due to model structure
∗ (Trivial) example

y = (ab)x

∗ (Highly) non-trivial examples i.e. in partially observed di�erential
equations

• Not reparametrization invariant.

By transforming a parameter, i.e. logarithm, con�dence intervals do not change
according to the transformation

Alternative: Pro�le Likelihood

PL(θi) = max
θj 6=i

L(θ)

Run along every parameter and optimize the others

Figure 4.8: Pro�le Likelihood estimator,choice of con�dence interval
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Con�dence interval given via:

PL(θi)− L(~̂θ) ≤ χ2
(1−α,1)

Justi�cation in chap. 5.2

Properties:

• Weaker asymptotic then Fisher information matrix based con�dence intervals.
Convexity of the Likelihood is su�cient.

• Reparametrization invariant

• Allows statements, if quadratic approximation is not valid

• Allows model reduction

• Allows experimental design
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Figure 4.9: Possible courses lower and upper bound see exercise

• Allows de�nition of practical non-identi�ability [54], i.e. problems which can
be solved with additional data.
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Lessons learned:

• Maximum likelihood Estimator is the best tool in the box

• Normal distributed error => MLE = weighted least squares

• Cramér-Rao barrier gives maximal possible accuracy

• Bayesian methods can consider prior information

• Pro�le Likelihood is highly informative alternative to asymptotic con�dence
intervals
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5 Model selection

As a rule the true model is not known, but a �nite number of candidate models

Two important cases

• Nested models

� Let M1 be a sub model with r1 d.o.f. (θ1) of

� Higher model M2 with r2 d.o.f. (θ2)

� H0: M1 is an allowed simpli�cation of M2

Easiest case:

� M1: 1. component of θ1 = 42

� M2: 1. component of θ2 ⊂ R

� r1 = r2 − 1

• Non-nested models

� M1 and M2 are competing for the explanation

� M1: y = sin ax vs. M2: y = exp(bx) + cx2

� M1 and M2 stand for di�erent physics

De�nition: Consistent Model selection method: For N →∞ the true model will be
found with a probablity of 1 as long as it is part of the candidates

Occam's Razor: The simplest solution is usually the best.

All model selection methods

• Take into account the fact that a large model can always explain more

• Evaluate if the larger e�orts are worth it
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5.1 F-Test

Mother of all model selection tests:
Given

• Regression models, normal errors, least squares estimation problems

• Model M1 with k1 parameters, χ2(M1), d.o.f.: N − k1

• Model M2 with k2 parameters, χ2(M1), d.o.f.: N − k2

• Models nested, k2 > k1

• M2 describes the data

• H0: M1 is an allowed simpli�cation of M2

• Unter H0:

F =
(χ2(M1)− χ2(M2))/(k2 − k1)

χ2(M2)/(N − k2 − 1)

is F -distributed with k2 − k1 and N − k2 − 1 d.o.f.

• Example

� M1: y = a+ bx

� M1: y = a+ bx+ cx2
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Figure 5.1: Noisy data of a linear course with �tted line and �tted parable

� F-test measures amount of over�tting

• By reducing the signi�cance level α with N , consistent selection method is
obtained [4, 47]. Is H0 true, it is not going to be rejected.

5.2 Likelihood Ratio Tests (LRT)

Best theory literature: [12]
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Nomenclature:

• Given model M with parameter vectors θ ⊂ Rr.

• True parameter: θ0

• Estimated parameter: θ̂

• L = L

First LRT:

• H0 : M is true

• H1 : M is not true

Assumptions:

1. θ0 does not reside on the edge of the parameter space.

2. The MLEs are asymptotically normal, e.g.:

√
N(θ̂ − θ0) ∼ N (0,Σ)

with

Σ = −N

(
∂2L(θ̂)

∂θi∂θj

)−1

3. The model be identi�able, e.g. θ is uniquely determinable from the data, see
identi�ability in chap. 4.4.

Then holds asymptotically:

2 (L(θ̂)− L(θ0)) ∼ χ2
r .

Di�erence of log-likelihoods is ratio of the likelihoods

proof (slight abuse of notation):

L(θ0) = L(θ̂) +
∂

∂ θi
L(θ̂)(θ0 − θ̂) +

1

2
(θ0 − θ̂)

∂2

∂θi∂θj
L(θ̂)(θ0 − θ̂) +O(|θ0 − θ̂|3) .
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• 2. Term RHS = 0 because MLE.

• Neglecting terms of higher orders

• Σ−1 turns the correlations of the θ̂ out.

• Quadratic term become sums over r squared standard normal distributions
=⇒ χ2

r -distribution

• Solve for 2(L(θ̂)− L(θ0))

• Since L(θ0) not known, more of theoretical interest but clari�es the principle.

Aber [72]:

• Estimate θ0 from all data

• Many θ̂ from data fragments

• Test, if distributions 2(L(θ̂)− L(θ0)) holds true

2. LRT: Given two models
Assumptions:

1. The models are nested, where M2 is the sub model of M1.

2. The higher model is correctly speci�ed

3. The MLEs are asymptotically normal-distributed.

4. The true parameters do not lie on the edge of the parameter space

5. All parameters are identi�able under the null hypothesis.

H0: M1 is a valid simpli�cation of M2 Then holds asymptotically:

2 [L(θ̂2)− L(θ̂1)] ∼ χ2
r2−r1

Proof:

• Analog to above

• Turning out the correlations
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• Sum over squared standard normal distributions leads to χ2-distributions

Comments

• Distribution of the LRTs follows from the asymptotic normality of the estima-
tors

• LRT for regression case = F-Test, see e.g. [62]

• Consistent model selection method:
For N → ∞ and signi�cance levels α → 0the true model will be found with
probability = 1

• Related tests: Wald test, Lagrange-Multiplier test

• Pro�le Likelihood is LRT for one parameter therefor χ2
1 distribution

5. week
In many models with growing complexity : Selection strategies for F-test, LRTs:

• Forward Selection

� Test increasingly complicated models

� Drawbacks:

∗ False negative =⇒ Early stopping

∗ There is for example no natural order in the non-linear

• Backward Selection

� Starting from the most general model

� Drawback

∗ What is the most general model?

∗ Existence of the Highest model

• Stepwise Selection

After every forward step, perform a backward step.

Is recommended.
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5.2.1 Non standard test situations

�Non standard� means: Assumptions from above do not hold.

Most frequent case:

• Under H0 parameter lies on the edge of the parameter space. [63, 73]

Consequence: Estimator can not be normally distributed.

• Example: a scalar, parameter space a ≥ 0

� H0: a = 0

� H1: a > 0

Under H0, instead of (asymptotic) normal distribution:

� Potential negative values become 0

� Potential positive values unchanged

Figure 5.2: 2D-Parameter space:
∼
C shows the allowed parameter values under H1.

Under H1 the parameter is localized around the origin. The asymptotic distribution
of the LRT is a combination of χ2

0, χ
2
1 and χ

2
2 with di�erent probabilities dependent

on the angle in
∼
C. [63]
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• Test statistic:

2 [L(θ̂2)− L(θ̂1)] ∼ 1

2
χ2

0 +
1

2
χ2

1, χ2
0 = δ(0)

Figure 5.3: Normal vs. non standard
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Figure 5.4: Cumulative distribution

• Important: If one does not consider �Parameter on the edge�, Standard-LRT
becomes conservative.

5.2.2 Non nested models [73]

If models are non nested one could take the higher model as a larger nest.
Prohibits itself in general since,

• Amount of identi�able parameters is limited, see chap. 4.4

• Then non standard situations would arise constantly

Simulative way out:

• Fit model 1 and 2 to the data, calculate the di�erence of their likelihoods

• Assume, model 1 is correct

• Simulate multiple data sets from model 1

• Fit both models to the simulated data

• Determine the distributions of the di�erences of their Likelihoods
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• Check, if Original�t-Likelihood di�erence is agreeable with simulated di�erence
distributions

• Repeat for model 2

• Four possibilities

� Both models will be rejected

� Model 1 or model 2 will be rejected

� No model can be rejected

5.3 Akaike Information Criterion (AIC)

Akaike himself called it An Information Criterion, AIC in [2] :-)
Original literature: [1, 2] nicely presented [37]

Principle:

• Uni�cation of parameter estimation and model selection

• Based on the entropic measure, integrate and approximate.

• Formal analog to Cross-Validation [68]

Leads to:

AIC(M) = −2 log(Likelihood(p̂)) + 2k, k = dim(p)

For model selection, choose model with smallest AIC, no step wise procedure.

Comments:

• Popular because of it's simplicity.

• But: Consider nested models M1 and M2 with ∆k = 1, in M1 a parameter
�xed

AIC(M1) = −2(L(M1)) + 2k1

AIC(M2) = −2(L(M2)) + 2k2

AIC(M1)− AIC(M2) = −2(L(M1)− L(M2)) + 2

Remember LRT:
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Under H0

2(L(M2)− L(M1)) ∼ χ2
1

Ergo: AIC is LRT with critical value α

χ2
1(2) = α, ergibt α = 15.7

In testtheoretical sense: 15.7 % error of 1. kind

Leads systematically to too complex models

• Not a consistent model selection method

• But good for �nding models with high predictability

• Behavior for parameters on the edge and for non identi�ability unclear

Literature: [64]

5.4 Bayesian Information Criterion (BIC)

• Ingenues four page paper [61]

• Assumption: Weakest Bayesian priors and neglecting terms of higher order

• Yields

BIC = −2 log(Likelihood) + k log(N), k = dim(p)

considering amount of data

• Signi�cance levels for a di�erence in the parameters [70]

Prob(χ2
1 > log(N))

• Choice of smallest BIC gives consistent model selection procedure

• Compare AIC vs. BIC, see [3, 7, 34, 45,70]
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Lessons learned:

• Model selection procedure evaluate higher explanation possibilities of more
complex while considering the increasing number of parameters (Occam's Ra-
zor).

• F -test and Likelihood ratio test set scale, test statistics

• AIC and BIC simply order

• F -Test, LRT test and BIC are consistent model selection procedures

• AIC prefers systematically larger models than necessary
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Part II

Numerics

There are two sorts of numerics:

• There is the one that one should understand, and...

• ... there is the one which one just has to know

6 Generation of random numbers

• Problem:

How does one produce �random� numbers on a deterministic machine?

• Discussion : Detection of coincidence. Statistic hypothesis �5.6 is random� is
not to be rejected .

78



Figure 6.1: Sine series and white noise

• Coincidence = not predictable, de facto de�nition

• Solution :

Chaotic dynamical systems show properties, which are not distinguishable from
coincidence.
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Figure 6.2: Lorenz 1963 'Deterministic Aperiodic Flow' [42]
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Figure 6.3: Lorenz 1963 'Deterministic Aperiodic Flow' [42]

• Figure Max(i+1)/Max(i)

• (Pseudo-)random number generator: Poincaré cut trough a high dimensional
deterministic chaotic system.

• Similar values of x(t) have very di�erent values of x(t+ 1).

• Replace by Dreieck (0.,1;1)

• All random generations are based on equally distributed random variables

• Replace by

x(t+ 1) = f(x(t)), x(t) ⊂ [0, 1]

x(t+ 1) = a x(t) mod 1, a very large number
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Figure 6.4: Principle of a random number generator

Transformation methods :

• Random variable X

• Form Y (X)

• It must apply

1 =

∫
dx pX(x) =

∫
dy

∣∣∣∣dxdy
∣∣∣∣ pX(x(y)) =

∫
dy pY (y)
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Ergo:

pY (y) =

∣∣∣∣dxdy
∣∣∣∣ pX(x)

• As a rule:

� X equally distributed

� Y (X) cleverly chosen

� For distributions of Y it holds therefor

pY (y) = pX(x)

∣∣∣∣dxdy
∣∣∣∣ =

∣∣∣∣dxdy
∣∣∣∣

Examples :

• Exponentially distributed random variables

p(x) =
1

τ
e−x/τ

� Let X be equally distributed

� Choose y(x) = − log x, x = e−y

� Yields:

p(y) =

∣∣∣∣dxdy
∣∣∣∣ = e−y

• Standard normal distributed random variables

p(x) =
1√
2π
e−

x2

2

� Here 2D transformation method, Box-Müller procedure

p(y1, y2) = p(x1, x2)

∣∣∣∣∂(x1, x2)

∂(y1, y2)

∣∣∣∣
|.|: Determinate of the Jacobi matrix

� Let X be equally distributed
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� Choose wisely:

y1 =
√
−2 log x1 cos 2πx2

y2 =
√
−2 log x1 sin 2πx2

x1 = exp

[
−1

2
(y2

1 + y2
2)

]
x2 =

1

2π
atan

y2

y1∣∣∣∣∂(x1, x2)

∂(y1, y2)

∣∣∣∣ =
1√
2π
e−y

2
1/2

1√
2π
e−y

2
2/2

� Gives 2 standard-normal distributed random numbers for 2 equally dis-
tributed ones.

� General normal distribution through shift about µ and scaling of σ.

• Cauchy

p(x) =
1

π

γ

(x− a)2 + γ2

� Let x be equally distributed in [−0.5, 0.5]

� Then y = γ tanπx is Cauchy-distributed

(atan x)′ =
1

1 + x2

pCauchy(x, 0, 1) = tan(π(U [−1/2, 1/2])

� It also holds:
′′Cauchy(x, 0, 1) =

N(0, 1)

N(0, 1)

′′

Remember: Ratios of random variables can be gnarly
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Lessons learned:

• Random number generation in deterministic computers is based on non-linear
dynamic

• Equal distribution is the mother of all random numbers

• The rest is generated for example through transformation method
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7 Solution of linear equation systems

Given matrix A and vector b, �nd vektor x for:

Ax = b

Ubiquitous problem:

• Physics: Scattering experiments, Rheology

• Numeric, see Chap. 9 Optimization, Chap. 10 Non-linear modeling.

• b usually uncertain
Ax = b+ ε

Goal :
x = A−1b, or somtimes: x̃ = Ã−1b, Ã−1 modi�ed A−1

Problems and methods di�er depending on the properties of the matrix A:

• A be N ×N matrix (most important case)

Good chance for unique solution.
Possible problems:

� Linear dependency on rows/columns of A

∗ Matrix singular =⇒ No unique solution.

� �Almost� linear dependency

∗ Matrix ill-conditioned.

∗ Let λi be the eigenvalues sorted in descending order:
Condition number K:

K =
λ1

λN

∗ Large K: Uncertainty on b is going to be reinforced in solution x, see
below.

� N very large:

∗ Rounding errors can cumulate.

• A be M ×N matrix, M < N (ar A be singular N ×N matrix)

� Under determined equation system.

86



� Solution not unique.

� Solution can become unique under additional assumption, see below.

• A be M ×N matrix, M > N

� Over determined system of equations.

� Search for compromise which ful�lls both equations as good as possible
simultaneously .

� For �as good as possible�in the sense of m.s.e. the unique solution is given
by:

(ATA)x = AT b

x = (ATA)−1AT b

(ATA)−1AT is called Pseudo-Inverse or also Moore-Penrose-Inverse.
Treated in Chap. 10 Non linear modeling.

7.1 Gauÿ-Jordan - Elimination

A be N ×N matrix, well conditioned.

• Basics:

Formation of linear combinations of the system of equations does not change
the solution.

• Idea:

Bring system to an upper triangular form.

Let:
Ei : ai1x1 + . . .+ ainxn = bi

be the ith row of the system.

• Eliminate xk in Ek+1, . . . , En through:

for (k = 1, . . . , N) :

mik =
a

(k)
ik

a
(k)
kk

, i = k + 1, . . . , N

E
(k+1)
i = E

(k)
i −mikE

(k)
k
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a
(k)
kk is called Pivot element.

• Result:

A(N) = U, B(N) = g, Ax = b⇐⇒ Ux = g U like upper

• Solution x by Back substitution

for (k = N, . . . , 1) :

xi =
1

uii

[
gk −

N∑
j=k+1

ukjxj

]

• Problem:

When a(k)
kk small, this leads to rounding errors in

E
(k+1)
i = E

(k)
i −

a
(k)
ik

a
(k)
kk

E
(k)
k

• Solution:

� �Equalize� the matrix A

� Sort the rows beforehand, in a way that the numbers on the diagonal have
increasing order.

� Called Pivoting, detailed discussion in perturbation Chap. 4.5

• Complexity: O(N3)

• Drawback: Has to be recalculated for every b

7.2 Matrix decompositions

Matrix decompositions simplify life

7.2.1 LU decomposition

N ×N matrix can be written as:

A = LU

with
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• L: under triangular matrix (TM) with ones on the diagonals

• U : (arbitrary) upper TM.

• Crout's algorithm makes decomposition elegant (with pivoting).

• Stable for well conditioned matrix

• Complexity: O(N3)

Applications:

• Solution for Ax = b by forward and backward substitution

Ax = (LU)x = L(Ux) = Ly = b

Ly = b

Ux = y

Decomposition only has to calculated only once for di�erent b

• Calculation of A−1 by:

for (j = 1, . . . , N)
b

(j)
i = δij

Solutions x(j)
i given columns of A−1.

• Economical calculation of the determinant through

det(A) = det(LU) = det(L)det(U) =
N∏
i=1

Uii

with O(N3) instead of O(N !) in the de�nition-based calculation.
6. week

7.2.2 Cholesky decomposition

• Let A be symmetric and positive de�nite i.e. vAv > 0 ∀ v 6= 0

• �Root� of the matrix:

A = LLT L like lower triangular
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• Covariance matrices fall under this category.

Generation of correlated Gaussian random variables:

• Covariance matrix, for < xi > = 0

Cij = 〈xixTj 〉

Build:
BBT = C

• Create uncorrelated RVs yi and form correlated ones by:

~x = B~y

• Proof:

C =< xxT >= By(By)T = ByyTBT = BδijB
T = BBT = C

7.2.3 Singular value decomposition (SVD)

A be N ×N matrix, ill conditioned

• Condition number revisited:

Condition number K:

K = ||A|| ||A−1|| = λ1

λN

with ||~y|| Euclidean norm, results in spectral norm||A||

||A|| := max
x 6=0

||Ax||
||x||

= max
x 6=0

√
xTATAx

xTx
=
√
λmax(ATA) Parantheses = �from�

• As always:
Ax = b

• In�uence of errors ∆b of b on the estimated x̂ = x+ ∆x:

� Consider:
A(x+ ∆x) = b+ ∆b
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� From
∆x = A−1∆b

follows the estimation:

||∆x|| ≤ ||A−1|| ||∆b||

� For the relative errors ||∆x||/||x|| follows with

||b|| = ||Ax|| ≤ ||A|| ||x||, 1

||x||
≤ ||A||
||b||

all in all:
||∆x||
||x||

≤ ||A|| ||A−1|| ||∆b||
||b||

= K(A)
||∆b||
||b||

� Ergo, large K increase of the errors on b.

� K = 106 is disastrous in single precision.

• Singular-Value-Decomposition (SVD), Karhunen-Loéve-Transformation, main
component analysis

� Yields:

A = U [diag(wi)]V
T ,

with

∗ orthogonal U, N ×N matrix

∗ diagonal N ×N matrix W with singular values wi ≥ 0, sign in U and
V absorbed 2

∗ orthogonal V , N ×N matrix

� For the math, see Stoer, Bulirsch [67] Chap. 6.7

� Inverse :
A−1 = V [diag(1/wi)]U

T

� Solution of Ax = b

x = V [diag(1/wi)]U
T b (4)

2If A is symmetric, the singular values are identical to the EV
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� Advantage over Gauÿ-Jordan: b must not be known beforehand.

� Belongs to the 5 most important routines there are.

� Also works for M ×N matrix, M < N .

Consider: A be N ×N matrix, singular or ill conditioned
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Figure 7.1: Singular value decomposition

• Graph:

� The Eigen vectors of the 0- (or smaller) EV pose the problems in the
inversion
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� Lead to large errors.

� Solution: For small EV wi, set in Eq. (4) 1/wi = 0

(∞ = 0 :-) )

• Mathematically:

� x is estimated under the minimal norm.

∗ A singular. The exist the core xk with

Axk = 0

Range of A has dim < N

∗ With xnk not belonging to the core

x = xnk + xk

∗ Chosen solution : x = xnk

� Remember Bayesianisme, keyword: Regularization:

∗ Additional information, to make the solution unique.
Here :

Ax = b � + � ||x|| minimal

∗ Regulization entails:
Reduction of the variance at the cost of a bias, see Excercises

• Minimum norm equivalent to:

Search for solution for which holds:

Search x,which minimizes r = ||Ax− b||2

Remark : All treated algorithms have expense O(N3)

There are special methods for:

• Weakly occupied large matrices. Stoer/Bulirsch Kap. 8
e�ort O(N) or O(N2)

• Inverse for �slightly changed� matrices, Recipes Chap. 2.7:

� Sherman-Morrison equation
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� Woodbury equation

• Specially structured matrices, Recipes Chap. 2.8 :

� Matrices with band structure (e.g. in �nite element methods)

� Vandermonde matrices aij = αj−1
i

� Toeplitz matrices aij = αi−j

• Estimation of EV and Eigen vectors
Recipes Chap. 11, Stoer/Bulirsch Chap. 6

� Givens- and Householder reductions

� A = QR decompositions, Q orthogonal, R upper TM

� Hessenberg form, populated from the �rst lower diagonal

Exercise:
Bias and variance in the solution of ill posed inverse problems.

Exercise:
Generation of correlated Gaussian random vectors

Lessons learned:

• Gauÿ-Jordan Elimination

• Di�erent decompositions, which can simplify one's life:
LU, Cholesky, SVD, ...

• SVD delivers minimal norm solution in ill posed problems
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8 Zero point search

• Task: Given f(x), estimate x0, for:

f(x0) = 0

• Usually only works iterative

• Important term:

Order of convergence of iterative algorithms, also important for Chap. 9 Opti-
mization and Chap. 10 Non linear modeling.

Let ε(i) be the remaining uncertainty after i iterations. then the
order of convergence γ is de�ned by:

lim
i→∞

ε(i+ 1) = const ε(i)γ

One dimensional case
Bisection

• Choose two points xl and xr, which enclose the zero point i.e. f(xl)f(xr) < 0

• Determine xcenter = xr−xl
2

• Replace starting point with the same sign as f(xcenter) by xcenter.

• Iterate this until desired precision is reached.

• Evolution of uncertainty:

ε(i+ 1) =
1

2
ε(i)

thus linear order of convergence γ.

• Number n of necessary iterations for desired accuracy ε at initial uncertainty
ε0 :

n = log2

ε0
ε
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• Globally convergent,but slow.

Secant method

• Requires su�cient linearity.

Figure 8.1: Secant method

• Iteration:

xi+1 =
xi−1f(xi)− xif(xi−1)

f(xi)− f(xi−1)

• It holds:

lim
i→∞

ε(i+ 1) = const ε(i)
√
5+1
2 ,

√
5 + 1

2
= 1.618... = Golden ratio
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therefor super linear convergence γ

• Zero point not necessarily enclosed =⇒ secant method can diverge

Regula falsi

• Like secant method, but discard xl or xr depending on whether f(xl)f(xi+1) >
0 or f(xr)f(xi+1) > 0

Figure 8.2: Regula-Falsi method

• Convergence order γ ≥ 1, in general slower than secant method, but safe

• Secant method and regular falsi can be very slow in �nite.
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Figure 8.3: Example where secant and regula falsi method need many iterations

Newton-Raphson

• Uses and needs 1. derivation

• Idea: Taylor evolution:

f(xi+1) = f(xi + δ) ≈ f(xi) + f ′(xi)δ +
f ′′(xi)

2
δ2 + . . .

• Close to the zero point f(xi + δ) = 0, δ2 � 1, everything well behaved, follows

δ = − f(xi)

f ′(xi)
=⇒ xi+1 = xi −

f(xi)

f ′(xi)
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• Determine order of convergence

εi+1 = εi −
f(xi)

f ′(xi)

� Taylor evolution for f(xi), f ′(xi) around zero point x0 yields with all
indices suppressed :

f(x+ ε) = f(x) + εf ′(x) + ε2
f ′′(x)

2
+ . . . , f(x) = 0

f ′(x+ ε) = f ′(x) + εf ′′(x) + . . .

� Introduce into

εi+1 = εi −
f(xi)

f ′(xi)

yields:

εi+1 = εi −
εif
′(x) + ε2i

f ′′(x)
2

f ′(x) + εif ′′(x)

Expand:

εi+1 = εi
f ′(x) + εif

′′(x)

f ′(x) + εif ′′(x)
−
εif
′(x) + ε2i

f ′′(x)
2

f ′(x) + εif ′′(x)

� With εif ′′(x)� f ′(x) follows:

lim
i→∞

εi+1 =
f ′′(x)

2f ′(x)
ε2i

quadratic order of convergence

� But only locally convergent
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Figure 8.4: Newton-Raphson method converges
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Figure 8.5: Newton-Raphson method divergences
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Figure 8.6: Newton-Raphson method unfortunate starting point

• Good for focusing: Start with bisection, then use Newton-Raphson

Schmankerl, Chaos theory revisited:
Find solution of

z3 − 1 = 0, z1
0 = 1, z2,3

0 = exp(±2πi/3), z ∈ C
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Figure 8.7: Fractal: In the black region, the Newton-Raphson method converges
to z = 1.

Higher dimensional case

f(x, y) = 0

g(x, y) = 0

Hairy problem, e.g. number of solutions not clear a priori, see Recipes Chap. 9.7
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Figure 8.8: Solution for two nonlinear equations with two unknowns

Exercise:
Determination of the quantiles of the gaussian distribution

Lessons learned:

• In iterative algorithms: Order of convergence γ

lim
i→∞

ε(i+ 1) = const ε(i)γ

• Bisection, secant method, regula falsi, Newton-Raphson.

• Trade-o�: Order of convergence vs. convergence safety.

7.18
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9 Optimization

• Literature: Recipes Chap. 10

• Task: Determine x, so :

f ′(x) = 0, f ′′(x) >< 0, as the case may be

• Optimization encompasses minimization and maximization �one's f is the
other's -f�

• Iterative algorithms

Di�erences of methods:

• 1 D vs. N D

• Derivative information available or not.

• Deterministic methods: Convergence against local optimum

• Stochastic methods: In principle global convergence
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Figure 9.1: Di�erence between deterministic and stochastic methods

9.1 One dimensional case

Consider minimization

9.1.1 Bracketing, golden ratio search

Analog to bisection in Chap. 8 Zero point search
Consider:

• Zero point braketing needs 2 points
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• Minima-bracketing needs 3 points (a, b, c).

Figure 9.2: Minima-Bracketing

How does one search for a new in between point given (a, b, c) ?

• Let b be a fraction w on the way from a to c

w =
b− a
c− a

, 1− w =
c− b
c− a

• New point x be behind b by an additional fraction

z =
x− b
c− a

Then the next braketing segment is:
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� either w + z

� or 1− w

relative to the existing one.

Figure 9.3: Scale invariance of the golden ratio

To minimize the worst case: Choose z in a way that potential next segments
are equally large:

z = 1− 2w (5)

Per construction: x is symmetric to b in starting interval |b− a| = |x− c| =⇒
x lies in the longer segment

• Where lies the longer segment?Where does w come from?

Assume w is as optimal as z should be

Similarity of scale: x same portion of (b, c), if this was the longer segment, as
b was in (a, c)

x− b
c− b

=
b− a
c− a

x− b
c− b

c− a
c− a

=
b− a
c− a

z

1− w
= w (6)

Eq. (5,6) together:
1− 2w

1− w
= w

109



w2 − 3w + 1 = 0, yields w =
3−
√

5

2
≈ 0.38197

1− w
w

= golden ratio

• Starting with arbitrary points (a, b, c), the procedure convergences to the golden
ratio

• Linear order of convergence

ε(i+ 1) = 0.61803... ε(i)

9.1.2 Parabolic interpolation, Brent's method

Analogously to Regula falsi.

• Regula falsi: Close to zero point, linear approximation is good

• Parabolic interpolation: Close to the optimum, quadratic approximation is
good.
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Figure 9.4: Convergence to a minimum through parabolic interpolation

Given (a, b, c) and f(a), f(b), f(c), new point x through:

x = b− (b− a)2 [f(b)− f(c)]− (b− c)2 [f(b)− f(a)]

2(b− a) [f(b)− f(c)]− (b− c) [f(b)− f(a)]

In 1D information by derivation usually unnecessary.

9.2 N-dimensional case

9.2.1 Only function evaluations

Naivest Ansatz

1. Choose starting point
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2. Progress along one coordinate axis until minimum is reached

3. Repeat for all other coordinates

4. Go to 2.

Figure 9.5: Successive minimization along the coordinate axis

This is very ine�cient!

Powell's method
Based on linmin() :
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• Given

� Function f(.) to be minimized

� ~P : Current point

� ~u : Direction of search

• Bracketiering minimum in direction ~P + µ~u.

• Find scalar λ, so f(~P + λ~u) minimal.
1D - Problem, see above.

• Replace ~P by ~P + λ~u.

Idea:
Try to �nd successive �good �directions of descend ~ui, i = 1, . . . , N :

• Initialize: ~ui = ~ei, i = 1, . . . , N

• Start position: ~P0

• For i = 1, . . . , N : ~Pi =linmin(~Pi−1, ~ui)

• For i = 1, . . . , N − 1: Replace ~ui by ~ui+1

• Set ~uN = ~PN − ~P0, ~PN − ~P0: Average direction of success

• ~P0 =linmin(~PN , ~uN)

• Iterate this.

Behavior of convergence:

• Quadratic approximation exact: Procedure after N iterations in optimum.

• Quadratic approximation good: Order of convergence quadratic.
7. week
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9.2.2 Use of derivative information

Derivation must/should be known analytically. Approximation through e.g.

∂f(x)

∂xi
≈ f(x+ ∆xi)− f(x)

∆xi
are di�cult because

• Elimination in f(x+ ∆xi)− f(x)

• complicated to control the �≈�

Naivest idea: Steepest Descent

• Start position: ~P0

• Go from ~Pi to ~Pi+1 by minimizing along the direction of −∇f(~Pi)

• Iterate until reaching goal

Figure 9.6: a) Steepest Descent method in long, narrow valley; b) Magni�cation of
one step
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DO NOT DO Steepest Descent

Reason:

• No consideration of curvature information

• Or: Wrong metric, comment ART.

Steepest decent: Successive directions of search ~ui, ~ui+1 ful�ll:

〈~ui+1 ~ui〉 = 0 = ~ui+1i
T 1 ~ui

Better :

0 = 〈~ui+1A~ui〉 = ~uTi+1A~ui, (7)

with

A =
∂2f(x)

∂xi∂xj
, Hesse matrix.

The direction in Eq. (7) is then called conjugated.

• Proof:

� Let P be the origin of the coordinate system

Taylor evolution:

f(x) = f(P ) +∇f(P )x+
1

2
xT

∂2f(P )

∂xi∂xj
x+ . . .

≈ c+ bx+
1

2
xTAx

and with this
∇f(x) = b+ Ax

� Change of ∇f(x) by movement of δx, shortly before convergence :

δ(∇f(x)) = Aδx
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� If one has moved along the direction ui to the minimum, new direction
ui+1 should be maximally informative:

0 = ui+1δ(∇f(x)) = ui+1Aui

• Powell's method constructed conjugated directions

• Comment:

When instead of a unique minimum, there is a long troth, then A is ill condi-
tioned , remember chap. 7.2.3 SVD and Chap. 4.4 Non identi�ability.

Variable metric or Quasi-Newton � procedure

• If close to minimum xm, ∇f(xm) = 0, Taylor evolution around current point
xi:

f(xm) = f(xi) + (x0 − xi)∇f(xi) +
1

2
(x0 − xi)A(x0 − xi) + . . .

Derive:

∇f(xm) = ∇f(xi) + A(x0 − xi)
!
= 0

Straight to the goal with

xm = xi − A−1∇f(xi)

This dates back to Newton.

• But: Calculation of A−1(x) has e�ort O(N3), remember Chap. 7

• Idea:

During iterations collect information about the (local) Hesse matrix, preferably
immediately A−1.

The procedure:

1. Choose starting value x0
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2. Choose I0, positive de�nite, symmetric

3. Go xi+1 = xi − Ii∇f(xi)

4. Use the DFP or BFGS updating formula ...

RECIPES Eq. 10.7.8 and 10.7.9

• Go to 3.

Properties:

• Uses only gradient information

• It holds:
lim
i→∞

Ii = A−1

• Complexity O(N2)

• Belongs to the 5 most important routines there are.

Conjugated gradient � procedure

• Generates iterative conjugated directions de�ned in Eq. (7).

• Does not construct the (inverse of the) Hesse matrix which is O(N2) expensive.

• Method of choice for higher dimensions (N > 100)

Quasi-Newton and conjugated gradients � procedures converge quadratic,when close
to the minimum.

In general:

• When to terminate the iteration?

Termination criteria:

i. Relative change of function value : (f(xi)− f(xi+1))/f(xi) < ε1

ii. Relative change of x : |xi+1 − xi|/|xi| < ε2
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Recommendation: ii., because of �long troth�.

• In all previous methods only convergence toward local optimum was guaran-
teed.

Only cure: Try multiple starting values

9.2.3 Simulated annealing

Further literature:

• S.E. Koonin: Computational Physics Chap. 8.3 [36]

• Metropolis et al. 1953 [46]

All procedures up until now:

• Deterministic

• Target location given trough starting point

• Only convergence to local optimum

Probabilistic/statistic optimizer, here minimizer
Name giving:

• By annealing a liquid quickly, the formed crystal does not reach the global
energy minimum but only a local one.

• There are many local minima, con�ict: Near and far order.

• By annealing slowly, the global minimum is reached with high probability or
at least approximately

• Reason: By slow annealing energy barriers can be surpassed with thermal
energy (Boltzmann distribution).

Idea for numeric minimizer: May also run uphill sometimes

Procedure:

• Choose starting value x0
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• Produce random changes εi: xi+1 = xi + εi

• If f(xi+1) < f(xi), accept xi+1.

• If f(xi+1) > f(xi), accept xi+1 with probability

prob = exp[−(f(xi+1)− f(xi))/T (i)]

Remember: Boltzmann distribution

• Choose T (i) large at beginning, let it go to 0 with increasing iterations

Problems:

• Choice of the annealing scheme T = T (i), e.g. T (i) ∝ 1/i

• Choice of the magnitude of the change εi, e.g. < ε2i >∝ 1/i

• Both need prior knowledge of the problem: No free lunch - theorem

• The prior knowledge corresponds to gradient and curvature information

• Does therefor not play a considerable role in �serious �applications

But: Can solve non polynomial (NP) hard problems in very good approximation.

Example: Traveling salesman problem O(N !)

• N cities with coordinates (xj, yj)

• Look for tour through all cities which has the smallest length

• Con�guration conf is permutation with the numbers j = 1, . . . , N

• Functional to be minimized: way length

f(conf) =
N∑
j=1

√
(xj − xj+1)2 + (yj − yj+1)2, N + 1 = 1

• �Change �ε: Local changes of permutations.
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Figure 9.7: Traveling salesman a) no side conditions, b) fewest possible crossings
of the river, c) most possible crossings of the river
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• 1. Traveling salesman of history: Odysseus, 13 stations: 6.2× 109 possibilities.

Figure 9.8: Odysseus' voyage route: His way home: 9000 km, shortest 6000 km

• Flexibility of the method:

Expansion of the functional by a penalty term, remember, Chap. 4.3

Example:

� Assume: River divides the area.

(i) Salesman is scared of crossing the river

(ii) Salesman smuggler and wants to cross the river as often as possible

µj = −1 for left of the river, µj = +1 for right of the river

f(conf) =
N∑
j=1

√
(xj − xj+1)2 + (yj − yj+1)2 + λ(µj − µj+1)2

For
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(i) λ > 0

(ii) λ < 0

see �gure 9.7

Other stochastic optimizer:

• Evolutionary algorithms

• Genetic algorithm

• Particle swarm algorithm

Exercise:
Maximum entropy distribution for discrete distributions

Lessons learned:

• One dimensional: Golden ratio

• Higher dimensional: Steepest descend obvious, but not good

• Better: Incorporate curvature information: Quasi Newton

• Deterministic procedures: Locally convergent

• Stochastic procedures: In principle global convergence

8.18
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10 Non linear modeling

Literature:

• Numerical Recipes, Chap. 15

• G.A.F. Seber and C.J. Wild. Nonlinear Regression [62] The classic

• G.J.S. Ross. Nonlinear Estimation [57] great book

Motivation:

• Chap. 9 optimization: General search of optima

• Here: Minimization of special functionals

Is

• y(x) = y(x, a) a function parameterized with a, e.g. �rst principle equation
with free parameters

• yi, i = 1, . . . , N : N measurements of the function y(x, a) at points xi

• Measurements in general with errors εi: yi = y(xi, a) + εi, e.g. εi ∼ N(0, σ2
i )

• Goal: estimating a based of N measurements (yi, xi)

• Putting it di�erently: modeling the connection (yi, xi) by y(x, a)

• Parameter estimation by minimization of:

χ2(a) =
N∑
i=1

(yi − y(xi, a))2

σ2
i

Remember: Weighted least square estimator is MLE for normal distributed
errors

• If the model is correct, number of parameters k, it holds:

χ2(â) ∼ χ2
N−k

This allows goodness-of-�t test:
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• H0: The model is correct.

• H1: The model is not correct.

Remember :

〈χ2
r〉 = r

V ar(χ2
r) = 2r ,

Under H0: χ2(â) for 99% con�dence interval in the area

[(N − k)− 3
√

2(N − k), (N − k) + 3
√

2(N − k)]

• Is χ2(â) larger, the natural case:

� Model wrong ?
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Figure 10.1: arg2

� σi falsely too small?

� Error not normal distributed ?

• Is χ2(â) smaller, usually shouldn't happen:

� σi is falsely too large?

� Error not normal distributed?
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10.1 Linear regression

Assumption: Gaussian errors:

y(x) = y(x, a, b) = a+ bx+ ε, ε ∼ N(0, σ2
i )

Everything works analytically:

χ2(a, b) =
N∑
i=1

(
yi − a− bxi

σi

)2

∂χ2

∂a
= −2

N∑
i=1

yi − a− bxi
σ2
i

!
= 0 (8)

∂χ2

∂b
= −2

N∑
i=1

xi (yi − a− bxi)
σ2
i

!
= 0 (9)

With

S =
N∑
i=1

1

σ2
i

, Sx =
N∑
i=1

xi
σ2
i

, Sy =
N∑
i=1

yi
σ2
i

, Sxy =
N∑
i=1

xiyi
σ2
i

Sxx =
N∑
i=1

x2
i

σ2
i

it follows from Eq. (8, 9)

aS + bSx = Sy

aSx + bSxx = Sxy

With determinant ∆:

∆ = SSxx − S2
x

follows:

â =
SxxSy − SxSxy

∆

b̂ =
SSxy − SxSy

∆

Gaussian error propagation: Cramér-Rao barrier
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σ2
â =

N∑
i=1

(
∂a

∂yi

)2

σ2
i

By plugging in:

σ2
a = Sxx/∆

σ2
b = S/∆

But: This is a 2D estimation problem:(
â

b̂

)
∼ N

((
a
b

)
,Σ

)
with

Σ =

(
σ2
a σ2

ab

σ2
ab σ2

b

)
Covariance σ2

ab

σ2
ab =

−Sx
∆

σ2
ab, resp. condition number of Σ says if estimator is dependent.
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Figure 10.2: 2D-normal-distributed-random-numbers with C1 = (0.71 0; 0 0.70),
C2 = (0.78 0.39; 0.39 0.28), C3 = (0.79,−0.39; −0.39, 0.28)
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Condensed in: Correlations rab ∈ [−1, 1] between estimation errors

rab =
−Sx√
SSxx

Comment:
Often: Sums over many summants, can lead to rounding errors
Solution: Kahan-Summation [33]

Robust linear regression

Additional literature:

• P. Huber: Robust Statistics [26]

• H. Rieder: Robust Statistics, Data Analysis, and Computer Intensive Meth-
ods [55]

If the error distribution is:

• Non gaussian, χ2 �tting is no longer MLE

• Symmetric, is χ2 �tting bias-free, but has a larger variance

Remember e�ciency of an estimator:

Eff(Θ̂χ2) =
V ar(Θ̂MLE)

V ar(Θ̂χ2)
≤ 1

see exercise.

• Asymmetric, a bias can be produced.

• Slower decreasing than gaussian, fat-tailed, e.g. Cauchy, χ2 is caught on these
outliers.

• Solution: Robust procedures. Do not get caught on the outliers.

129



Figure 10.3: Examples for robust statistical methods: (a) One dimensional distri-
bution with outliers. (b) Two dimensional distribution �tted to a line.

8. week
Remember:

• In the Gaussian case the Likelihood was:

L(a) ∝
N∏
i=1

exp

(
−(yi − y(xi, a))2

2σ2
i

)
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and log Likelihood

L(a) ∝
N∑
i=1

(yi − y(xi, a))2

2σ2
i

Parameter estimation by setting the derivation to zero:

N∑
i=1

(
yi − y(xi, a)

σ2
i

)(
∂y(xi, a)

∂a

)
!
= 0 (10)

Discussion of factors:

� 1. Factor: In�uence of data

� 2. Factor: Model speci�city

• In general:

L(a) ∝
N∏
i=1

exp(−ρ(yi, y(x,a)), ρ(.) = − log p(.)

As a rule

ρ(yi, y(xi, a)) = ρ

(
yi − y(xi, a)

σi

)
= ρ(z), z =

(
yi − y(xi, a)

σi

)
• De�ne:

ψ(z) =
dρ(z)

dz

ψ(.) is called In�uence Function

• Yields, via generalization of Eq. (10), MLE condition

N∑
i=1

1

σi
ψ

(
yi − y(xi, a)

σi

)(
∂y(xi, a)

∂a

)
!
= 0 (11)

• Special case Gaussian for:

ρ(z) =
1

2
z2, ψ(z) = z
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• Ergo: In�uence of data increases with linear deviation.

• Therefor not robust.

Other distribution:

• Double exponential distribution

p(yi − y(xi)) ∼ exp

(
−
∣∣∣∣yi − y(xi)

σi

∣∣∣∣)

ρ(z) = |z|, ψ(z) = sign(z)

Ergo: In�uence of data on the MLE only dependent on the sign.

Therefor signi�cantly more robust!

• Example: Cauchy distribution

p(yi − y(xi)) ∼
1

1 + 1
2

(
yi−y(xi)

σi

)2

ρ(z) = log

(
1 +

1

2
z2

)
, ψ(z) =

z

1 + 1
2
z2
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Figure 10.4: In�uence Functions resulting from di�erent distributions

Ergo: In�uence of data on MLE decreases with higher deviation.

Therefor very robust!

• Turning the tables: Decreasing of in�uence by deviation can be used for
construction of In�uence functions for error models = �well-behaved� �+� �out-
liers�

Andrews's sine

ψ(z) =

{
sin(z/c) |z| < cπ

0 |z| > cπ

c = 2.1
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Tukey's biweight

ψ(z) =

{
z(1− z2/c2)2 |z| < c

0 |z| > c

c = 6.0

Figure 10.5: Constructed In�uence Functions

Example for concrete calculation:
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• Linear regression with double exponential errors

y(x, a, b) = a+ bx+ ε, p(ε) =
1

2
e−|ε|

• Instead of χ2, the log-likelihood is:

L =
N∑
i=1

|yi − a− bxi|

• Mental side calculation:

De�nition median:

� Given N numbers {zi}.
� Sort.

� If N uneven: med{zi} = zM = z(N+1)/2

� If N even: med{zi} = zM = 0.5(zN/2+1 + zN/2)

Median zM minimized :

N∑
i=1

|zi − zM |

Proof:

∂

∂zM

N∑
i=1

|zi − zM | = −
N∑
i=1

sign(zi − zM) = 0

With this:

• Iterative procedure

• Choose initial estimations (â0, b̂0), e.g. from least squares estimator.

• For given b̂j

âj+1 = med {yi − b̂jxi}
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then analogously to Eq. (11), for given âj+1, follows b̂j+1 from:

0 =
N∑
i=1

xi sign(yi − âj+1 − b̂j+1xi)

Zero point search.

Becomes iterative with Bisection, see chap. 8 zero point search, solved.

• Iterate until desired precision

The saying �Since robust statistics are being used at CERN, no new particle was
found�, has been recently disproven

Exercise :
Sub-optimal behavior of the LS estimator in the case of non-gaussian
distributed data

10.2 Non-linear regression

Simplest continuation from above:

y(x, a) = a0 + a1x+ a2x
2 + a3x

3 + . . .+ aMx
M

or more general:

y(x, a) =
M∑
k=1

akXk(x)

Xk(x) Basis function, e.g. sin(ωkx)

Model is

• linear in parameters,

• but has nonlinear basis functions.

Now:

χ2(a) =
N∑
i=1

[
yi −

∑M
k=1 akXk(xi)

σi

]2

De�ne:
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Aij =
Xj(xi)

σi
, bi =

yi
σi

• A is called Design matrix, is (N ×M),

• It �xes: Which basis function is measured where.

• Mentioning optimal design, experimental design [52].

Maximum Likelihood estimator:

• Minimal condition for χ2 :

N∑
i=1

1

σ2
i

[
yi −

M∑
j=1

ajXj(xi)

]
Xk(xi)

!
= 0 (12)

• With

αkj =
N∑
i=1

Xj(xi)Xk(xi)

σ2
i

, oder α = ATA

α is (M ×M) matrix

and

βk =
N∑
i=1

yiXk(xi)

σ2
i

oder β = AT b

and switching the sums in Eq. (12) follows:

M∑
j=1

αkjaj = βk (13)

• The equations (12), resp. (13) are called Normal-equations

and remind the form:

(ATA) a = AT b

in Chap. 7 Pseudo- or Moore-Penrose - inverses for this over determined equa-
tion system.
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• This yields the point estimator.

Con�dence intervals for parameters:

• De�ne:

C = α−1

• Consider:

aj =
M∑
k=1

α−1
jk βk =

M∑
k=1

Cjk

[
N∑
i=1

yiXk(xi)

σ2
i

]

• Remember error propagation:

σ2(aj) =
N∑
i=1

σ2
i

(
∂aj
∂yi

)2

with

∂aj
∂yi

=
M∑
k=1

CjkXk(xi)/σ
2
i

follows:

σ2(aj) =
M∑
k=1

M∑
l=1

CjkCjl

(
N∑
i=1

Xk(xi)Xl(xi)

σ2
i

)

• The term (.) is the even α = C−1, therefor:

σ2(aj) = Cjj

Thus Cjk yields the covariance between the estimation errors of aj and ak.

• Watch out:

α, and therefor C, is independent of yi.

With this: Optimal design
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• Since α = ATA, the design is de�ning the errors.

• Optimal design: See linear regression on interval [-1,1], one can measure 4
times.

Where should one measure, to get smallest possible errors ?

• There are di�erent optimal criteria: A through D-optimal, ..., depending if
trace, determinant or similar properties of the covariance matrix should become
small .

Non-linear regression and SVD
Normally:

• (A lot) more data then parameters.

• The system Eq. (13) should be well solvable.

But:
If basis functions are not su�ciently independent =⇒
Problem badly conditioned no matter how much data is available.

• Consider monomes 1, x, x2, x3, ... with x equally distributed on interval [0,1]
as basis functions.

• Then hold for A:

Alm =
N∑
i=1

xlix
m
i ∝

1

l +m+ 1

• Remember Hilbert matrix, exercise Chap. 7 solving of linear equation systems

• At known density p(x) polynomials orthogonal to that density can be used,
rendering the procedure stable because A becomes diagonal

• Example p(x) ∼ equal distribution [-1,1]: Legendre-Polynomial

• There are recursive construction rules for polynomials orthogonal to empirical
data [16].

• Recommendation: Use SVD, To check ill-conditioning and to treat it if neces-
sary. The SVD generates these orthogonal polynomials.
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10.3 Non-linear modeling

Reminder

• Linear regression: Linear in parameters and independent variable x

• Non-linear regression: Linear in parameters, non-linear in x

Now: Also non-linear in parameters, e.g.:

y = e−γx or y = xb

• Iterative procedure, similar to Chap. 9 optimization.

• Remember:
Close to the optimum, the quadratic approximation is good, and Newton-step

ai+1 = ai − A−1∇f(ai) (14)

leads to goal.

• In Chap. 9 optimization: A−1 unknown/expensive to determine

� Quasi-Newton - procedure collects information about A−1 during iteration

� Conjugated gradient approaches < δai+1 Aδai >.

10.3.1 Levenberg-Marquardt algorithm

Here one knows more:

• Functional:

f(a) = χ2(a) =
N∑
i=1

[
yi − y(xi, a)

σi

]2

• Gradient:

∂χ2(a)

∂ak
= −2

N∑
i=1

(yi − y(xi, a))

σ2
i

∂y(xi, a)

∂ak
, k = 1, 2, . . . ,M

• Hesse-Matrix:

∂2χ2(a)

∂ak∂al
= 2

N∑
i=1

1

σ2
i

[
∂y(xi, a)

∂ak

∂y(xi, a)

∂al
− (yi − y(xi, a))

∂2y(xi, a)

∂ak∂al

]
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• Convention:

βk = −1

2

∂χ2(a)

∂ak
, αkl =

1

2

∂2χ2(a)

∂ak∂al

• If the �t is good, it holds for the second term of the Hesse-Matrix

N∑
i=1

1

σ2
i

(yi − y(xi, a))
∂2y(xi, a)

∂ak∂al
≈ 0,

since the errors εi = (yi − y(xi, a)) are uncorrelated.

Therefor, de�ne:

αkl :=
N∑
i=1

1

σ2
i

[
∂y(xi, a)

∂ak

∂y(xi, a)

∂al

]
• With the above and with δal = (ai+1 − ai)l Eq. (14) becomes

M∑
l=1

αklδal = βk (15)

• Notice : Steepest Descent reads:

δal = const βl (16)

• Idea Levenberg-Marquardt algorithm:

� Far from the minimum, Newton step might be bad Eq. (15).

� Perform gradient step Eq. (16). how to choose �const� ?

� χ2(a) dimensionless, dimension [βl] = dimension [1/δal], consider Eq. (15)
=⇒
1/αll is scale candidate.

� To be sure that the step is not too large, choose λ� 1 and set:

δal =
1

λαll
βl or λαllδal = βl (17)
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• Combine gradient step Eq. (17) and Newton step Eq. (15) by

α′jj = αjj (1 + λ)

α′jk = αjk, for j 6= k

yields:

M∑
l=1

α′klδal = βk (18)

Meaning:

� If λ is large =⇒ α′kl diagonal dominant =⇒ small gradient step

� If λ→ 0, Hesse step

Procedure:

1. Choose starting estimation for a, calculate χ2(a)

2. choose small λ: λ = 0.001. Expresses hope

3. Solve Eq. (18) and calculate χ2(a+ δa)

4. If χ2(a+ δa) ≥ χ2(a), discard δa, choose λ = 10λ, go to 3

5. If χ2(a+ δa) < χ2(a), accept δa, choose λ = 0.1λ, go to 3.

Interpretation:
If Newton step

• good, more of them,

• bad, proceed with care with a gradient step.

Comments:

• Belongs to the 5 most important routines there are.

• Consider:

� Equation (18) can be ill conditioned

� The tub again.
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� Solve with SVD.

• Termination criteria :

� If only small changes in χ2, problem �tub�

� Better, if λ > 105, corresponds to no change in a anymore.

After convergence:

• Asymptotic covariance matrix of the errors in the estimated parameters

C = α−1 =

{
N∑
i=1

1

σ2
i

[
∂y(xi, a)

∂ak

∂y(xi, a)

∂al

]}−1

(19)

• Alternative to Levenberg-Marquardt: Trust-Region Approach
9. week

Exercise:
Non linear modeling and model tests

10.3.2 Monte Carlo con�dence intervals

• Remember Chap. 2.4. The standard deviation of the parameter estimator yields
-generally only asymptotically- con�dence intervals for the true parameters, i.e.
the true value lies with 95% con�dence in

[â− 1.96σ(â), â+ 1.96σ(â)]

• The covariance matrix in Eq. (19) for the errors of estimated parameters only
holds asymptotically

• An alternative: Pro�le likelihood, see Chap. 4.4

• What everyone would prefer:
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Figure 10.6: A statistic universe of data sets for an underlying model

• Would yield the complete distribution of the estimated parameter.

• Is however not available (and data splitting does not help.).

• A statement about the true value is needed based on a (�nite) data set.

Asymptotic con�dence intervals, Chap. 4.1

• Asymptotically it holds under mild conditions

√
N(â− a) ∼ N(0,Σ)

with
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Σ−1 = − 1

N

∂2L(â)

∂ai∂aj

Yields con�dence intervals for the parameter

Figure 10.7

• For regression this is analogous to error propagation:

σ2
a =

N∑
i=1

(
∂a

∂yi

)2

σ2
i

• In non-linear modeling it only holds asymptotically .

An ansatz in the �nite region: χ2-Contour con�dence interval

• Con�dence region by Iso-log-likelihood contours

• Determination by variation of the parameters around the estimated ones.
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Figure 10.8: Con�dence regions by Iso-log-likelihood contours

Fundamental Alternative in the Finite: Monte Carlo con�dence interval

(i) Parametric bootstrap

� Bootstrap: To pull oneself out of the swamp by the own boots c© Münch-
hausen

� Estimate parameter â

� Produce new data sets with

∗ Parameters â

∗ new errors under parametric assumptions to their distributions

� determine con�dence region from distribution of the estimated âi.
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Figure 10.9: Monte-Carlo simulation of an experiment

(ii) Non parametric bootstrap [14,43]

� Generate �new� data sets through pull with put back out of the original
data (incl. their errors)

� ≈ 32 % of the data will be replaced.

� Some data points will appear more than oce

� Fit parameters.

� Con�dence regions from distributions of the �ts

� Correctness of the method: Deep.

� Takes empiric distribution of the errors into account

One example for (i), [62], p. 110 �

• Consider the model from exercise sheet 5:

y = β(1− e−γx) + σε, mit β = γ = 1
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Figure 10.10: Plot of the function with σ = 0.1

• This function has 2 characteristics:

� Slope at 0: dy
dx
|x=0 = βγ

� Saturation for x→∞ : β

• If one chooses x ∈ [0, 1], it follows:
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Figure 10.11: x ∈ [0, 1], n1 = 10, n2 = 100, n3 = 1000
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• If one chooses x ∈ [0, 5], it follows:

Figure 10.12: x ∈ [0, 5], n = 10

Explanation, ⇒ experimental design [52].

Lessons learned:

• Linear regression and robust estimators for non-gaussian distributions

• Non linear regression

• Non linear modeling, Levenberg-Marquardt algorithm

• Con�dence intervals
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11 Integration of di�erential equations

11.1 Ordinary di�erential equations (ODE)

Literature:

• Recipes Chap. 16

• Stoer/Bulirsch Chap. 7

Task:

• Given a dynamical system:

~̇x = ~f(~x), Initial value : ~x(t0)

• Find trajectory ~x(t), t > t0, which matches the true trajectory up to
controllable error.

Nomenclature:

d

dt
= ,̇

d

dx
= ′, Consider: ẍ = ḟ(x) = f ′(x)ẋ = f ′(x)f(x) (20)

11.1.1 Explicit procedure

Basic idea :

• Integration step : h

• Taylor evolution :

xt+h = xt + ẋth+
1

2
ẍth

2 +
1

6
x

(3)
t h3 +O(h4) (21)

ẋt given by f(xt), but one does not want to compute x
(n)
t .

• Abort after �rst order: Euler method:

xt+h = xt + f(xt)h+O(h2)

�First order procedures�

151



• Idea: Higher order through smart function evaluation.

� Consider:

k1 = f(xt)h

Ansatz: xt+h = xt + f(xt +
1

2
k1)h

xt+h = xt + f(xt +
1

2
f(xt)h)h

xt+h = xt + f(xt)h+ f ′(xt)(
1

2
f(xt)h)h

xt+h = xt + f(xt)h+
1

2
f ′(xt)f(xt)h

2

� With Eq. (20) second order term cancels itself in Eq. (21) and one obtains
a second order procedure (Midpoint Method).

Figure 11.1: Euler method. simplest and least precise method to integrate an ODE
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Figure 11.2: Midpoint method. Second order method

� This thread can be continued
In general:

xt+h = xt +

p∑
j=1

γjkj

k1 = f(xt)h

kj = f(xt +
∑
l

Γjlkl)h

Specially :

k1 = f(xt)h

k2 = f(xt + k1/2)h

k3 = f(xt + k2/2)h

k4 = f(xt + k3)h

xt+h = xt +
k1

6
+
k2

3
+
k3

3
+
k4

6
+O(h5)

is called 4. order Runge-Kutta (1895)

• �Explicit�, because xt+h is given explicitly given by values form earlier time
points.
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• Belongs to the 5 most important routines there are.

• In general:

A 4. order Runge-Kutta step with h is more precise than 2 Midpoint steps
with h/2 is more precise than 4 Euler steps with h/4.

Step length control
�up to a controllable error�
Approximation error is a function of f(.), step length should be adapted.

• Idea 1:

Step Doubling: Integrate ODE with 4. order Runge-Kutta with

(i) Step length h: Result : x1(t+ h)

(ii) Two steps with h/2: Result : x2(t+ h)

The di�erence:

∆ = x2 − x1

estimates the approximation error, of order O(h5).

• Idea 2:

Embedded Runge-Kutta: Integrate ODE with

(i) 5. order Runge-Kutta result : x5(t+ h)

(ii) 4. order Runge-Kutta result : x4(t+ h)

without extra work (=embedded)

The di�erence:
∆ = x5 − x4

estimates the approximation error, of order O(h5)

Practical procedure:

• Choose h and desired precision ∆g
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• Determine the to h belonging error ∆

• Consider ∆ scales with h5.

• Choose desired hg after:

hg = h

∣∣∣∣∆g

∆

∣∣∣∣0.2
Choose desired precision ∆g

• Relative error ∆g = ε|xt|

• ∆g = ε(|xt|+ |hẋt|)

• ...

Richardson extrapolation, Stoer-Bulirsch method
Idea:

• The error ∆ is a function of h with ∆(0) = 0.

• Determine ∆(hi), hi = h0/i and extrapolate to ∆(0).
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Figure 11.3: Richardson extrapolation, like in the Stoer-Burlisch method used

• Extrapolation yields also estimation error of the extrapolation.

11.1.2 Implicit procedure

The problem:

• Consider the ODE system:

ẋ1 = −λ1 + λ2

2
x1 −

λ1 − λ2

2
x2

ẋ2 = −λ1 − λ2

2
x1 −

λ1 + λ2

2
x2

with λi > 0.
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• The general solution is:

x1(t) = C1e
−λ1t + C2e

−λ2t

x2(t) = C1e
−λ1t − C2e

−λ2t

• By integrating the equations with the Euler method, the numerical trajectories
are:

x1(i) = C1(1− hλ1)i + C2(1− hλ2)i

x2(i) = C1(1− hλ1)i − C2(1− hλ2)i

Those converge only if: |1− hλ1| < 1, |1− hλ2| < 1

• Let λ2 � λ1, then

� Component C2e
−λ2t can be neglected for the solution ,

� But step length is given by λ2.

• Systems of this kind are called sti�. Step length control converges to h = 0.

• Above argument also holds for Runge-Kutta and Stoer-Bulirsch.

The solution:
Implicit method

• Consider 1D case:

ẋ = −cx

The explicit (or forward-) Euler method is:

xt+h = xt + ẋth = (1− ch)xt (22)

Remember: �Explicit�, because xt+h here explicit given by xt.

• Method is unstable, when h > 2/c, then |xt| → ∞ for t→∞.
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• Eq. (22) based on:

ẋt ≈
xt+h − xt

h

it also holds (implicit di�erentiation):

ẋt+h ≈
xt+h − xt

h

This leads to:

xt+h = xt + ẋt+hh = xt − cxt+hh⇐⇒ xt+h =
xt

1 + ch
(23)

an implicit method, because xt+h is present on both sides of the equation.

• This is stable for all h, for linear systems there are for h→∞ even the correct
asymptotic solution.

• Above argument also holds for non linear systems.

� For explicit method: Stability only for

h <
2

λmax

, λmax largest Eigenvalue of the Jacobi matrix off(.)

� Implicit method: always stable.

• Not all systems are linear :-)

For

ẋ = f(x)

implicit di�erentiation reads:

xt+h = xt + f(xt+h)h (24)

A self-consistent equation

Trying linerisation, remember Newton step from Chap. 9 optimization :
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xt+h = xt +

(
f(xt) +

∂f

∂x

∣∣∣∣
xt

(xt+h − xt)
)
h

Sorting yields:

xt+h = xh + h

[
1− h ∂f

∂x

]−1

f(xt)

• Hope:
h small enough for this to be a su�ciently good solution for Eq. (24).

• Remember:
Every iteration needs a matrix inversion.

There are generalizations for:

• Runge-Kutta 4. order: Rosenbrock method

• Stoer-Bulirsch extrapolation: Bader-Deu�hard method

11.1.3 Integration of Hamiltonian systems

Recap Hamiltonian systems

• Exist for a d-dimensional Hamiltonian system d/2 conserved variables, the
system is integrable

• Then dynamic is equivalent to a torus.

• If the system is integrable, one concentrates on angular variables and only needs
to evaluate sine functions.

Otherwise:

• For Hamiltonian systems:

ṗ = −∂H(x, p)

∂x
, ẋ =

∂H(x, p)

∂p

has to ful�ll the �ux representation f tH :
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(
p(t)
x(t)

)
= f tH

(
p(0)
x(0)

)
and the theorem of Louiville, ,meaning:

det(Df tH) = 1, mit Df tH = Jacobi matrix.

• Such algorithms are called symplectic integrators see [10,15].

• Idea: After every step one projects back to the allowed energy shell.

Exercise:
Integration of the van der Pol oscillator 10. week

11.2 Partial Di�erential Equation

This chapter was provided by Daniel Lill.

PDEs are di�erential equations in multiple variables, for example the di�usion equa-
tion:

∂tu(~x, t) = D4u(~x, t)

with di�usion constant D.

They are omnipresent in physics:

• Wave equation

• Maxwell equation

• Schrödinger equation

General :

• Like with ODEs: Discretization. Here: More dimensional grid.

• An exact solution needs appropriate boundary conditions.

Two important classes:
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� Initial value problems, for example wave equation

Every time step can be calculated one after the other.

� Boundary value problem, for example Poisson equation

Simultaneous solution on entire grid
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Figure 11.4: On the di�erence between initial- and boundary value problems , from
Numerical Recipes, 3. ed
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11.2.1 Initial Value Problem on the Example of the One-Dimensional
Di�usion Equation

The di�usion equation in one dimension:

∂tu(x, t) = D∂2
xu(x, t)

with di�usion constant D and the boundary condition u(x, 0) = f(x)

Finite di�erences

• First derivative

u̇(t) =
u(t+ ∆t)− u(t)

∆t
+O(∆t)

• Second derivative

Taylor evolution

u(x±∆x) = u(x)± u′(x)∆x+
u′′(x)

2
∆x2 ± u′′′(x)

3!
∆x3 +O(∆x4)

Addition of the equations with �+� and �−�

u(x+ ∆x) + u(x−∆x) = 2u(x) + u′′(x)∆x2 +O(∆x4)

gives an approximation of the �rst derivative:

u′′(x) =
u(x+ ∆x)− 2u(x) + u(x−∆x)

∆x2
+O(∆x2)

FTCS di�erences scheme

• FTCS = Forward Time Centered Space di�erences scheme on x-t-grid:

un+1
j − unj

∆t
= D

unj+1 − 2unj + unj−1

∆x2
+O(∆t) +O(∆x2) (25)

with unj = u(j∆x, n∆t) with j = 1, . . . , J and n = 1, . . . , T/∆t

• Boundary conditions are: u0
j = fj and z.B. un0 = unJ+1 = 0
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• Main question: Is this algorithm stable?

An algorithm is called stable if it is insensitive towards rounding errors.

von Neumann stability analysis:

• Let unj = Nn
j + εnj

� unj the exact solution of the di�erential equation

� Nn
j the solution with rounding errors

� (−)εnj the rounding error

• Consider: Due to linearity the rounding error εnj also solves the PDE.

The rounding error thus has the same growth characteristics the solution itself.

• Taking a look at the separation ansatz

unj = TnXj

with this Eq. (25)

Tn+1Xj − TnXj = s Tn(Xj+1 − 2Xj +Xj−1)

with

s =
D∆t

∆x2

• Divide by Tn and Xj and sorting yields:

Tn+1

Tn
= 1− s

(
2− (Xj+1 +Xj−1)

Xj

)
Left side only depends on n, Right side only depends on j =⇒ both sides need
to be constant.

Tn+1

Tn
= g =⇒ Tn = T0g

n

Growth factor g

1− s
(

2− Xj+1 +Xj−1

Xj

)
= g =⇒ g = 1− 2s(1− cos(k∆x))

Ergo: Stable if |g| < 1, thus s < 1
2
.
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• Strong restriction for the step size ∆t, which goes ∝ ∆x2.

For ODEs a small ∆t is su�cient, here additional assumption is required.

Implicit di�erences scheme BTCS

• The implicit di�erences scheme BTCS (Backward Time Centered Space)

un+1
j − unj = s(un+1

j+1 − 2un+1
j + un+1

j−1 ) +O(∆t) +O(∆x2) (26)

has growth factor

g =
1

1 + 4s sin2(k∆x/2)

and is thus stable for all s.

• For ∆t→∞ the equation is in equilibrium:

∂xxu = 0

and the solution is, the same as with implicit ODEs solvers for linear systems,
asymptotically correct.

Crank-Nicolson scheme

• Crank-Nicolson scheme: Mean between FTCS- and BTCS scheme.

un+1
j − unj =

s

2
(un+1

j+1 − 2un+1
j + un+1

j−1 + unj+1 − 2unj + unj−1) +O(∆t2) +O(∆x2)

growth factor

g =
1− s(1− cos k∆x)

1 + s(1− cos k∆x)

• Stable for al s

• Cut time error is O(∆t2).

For non-linear PDE von Neumann stability analysis only yields necessary but not
always su�cient stability conditions.
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11.2.2 Boundary Value Problem

Example: Laplace equation:

4u(~x) = 0 für ~x ∈ V

given with boundary conditions for u(∂V ) or ∂u
∂n

(∂V ).

• Finite di�erences for 2D Laplace equation:

uj+1,i − 2uj,i + uj−1,i

∆x2
+
uj,i+1 − 2uj,i + uj,i−1

∆y2
+O(∆x2) +O(∆y2) = 0

Sorting yields:

ui,j =
1

4
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1)

uij is then the mean of its nearest neighbors.

• Naive iterating: Jacobi iteration

u
(n+1)
i,j =

1

4
(u

(n)
i+1,j + u

(n)
i−1,j + u

(n)
i,j+1 + u

(n)
i,j−1)

• Faster is the Gauÿ-Seidel procedure:

� Start on the bottom left and calculate the values in the �rst row from left
to right

� Use the new values already for the next points

u
(n+1)
i,j =

1

4
(u

(n)
i+1,j + u

(n+1)
i−1,j + u

(n)
i,j+1 + u

(n+1)
i,j−1 )

• Even faster is the successive over-relaxation procedure:

u
(n+1)
i,j = u

(n)
i,j + ω(u

(n)
i+1,j + u

(n+1)
i−1,j + u

(n)
i,j+1 + u

(n+1)
i,j−1 − 4u

(n)
i,j ) (27)

with cleverly chosen ω.
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11.2.3 Method of Finite Elements

• Instead of PDE approximation by �nite di�erences ...

• Approximation of the solution through linear combination of basis functions

Figure 11.5: The Bessel function is approximated by the linear combination of the
colored triangle functions.

Example:

• Poisson equation in 1 D

u′′(x) = −ρ, x ∈ [0, 1]

Boundary condition
u(0) = u(1) = 0

Formulation of the problem in its weak form with respect to the basis functions
vi:
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∀vi mit vi(0) = vi(1) = 0 holds:

∫ 1

0

−ρvi(x)dx =

∫ 1

0

u′′(x)vi(x)dx = u′(x)vi(x)|10 −
∫ 1

0

u′(x)v′i(x)dx (28)

The �rst term on the right disappears due to the boundary conditions of vi.

• Divide the region [0, 1] into smaller intervals [xi, xi+1] and link each point xi to
a triangle function:

vi(x) =



x−xi−1

xi−xi−1
x ∈ [xi−1, xi]

xi+1−x
xi+1−xi x ∈ [xi, xi+1]

0 else

The function u(x) is expressed as a linear combination of these vi

u(x) =
∑
i

aivi(x) (29)

Instead of in�nite dimensional now �nite dimensional

• Eq. (28) becomes with Eq. (29):

∀j :

∫ 1

0

ρvj(x)dx =
∑
i

ai

∫ 1

0

v′i(x)v′j(x)dx

A linear system of equations.

• With

Mij =

∫ 1

0

v′i(x)v′j(x)dx

and

wj =

∫ 1

0

ρvj(x)dx
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follows ∑
i

Mijai = wj =⇒ ~a = M−1 ~w

Consider: The matrix M is only sparse, therefor inversion is quick.

In �gure 11.6 the 1D Poisson problem is shown with ρ = −2 and with two
di�erent grids. The parabola is well displayed in both, but on the right hand
side the grid was chose more coarse grain towards the edges.
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Figure 11.6: The 1-d Poisson problem a) with �ne grid b) with coarse grid on the
edges and with �ne grid towards the minimum of the parabola
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Comments to the method of �nite elements

• Generalization towards higher dimensions: In 2D the area is triangulated. To
every point i multiple triangles j will then be linked, to which a basis function
vj(x, y) belongs. Analogous for higher dimensions.

• Grid can be adjusted �exibly to the geometry of the problem. Example: Crash
simulations, where the grid of the crumple zone is �ner than that of rear of the
vehicle .

• Di�erent basis function, for example polynomials, are also possible.

• Spectral methods work similarly:

� The function u(.) is evolved into a �nite amount of basis functions

� But: Basis functions have full support, for example Fourier series

� Cut at the determined frequency
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11.3 Stochastic di�erential equations

Literature:

• P.E. Kloeden, E. Platen. Numerical Solution of Stochastic Di�erential Equa-
tions [31], mathematically extensive

• P.E. Kloeden, E. Platen, H. Schurz. The Numerical Solution of SDE through
Computer Experiments [32], with simulation software

• B. Øksendal. Stochastic Di�erential Equations [48], good book

• J. Honerkamp. Stochastic Dynamical Systems [25] Chap. 10, condensed display
for physicists

Stochastic di�erential equation (SDE), physicists de�nition, Langevin equation

ẋ = f(x, ε) = a(x) + b(x)ε, ε ∼ N(0, 1)

• a(x) : Deterministic part : Drift-term

• b(x)ε : Stochastic part: Di�usion-term

• ε: Dynamic noise

• Fundamental problem : ẋ and x not smooth

• Mathematical-de�nition

dx = a(x)dt+ b(x)dW (30)

more to this below

Why stochastic DEs ?

• Modeling of outside in�uences on open (deterministic) systems.

Classic example: Brownian motion:

x(t) = x(t− 1) + σε(t), ε(t) ∼ N(0, 1)

Time scale separation between slow pollen and fast moving water particles

Physical interpretation
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x(t) = x(t−∆t) + σε(t)

x(t)− x(t−∆t)

∆t
=

σε(t)

∆t
lim

∆t→0
: ẋ = ε̃

Velocity is white noise with 0 mean, we are going to think about ε̃ further
down.

• Modeling of complicated parts in a deterministic system.

• In fact always needed in non Hamiltonian dissipative systems because of the
Fluctuation-dissipation theorem: Where there is friction, there is stochastic
behaviour in dynamics [40].

• In Hamiltonian systems noise leads to divergence.

Meaning term b(x)ε :

• State dependent variance

• Parametric noise:
ẋ = −(c+ ε)x = −cx− εx

Noisy parameter

Integration of SDEs
Instead of a taylor evolution in Eq. (21) di�erent methods for integration of deter-
ministic DE from Chap. 11 can be read as approximations of integrals:

ẋ = f(x)

⇐⇒

xt+h = xt +

∫ t+h

t

f(xt′)dt
′

• Explicit Euler method:
∫ t+h
t

f(x′t)dt
′ ≈ f(xt)h

• Implicit Euler method:
∫ t+h
t

f(x′t)dt
′ ≈ f(xt+h)h
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• Runge-Kutta: Integral evaluation on multiple points

For SDEs this only works over integral interpretation.

xt+h = xt +

∫ t+h

t

f(xt′ , εt′)dt
′ = xt +

∫ t+h

t

(a(xt′) + b(xt′)εt′)dt
′

Consider easiest example: Linear damped stochastic driven system

ẋ = −αx+ σε

xt+h = xt +

∫ t+h

t

−αxt′dt′ + σ

∫ t+h

t

εt′dt
′

But what is an integral over εt′ ?

• Consider:

∫ t+h

t

εt′dt
′

Does not make sense in neither Riemann nor Lebesgue way.
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Figure 11.7: Over- and undersumms in a polynomial and a stochastic function

• Observation:
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Result of the integral is Brownian motion

• Brownian motion in discrete time (∆t = 1) is:

x(t) = x(t− 1) + σε(t) x(0) = 0, ε(t) ∼ N(0, 1)

Figure 11.8: Brownian motion

• Put into one another:

x(t− 1) = x(t− 2) + σε(t− 1)

x(t) = σ

t−1∑
t′=1

ε(t′)

• Since variance additive it holds:

〈x2(t)〉 = σ2t, 〈x(t)〉 = 0 (31)

x(t) is Gaussian random variable with mean 0 standard deviation σ
√
t

176



• DEFINE:

∫ t+h

t

εt′ :=
√
hεt

• Remarks: Mathematicians turn it around:

1. De�ne time continuous Brownian motion through Eq. (31),
Wiener process

2. De�ne �ε� as increments, i.e. additions to the Wiener process, dW in
Eq. (30)

For connoisseurs to self study : Ito and Stratonovich integral

• For additive noise identical

• For multiplicative noise di�erent

With this, Euler method for ẋ = a(x) + b(x)ε

xt+h = xt + a(xt)h+ b(xt)εt
√
h+O(h)

• Higher order in general very di�cult since appearance of very complicated
statistical integrals, see [25].

• Euler causes: Integration time step in general � natural sampling timestep,
see [71] especially for choice of integration time step.

Exercise:
Integration of the stochastic van der Pol oscillator 11. week
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11.4 Gillespie algorithm

Literatur:

• Original [21]

• See also: [19,44,53]

• Critical examination of fundamentals and interpretation [75]

Figure 11.9: Overview of statistical models
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All dynamics are discrete

• Population dynamics of animals

• Chemical reactions between molecules

• Banking tra�c

• Occupation number formalism in quantum mechanics, a and a†

• DE are limit case

Consider chemical reactions in the following

Let S be a species and

Pn(t) = Prob(#S(t) = n at timepoint t)

Consider:

• Propensity ai(.): Probability per time unit for change of state

• In�ux to Pn(t)

n− νi
ai(n− νi)
−→ n

with ai(n− νi) rate of change of νi, given the state was in n− νi

• Out�ow of Pn(t)

n
ai(n)
−→ n+ νi

with ai(n) the rate of change of νi, given state was in n

Then Chemical Master equation:

Ṗn =
N∑
i=1

ai(n− νi)Pn−νi − ai(n)Pn

Usually

• More than one species: P (S1, S2, . . . , SK)

• Multiple possible reactions R1, R2, . . . , RM
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• Not solvable analytically.

Gillespie algorithm: Instead of analytical solution

• Simulate many trajectories

• Determine results by averaging or consideration of distributions

• It can be shown: Gillespie algorithm produces the correct distributions

Gillespie algorithm answers:

• When will the next reaction take place?

• Which will it be?

Central property: Reaction probability function P (i, τ)
P (i, τ)dτ : Probability for reaction Ri in Interval (t+ τ, t+ τ + dτ), given system in
state S(t)

P (i, τ)dτ = P0(τ)Pi(dτ) (32)

with

• Pi(dτ) = aidτ : Probability for reaction Ri to happen in interval (t+τ, t+τ+dτ).

• P0(τ): Probability of no reaction happening in interval (t, t + τ) given state
S(t)

The probability of any reaction happening in interval dτ is:

M∑
i=1

aidτ

• De�ne:

a∗ =
M∑
i=1

ai

Probability for no reaction in interval dτ : 1− a∗dτ .
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• Therefor

P0(τ + dτ) = P0(τ)(1− a∗dτ)

Yields di�erential equation

Ṗ0 = −a∗P0,with solution P0(τ) = e−a
∗τ

P0(0) = 1 o.k.

• Taken together with Eq. (32):

P (i, τ) = aie
−a∗τ

Central questions:

• Which reaction is the next one?

• When is it going to happen?

When ?
Summation over all reactions

P̄ (τ) =
M∑
i=1

P (i, τ) = a∗e−a
∗τ

P̄ (τ)dτ : Probability for any next reaction in the interval (t+ τ, t+ τ + dτ)

Which reaction?
Given a reaction happens in interval (t+ τ, t+ τ + dτ), the conditional probability

P̃ (i|τ) =
P (i, τ)

P̄ (τ)
=
aie
−a∗τ

a∗e−a∗τ
=
ai
a∗

gives the probability of it being reaction i.

On the way to the algorithm:

• When ?
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� The cumulative distribution F (t) for P̄ (τ) reads:

F (t) =

∫ t

0

P̄ (τ)dτ = a∗
∫ t

0

e−a
∗τdτ = 1− e−a∗t

� Let r1 be an equally distributed random number in interval [0, 1]

� If one chooses t in a way that F (t) = r1, the probability density of t is
that of P̄ (τ)

� With this one gets t by

t = F−1(r1) =
1

a∗
log

(
1

1− r1

)
� Since r1 has same equal distribution than 1− r1, it holds for the random
time variable of time τ of the next reaction :

t = F−1(r1) =
1

a∗
log

(
1

r1

)
= − 1

a∗
ln r1

• Which one ?

� Let r2 be an equally distributed random number in interval [0, 1]

� Which reaction takes place is determined by

j−1∑
i=1

ai ≤ r2a
∗ <

j∑
i=1

ai

Determination of the propensities ai

• ci dt: Probability that a given single reaction Ri occurs in the next time step
dt.

• hi: Number of combinations of reactants

• ai dt = hici dt: Probability of reaction Ri in the next time step.

• Examples
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Reaction Ri ci hi

S1
k→ . . . k #S1

S1 + S2
k→ . . . k/V #S1 ·#S2

2S1
k→ . . . 2k/V 1

2
#S1 · (#S1 − 1) =

(
#S1

2

)
Gillespie algorithm:

1. Initialization

• Set t = 0

• Choose number of molecules #Si(0)

2. Calculate propensities

• ai dt = hici dt: Probability of reaction Rj in next time step

• Calculate a∗ =
∑M

i=1 ai

3. Draw two equal distributed random numbers r1, r2

• Determine τ = − 1
a∗

log r1

• Determine j so that
j−1∑
i=1

ai ≤ r2a
∗ <

j∑
i=1

ai

4. Update

• Update the number of molecules according to the reaction scheme

• Set t = t+ τ

• Go to point 2.

Exercise:
Gillespie algorithm
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Lessons learned:

• Runge-Kutta integrators für ODEs through clever function evaluations.

• Sti� systems need implicit integrators

• Stochastic di�erential equations, characteristic
√
h

• Partial DGLs, coupling of δx and δt in explicit methods

• Gillespie algorithm for the chemical master equation
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12 Non-parametric estimators

12.1 Non-parametric density estimators

Literature:

• B.W. Silverman. Density Estimation [65] The bible

Exercise:

• Given N realizations xi of a random variable X with density ρX(x), estimate
the density.

• Parametric density estimator

� For standard deviations like Gaussian, exponential or χ2
r estimate param-

eters of the distributions by comparison with the moments.

� Alternative: Fit to the cumulative distribution of the data

• Non-parametric density estimators don't assume a parametric distribution

Naivest access: Histogram

• Split x axis into bins of width h starting from anchor point x0:

binm = [x0 +mh, x0 + (m+ 1)h], m ∈ Z

• Estimate ρ(x) by

ρ̂(x, x0, h) =
1

Nh
(Number of xi in binm) (33)

• Problem 1: Ho to choose anchor point x0?

• Problem 2: How to choose h?

185



Figure 12.1: Histograms of the eruption length of the Old Faithful Geyser
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Naivest access:

• Replace Eq. (33) by

ρ̂(x) =
1

2Nh
(number of xi ∈ [x− h, x+ h])

Figure 12.2: Core estimator for the data of Old Faithful Geyser
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Core estimator (�xed size):

• Consider that the naive estimator can be expressed via:

w(x) =

{
1
2

if |x| < 1
0 else

ρ̂(x) =
1

Nh

N∑
i=1

w

(
x− xi
h

)

• Idea: Instead of a rectangular box w(x) choose a smooth function K(x) which
ful�lls ∫ ∞

−∞
K(x)dx = 1

and which is positive for now.

ρ̂K(x) =
1

Nh

N∑
i=1

K

(
x− xi
h

)

• Problem 2 : h ? stays

• explain ��xed size�
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Figure 12.3: True density of the data

189



Figure 12.4: Estimated density of the data for 200 simulated data points with (a)
h=0.1; (b) h=0.3; (c) h=0.6
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Nearest Neighbor method (�xed mass) :

• Idea:

Where there are many points,choose small h

• Choose: Integer k

• Let d(x, xi) be the distance between x and xi

Sort d(x, xi) by increasing order: d1(x), d2(x), . . . , dN(x)

• and de�ne the �k-th nearest neighbor� estimator:

ρ̂NN(x) =
k

2Ndk(x)

Illustrate equations. When solved k = 2dk(x)Nρ(x) is the expected amount.

Figure 12.5: Nearest neighbor estimation for the data of the Old Faithful Geyser
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• or more general:

ρ̂NN(x) =
1

Ndk(x)

N∑
i=1

K

(
x− xi
dk(x)

)
• Instead of problem 2, now problem 2a: Choice of k ?

• Explain ��xed mass�

Mathematization (for core estimator, analogous for NN estimator)

Assumptions:∫
K(t)dt = 1,

∫
tK(t)dt = 0,

∫
t2K(t)dt = k2 6= 0,

Calculation of the bias:

• Expectation value of the estimator

〈ρ̂(x)〉 =
1

Nh

N∑
i=1

〈
K

(
x− xi
h

)〉
=

1

h

∫
K

(
x− y
h

)
ρ(y)dy

bias(x) = 〈ρ̂(x)〉 − ρ(x)

=
1

h

∫
K

(
x− y
h

)
ρ(y)dy − ρ(x)

• Transformation of variables: y = x− ht and
∫
K(t)dt = 1:

bias(x) =

∫
K(t)ρ(x− ht)dt− ρ(x)

=

∫
K(t)(ρ(x− ht)− ρ(x))dt

• Taylor evolution:

ρ(x− ht) = ρ(x)− htρ′(x) +
1

2
h2t2ρ′′(x) + . . .

bias(x) = −hρ′(x)

∫
tK(t)dt+

1

2
h2ρ′′(x)

∫
t2K(t)dt+ . . .

=
1

2
h2ρ′′(x)k2 +O(h3)
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Observation:

• Bias does not depend on N .

• Only on ρ′′(x) & h

• Illustrate

Analogous calculation for the variance yields:

V ar(ρ̂(x)) =
1

Nh
ρ(x)

∫
K(t)2dt

• Variance depends on ρ(x), N and h

Link to counting processes

Consistent estimator in the limit:

• h→ 0

• Nh→∞

• Ergo: h slower towards 0 than N towards ∞

Optimal core

• Mean Square Error

MSE(ρ̂(x)) = 〈(ρ̂(x)− ρ(x))2〉 = bias(ρ̂(x))2 + V ar(ρ̂(x))

• Mean integrated square error

MISE(ρ̂) =

∫
MSE(ρ̂(x))dx

• Minimization of the MISE with respect to h:

MISE =
1

4
h4k2

2

∫
ρ′′(x)2dx+

1

Nh

∫
K(t)2dt (34)

yields:

hopt = k
−2/5
2

(∫
K(t)2dt

)2(∫
ρ′′(x)dx

)1/5

N−1/5 (35)
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� Optimally h has to scale with h ∝ N−1/5,

� Prefactor sadly contains curvature of the true density.

• Introduction of Eq. (35) in Eq. (34) yields:

MISE =
5

4
C(K)

(∫
ρ′′(x)dx

)1/5

N−4/5

with

C(K) = k
2/5
2

(∫
K(t)2dt

)4/5

Under assumption from above for K(t) this is minimized Epanechnikow core

KEp(t) =

{
3

4
√

5

(
1− 1

5
t2
)

if −
√

5 ≤ t ≤
√

5

0 sonst

• E�ciency of core K :
Eff(K) = C(KEp)/C(K)

Core K(t) E�ciency
Triangle 1− |t| für |t| < 1 0.986
Gaussian trivial 0.951
Rectangle 1/2 für |t| < 1 0.930

Conclusion:

• Rectangle is bad

• Gaussian does not have a �nite carrier, also bad

• Triangle is o.k.

Choice of h: Cross-validation

• Idea:

� Assuming one has one additional observation xN+1
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� Then the log likelihood would be: L(h) = log ρ̂h(xN+1), and it could be
maximized with respect to h.

� Sadly this is not available so:

• De�ne the �leave-one-out� estimator:

ρ̂−ih (xi) :=
1

(N − 1)h

∑
j 6=i

K

(
xi − xj
h

)
and the cross-validation function CV (h):

CV (h) :=
1

N

N∑
i=1

log ρ̂−ih (xi)

• Determine �optimal� h trough maxed CV (h).

Figure 12.6: Desired behavior of CV (h)

• There are many other heuristic ideas and they all have their problems.
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12.2 Non-Parametric Regression

Literature:

• W. Härdle. Applied Nonparametric Regression [23]

The setting:

• Task:

Given N realizations of the model

y = m(x) + ε, ′′m()′′, because this is the mean of y ist, ε ∼ N(0, σ2)

Estimate m(x) non-parametric, i.e. without assumption of a parameterized
model like in Chap. 6, based on measurements (yi, xi).

• Ansatz, once again core estimator:

m̂(x) =
1

Nh

N∑
i=1

K

(
x− xi
h

)
yi

or Nadaraya-Watson core estimator:

m̂(x) =

∑N
i=1K((x− xi)/h)∑N
i=1K((x− xi)/h)

yi

due to normalization.

• With

cK =

∫
K2(u)du

dK =

∫
u2K2(u)du

it holds for Mean Square Error analogous to above:

MSE(x) =
σ2cK
Nh

+ h4d2
K

m′′(x)2

4
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• Same as with the density core estimator:

Width of the core controls trade-o� between bias and variance

• Once again consistent estimator for h→ 0, Nh→∞

• For density core estimator positive core were natural, this is not not necessary
anymore. See below.

• For the choice of h, see exercise.

Equivalence of Core Estimator and Local Non-Linear Regression

• Consider square core3:

K(u) =

{
1

2h
if |u| < h

0 else

Consider for �xed x:

1

N
min
a,b

N∑
i=1

K(x− xi)(yi − a− b(x− xi)2)2

the local parabola �t to the interval determined by the uniform core.

Result will be:
m̂(x) = â

• The normal equations (remember Chap. 10.2) are

∂

∂a
:

1

N

∑
i

K(x− xi)(yi − â− b̂(x− xi)2) = 0

∂

∂b
:

1

N

∑
i

K(x− xi)(yi − â− b̂(x− xi)2)(xi − x)2 = 0

• De�ne

ỹ(x) :=
∑
i

K(x− xi)yi

3Unusual de�nition to avoid constantly dividing by h
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Assume xi is equal distributed and consider:

1

N

∑
i

K(x− xi) ≈ 1

• Approximate

1

N

∑
i

K(x−xi)(x−xi)2 ≈
∫ ∞
−∞

K(x−u)(x−u)2du =

∫ 1/2h

−1/2h

(x−u)2du = h3/3

Analog

1

N

∑
i

K(x−xi)(x−xi)4 ≈
∫ ∞
−∞

K(x−u)(x−u)4du =

∫ 1/2h

−1/2h

(x−u)4du = h5/5

• With

A =
1

N

∑
i

K(x− xi)(x− xi)2yi

The normal equations are thus:

0 = ỹ − â− h3

3
b̂

0 = A− h3

3
â− h5

5
b̂

Leads for â to:

0 = 3h2ỹ − 5A+
4

3
h2â

• Introducing everything:

â =
3

4N

∑
i

K(x− xi)

(
3− 5

(
(x− xi
h

)2
)
yi
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• Sharp observation shows:

m̂(x) = â =
1

N

∑
i

K∗(x− xi)yi

with

K∗(u) =

{
3/8(3− 5(u/h)2 if |u| < h

0 else

a parabolic core.

• On the other hand: Parabolic core corresponds to local parabola �t

Figure 12.7: Local parbola �ts in comparison to the core estimator

• For di�erent core with higher orders

• Remember: Non-parametric regression = Parametric with many parameters

Savitzky-Golay - Filter
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• Idea: Turning it around

Determination of core coe�cients from polynomial �t

Let the data be equidistant, ∆x = 1.

m̂(xi) =
h∑

j=−h

cjyi+j

• Choose cj so that it corresponds to a polynomial �t with

yi = a0 + a1i+ a2i
2 + . . . aM i

M

to the data y = (yi−h, . . . , yi+h) Then analogous to above:

m̂(xi) = â0

• Remember Chap. 6 Non-linear regression

The design matrix A is:

Ail = il

and the normal equations lead to:

ATAa = ATy oder a = (ATA)−1ATy

In practice: Coe�cients a are linear in the data.

• Therefor cj is a0, if y is replaced by unity vectors ej:

cj = {(ATA)−1AT ej}0 =
M∑
m=0

{
(ATA)−1

}
0m
jm

For M=2, h=2, the coe�cients are:
−.0086, 0.343, 0.486, 0.343,−.0086 and are not positive.
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Figure 12.8: (a) Noisy data; (b) Fitted without S-G �lter, 16 points left and right;
(c) with S-G �lter of grade 4, 16 points left and right; (d) with S-G �lter of grade 2,
32 points left and right; (e) with S-G �lter of grade 2, 32 points left and right; (f)
with S-G �lter of grade 6, 32 points left and right.
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Estimation of derivatives
Repeating the same process for a1 yields an estimation for the �rst derivative and so
on.

Spline smoothing

• Adapting a function g(x) with many degrees of freedom, for example higher
order polynomial, using least squares

a = argmin
∑
i

(yi − g(xi, a))2

to the data yi, then g(x, a) will interpolate the data and will be very variable
locally.

• Idea:

Require a certain smoothness of g(x, a).

Smoothness can be estimated via:∫
(g′′(x, a))2dx

• Remember regularization Chap. 4.3 and de�ne

Sλ(g) =
N∑
i=1

(yi − g(xi, a))2 + λ

∫
(g′′(x, a))2dx

• Consider

� λ = 0 : Interpolation

� λ =∞ : Linear regression

• Minimization of Sλ(g, a) over all double di�erentiable functions has an exact
solution:

m̂λ(x) is:

� Cubic polynomial between consecutive xi values.

� Continuous at the xi values.
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� First and second derivative continuous, third derivative not continuous.

� Second derivative = 0 at x1 and xN .

• Is called Spline: �a slat of wood, metal, etc� (Oxford dictionary)

If bent, this is very smooth.

• If the error on the data is know, λ can be �xed.

• Can be formulated as core estimator (not pretty).

Figure 12.9: Spline smoothing of a data set

Robust smoothing
If the errors are not Gaussian, the Median �lter:

m̂M(x) = med{yi}, {yi|xi ∈ [x− h, x+ h]}
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can be of use, for example in noise suppression in black and whit pictures.

The curse of high dimensions
Distributing N points equidistantly in d-dimensional unitcubes [0, 1]D, the distance
distNN between two points is:

distNN = N−1/D

Example N = 10000:

D distNN
1 1/10000
2 1/100
3 1/21.54
4 1/10
5 1/6.31=0.16
10 1/2.51=0.4

I.e. in 10 dimensions every point has 2.5 neighbors in every directions, so realistically
none.

Exercise: Crossvalidation
12. week

Lessons learned:

• Non-parametric density estimation: Core estimator and nearest neighbor es-
timator

• Bias and variance of the estimators

• Optimal core and optimal h

• Non-parametric regression = parametric with many parameters

• Savitzky-Golay - Filter & Splines
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13 Spectral analysis

Literature:

• M.B. Priestley Spectral analysis and time series [51].
The mathematical classic No.1

• P.J. Brockwell, R.A. Davis Time Series: Theory and Methods [9].
The mathematical classic No.2

• J. Honerkamp Stochastic Dynamical Systems [25] Chap. 13.3
Condensed version for physicists

De�nition Auto-covariance function (ACF):
Let x(t) be a stationary process with 〈x(t)〉 = 0, then the auto-covariance function
is:

ACF (τ) = 〈x(t)x(t+ τ)〉

De�nition spectrum:

S(ω) =

∫
e−iωτACF (τ) = 〈|f(ω)|2〉

with

f(ω) =

∫
e−iωtx(t)

The Fourier transformation orthogonal (all eigenvalues= 1), meaning:∫
S(ω)dω = Var(x(t))

Spectrum is �variance per frequency� representation of the process.

Time-discrete process:
Consider:

x(i) = ax(i− 1) + σε(i), 0 < a < 1, ε(i) ∼ N(0, 1)
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• If σ = 0

x(i) = x(0)e−i/τ

a relaxator with τ = −1/ log a

• σ 6= 0: Process will constantly be brought out of equilibrium around 0 due to
noise

Physically: Stochastic driven relaxator

• Process is called Auto-regressive process of order 1, AR[1].

Figure 13.1: Realizations of linear stochastic processes of orders 1 and 2.

• AR[2] process:

x(i) = a1x(i− 1) + a2x(i− 2) + ε(i)

yields with:

a1 = 2 cos(2π/T )e−1/τ

a2 = −e−2/τ

a stochastic driven damped oscillator with period T and relaxation time τ .
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Figure 13.2: Realization of a linear stochastic process of order 2

13.1 Spectra of AR[p] Processes

• De�ne Backshift-Operator:

B(x(t)) = x(t− 1)

• Let

f(ω) =
1√
N

N∑
t=1

e−iωtx(t)

(Normalization will be left out from now on) then

N∑
t=1

e−iωtB(x(t)) =
N∑
t=1

e−iωtx(t− 1) = e−iω
N∑
t=1

e−iωtx(t) = e−iωf(ω)
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In general:

N∑
t=1

e−iωtBd(x(t)) = e−idωf(ω)

• AR[p] process:

x(t)−
p∑
j=1

ajB
j(x(t)) = ε(t)

• Fourier transformation:

f(ω)(1−
p∑
j=1

aje
−ijω) = ε̃

• Spectrum:

S(ω) = 〈|f(ω)|2〉 =
1

2π

σ2

|1−
∑p

j=1 aje
−ijω|2

Important:
Spectrum of AR[p]-process is smooth.
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Figure 13.3: Spectrum of a linear stochastic process of order 2
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Figure 13.4: Periodogram and estimated spectrum of a linear stochastic process of
order 1

Smoothness also holds

• for all non-linear stochastic processes.

• in reality for all chaotic processes.

In general: Always, if the ACF dissociates, i.e. the process is forgetful, mixing.

13.2 Fast Fourier Transform (FFT)

Cooley & Tukey, 1965 [11].

• The calculation of the Fourier transform

f(ωk) =
N−1∑
t=0

e−iωktx(t)
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for all Fourier frequencies

ωk =
2πk

N
, k = −N/2 . . . , 0, . . . , N/2

has complexity O(N2).

• For x(t) being real:

f(ωk) = f ∗(−ωk)

degrees of freedom have to be counted.

• Divide and Conquer - strategy

Let N = 2n

f(ωk) = fk =
N−1∑
t=0

eiωktx(t)

=

N/2−1∑
t=0

e−iωk(2t)x(2t) +

N/2−1∑
t=0

e−iωk(2t+1)x(2t+ 1)

=

N/2−1∑
t=0

e−i2ωktx(2t) + eiωk
N/2+1∑
t=0

e−i2ωktx(2t+ 1)

= f ek + eiωkf ok e like even o like odd (36)

• f ek and f ok periodic in k with period N/2

• For f ek and f ok the decomposition can be repeated.

Yields : f eek , f eok , f oek and f ook .

E�ective FT length N/4 each, the rest is periodic.

• Iterate this, until length of the Fourier transform = 1.

• But

0∑
t=0

eiωtx(0) = x(0)
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This means there are representations:

f eooeeeo..oek = f eooeeeo..oe = x(t) ∀ t (37)

does not depend on k, since periodic in k with period 1.

• Length of the chain eooeeeo..oe: log2N

• Now main point: Bitreversal:

� Which sequence of e's and o's belong to which t

� Turning the order of the e's and o's around

� Replace the sequence eo..oeeeooe with e = 0 and o = 1

� Gives the binary representation for every t.

� even/odd decomposition bitreversed constructs binary representation
from the bottom up

� Example 4

00 01 10 11
0 1 2 3 BR binary

ee x ee 00
eo x oe 10
oe x eo 01
oo x oo 00

� Example 8:
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Figure 13.5: Rearrangement of an array by bitreversal, (a) between two arrays and
(b) in one array

� Consider: Only needs pairwise switches

• Starting point for the inversion of Eq. (37) using logN applications of Eq. (36).

• Accounting quite simple:

� Sort data in bitreversed order: Single point transformation

� Combine neighboring points

∗ Two point transformation
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∗ Example N = 64, n = 6

f eooeek = f eooeee + eiωkf eooeeo

∗ Result needs 2 points space

∗ Complexity: O(N)

� Combine neighboring point pairs

∗ 4 point transformation

∗ Needs 4 points space

∗ Complexity: O(N)

� Combine neighboring quadruples

� and so on

• Starting from N data points logN times Eq. (36), yields e�ort O(N logN)

• FFTs also exist for N = 2n 3k 5l

• The same divide and conquer approach is also applicable in other situations.

13.3 Spectral Analysis of Time-Discrete Processes

An estimator Θ̂N based on N data points is called consistent, if it holds:

lim
N→∞

(Θ̂N −Θ)→prob 0

i.e. bias and variance run with N towards 0.

Periodogramm of white noise

• Let x(t) = ε(t) ∼ N(0, σ2)

• Then f(ωk) is

f(ωk) =
1

N

N∑
t=1

e−iωktε(t)
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• With

|e−iωkt| = 1 and 〈ε(ti)ε(tj)〉 = δij

follows:

f(ωk) ∼ NC(0, σ2)

� Independent of ωk (hence "white" noise)

� With independent real and imaginary portions (because sin(ωkt) and
cos(ωkt) are orthogonal)

�
〈f(ωk), f(ωl)〉 = σ2δkl

f(ωk) independently complex normal distributed.

• Spectrum was
S(ω) = 〈|f(ω)|2〉

• |f(ω)|2 has special name: Periodogram

Per(ωk) = |f(ω)|2

• Since

Per(ωk) = |f(ωk)|2 = (Re(f(ωk)))
2 + (Im(f(ωk)))

2

it holds for x(t) = ε(t) :

Per(ωk) ∼ χ2
2

For non-white (in general nonlinear) processes the central limit theorem is of help,
and it holds in general (with correct prefactors):

Per(ωk) ∼
1

2
S(ωk)χ

2
2, ωk 6= 0, π

independent of N . (For ωk = 0, π: Per(ωk) ∼ S(ωk)χ
2
1, since only cos(ωkt) con-

tributes).
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• Since
〈χ2

2〉 = 2, V ar(χ2
2) = 4 SD(χ2

2) = 2

the periodogram is an unbiased estimator,

• But : Standard deviation of the periodogram is independent from N (and equal
to the expectation value)

Thus the periodogram is not a consistent estimator for the spectrum!

• Increasing amounts of data:

Instead of smaller variances for the estimator one obtains better resolution in
the frequency space.

Central:
Because the (true) spectrum is smooth, spectra can be estimated, by smoothing the
periodogram:

Ŝ(ωk) =
h∑

l=−h

WlPer(ωk+l)

This yields with N →∞ h→∞, and h/N → 0 a consistent estimator.
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Figure 13.6: Linear stochastic process of order 2
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Figure 13.7: Linear stochastic process of order 2
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Di�erent methods:

• Cut time course in L pieces and take the mean of their periodograms

Let M = N/L

Perl(ωk) = |
M∑
t=1

e−iωktx((l − 1)M + t)|2

Ŝ(ωk) =
1

L

L∑
l=1

Perl(ωk)

• ACF windows, Remember QM: Folding in frequency space is multiplication in
time space and vice versa.

Ŝ(ωk) =
N∑
τ=1

w(τ)e−iωkτACF (τ)

w(τ) = 0 für τ > τmax. τmax ∝ 1/h.
Method of choice before the invention of FFt.

In case of

• linear processes the Fourier components stay independent

• non-linear processes correlations will arise.

• See next semester for details

Comparison Fourier series vs. Fourier transformation (FT) (stochastic
process)
For example for saw tooth:

y = x for− π < x < π, and periodically continued

holds:

y = 2

(
sinx

1
− sin 2x

2
+

sin 3x

3
− . . .

)
The �periodogram (=spectrum)� is thus:
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Figure 13.8: Periodogram of a saw tooth curve

Consider van der Pol oscillator:

ẍ = µ(1− x2)ẋ− x

Cubic non-linearity, perturbation theory, higher harmonics for (2i+1) fold of the
fundamental frequency.
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Figure 13.9: Periodogram of the van-der-Pol oscillator

Leakage and Tapern:
The FT sees the tie course x(t), t = 1, . . . T as a segment of an in�nitely long series
y(t), t ∈ Z:

x(t) = wu(t)y(t), wu(t) =

{
1 if 1 ≤ t ≤ T
0 else

E�ect Leakage:

• Multiplication in time space is folding in frequency space

• Spectral estimation �blurred�

• Mass is transported from peaks to valleys.

• Is worst for wu(t).

Treatment:

• Choose w(t), with softer time course, for example Bartlett window

wB(t) =

{
1−

∣∣∣ t− 1
2
T

1
2
T

∣∣∣ if 1 ≤ t ≤ T

0 else
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• This is called Tapern.
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Figure 13.10
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The resulting spectrum is to be normalized with

g =
T∑T

t=1w
2(t)

.

Exercise:
Simulation and spectral estimation for AR[2] process

Lessons learned:

• Fast-Fourier Transformation

• χ2
2-distribution of the periodogram of mixing processes

• Consistent Estimator for the spectrum
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14 Markov Chain Monte Carlo Procedure

Literature:

• W.R. Gilks et al. Markov chain Monte Carlo in practice [20]

• J.J.K. ÓRuanaidh, W. Fitzgerald Numerical Bayesian methods applied to sig-
nal processing [49]

• R.E. Kass et al.: Markov Chain Monte Carlo in Practice: A Roundtable dis-
cussion [29]

Bayesian Ansatz (biased version):

• There are no �true� parameters.

• Parameters are random variables.

• Every probability is a conditional probability.

• Prior knowledge is the condition.

Bayes theorem:
From

p(a, b) = p(a|b)p(b) = p(b|a)p(a)

follows

p(b|a) =
p(a|b)p(b)
p(a)

allows �shoveling� of p(b|a) to p(a|b).
Let b be the parameters, a be the data, then the MLE idea was: Reading p(a|b) as
a function of b.

But for Bayesians p(b|a) makes sense. p(b) represents the prior knowledge. p(a) is
constant and therefor neglected.

p(b|a) ∝ p(a|b)p(b) = Likelihood × Prior knowledge

If the error model is Gaussian and the prior knowledge, or prior, infers that the norm
of b is rather small, for example:

p(b) ∝ e−λb
2
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the taking the logarithm yields:

p(b|a) ∝
N∑
i=1

(ai − a(xi, b))
2

σ2
i

+ λb2

the minimum norm regularization of the SVD from Chap. 7 Solutions of linear equa-
tion systems.

Gibbs Sampler
The equation

p(b|a) ∝ p(a|b)p(b)

gives the possibility, to estimate the parameters of a model in a Baysian context.
Problem: The high dimensional integrals.

Gleichung

Way out: The Gibbs sampler
It can be shown: Pulling single parameters works.

ZEICHNUNG Schema

Convergence: Let 2 processes run in parallel, if Intravariance = Intervariance, then
it converges.

Choice of the prior

• If the prior does not change the type of the distribution class of the Likelihood
it is called a conjugate prior. This makes a lot of things easier.

• A prior with a very broad distribution is called uninformative.

• In the case of an uninformative prior, the whole thing is MLE and only a matter
of integration technique.

15 Classi�cation

Literature:

• D.J. Hand, Discrimination and Classi�cation [22]
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• O. Duda and P.E. Hart Pattern classi�cation and scene analysis [13]

• T. Kohonen Self-organizing maps [35]

Fischer Discriminant Analysis
Mahalanobis distance

Clustering

Kohonen map
Optimization of the trans information [41]
MDS and projection pursuit
Literatur:

• J.W. Sammon A nonlinear mapping for data structure analysis [60]

• P.J. Huber Projection Pursuit [27]

Exercise:
Given a high dimensional data set, look for structures.
See also:
ISOMAP [69]
LLE [58]
What is missing
On essentials :

• Integration calculation, Recipes Chap. 4 and 7.6, Stoer Chap. 3

• Stochastic approximation [30,56], The great �ood, Thresholding
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