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We introduce the phenomenon of rapid self-organized criticality(RSOC) and show that, like some models of
self-organized criticality(SOC), RSOC generates scale-invariant event distributions and 1/f noise. Unlike
SOC, however, RSOC persists despite more than an order of magnitude variation in driving rate and displays
extremely thick and dynamic branching geometry. Starting with an initial set of parameter values, we perform
two numerical experiments in which nonequilibrium RSOC systems are tuned towards their critical points. The
approach to the critical state is tracked using average branching rates, which must equal 1 if systems are
genuinely critical.
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I. INTRODUCTION

In 1987 Bak, Tang, and Wiesenfeld[1] introduced the
theory of self-organized criticality(SOC), which proposed
that certain nonequilibrium systems spontaneously evolve to
critical states, characterized by power law(fractal) event size
distributions and 1/f noise. The name “self-organized criti-
cality” was chosen by the authors to highlight the similarity
between SOC systems and criticality in equilibrium systems,
and to stress the primary difference between these two types
of systems. In both cases, “criticality” refers to the lack of a
characteristic scale of internal structures, which are limited
only by system size and that of individual units[1–4]. The
primary difference between an SOC system and criticality in
equilibrium systems is that criticality in the latter is main-
tained by the fine-tuning of some control parameter(such as
temperature), while criticality in an SOC system apparently
self-organizesas energy and matter flow through the system
[3–5]. When SOC was introduced, it stimulated enormous
interest because of the claim that the theory might help to
account for the ubiquity of fractals in space and time(1/ f~

noise) [1,2,4,6,7], one of the oldest puzzles in contemporary
physics [8]. SOC was touted as a candidate for a general
theory of complexity in nature[4,9], despite the realization
that these claims were not wholly correct. Due to a “pro-
gramming error”, the square root of the power spectrum was
used instead of the power spectrum itself, meaning that the
original model of SOC(a numerical sand pile) actually dis-
played a 1/f2 signal[10], which is much less interesting than
1/ f noise as 1/f2 signals are easily generated by Brownian
motion [11,12]. Although further work revealed that variants
of the sand-pile model could show 1/f noise [13], by then
the proposition that SOC was a robust mechanism for 1/f
noise was less convincing. Furthermore, the concept of
“spontaneous” criticality in an SOC system presented several
ambiguities[14]. For instance, in most examples of SOC the
source of driving was either tuned towards zero or “ex-
tremal” [2,6,14,15]. In systems with extremal driving, a glo-
bal supervision prevented all but the most extreme sites
(rather than statistically typical sites) from receiving inputs
of energy[16], an odd state of affairs for self-organized sys-
tems [15]. Similarly, several authors noted that tuning the

driving rate towards zero to observe critical fluctuations is
hardly self-organized[17].

General theories always elicit healthy skepticism from
scientists working in specific fields[2] and self-organized
criticality (SOC) is clearly no exception. Although fractals
and 1/f noise can arise in SOC systems, it is apparent that
the phenomenon is not as universal as initially claimed and
requires some degree of fine-tuning[15,18]. However, recent
work on the stick-slip earthquake model revealed that self-
organization to an “almost critical” state requires less fine-
tuning than the evolution of genuinely criticality, which oc-
curs only at special points in parameter space. Around these
points, almost critical dynamics characterizes large regions
of parameter space and generates approximate scale invari-
ance, which is difficult to distinguish from genuine critical-
ity, unless the average branching ratessd is calculated
[19,20]. Branching processes must have an average branch-
ing rate of 1 to be truly critical[21]. Hence, an SOC system
is genuinely critical only if the average branching ratessd of
units participating in avalanches equals 1. Ifs.1, ava-
lanches are supercritical and expand indefinitely. Conversely,
if s,1 the subcritical avalanches invariably expire. A simi-
lar pattern was found in a model of Barkhausen noise, which
occurs in magnetic materials exposed to external magnetic
fields that are ramped up and down. Even though a true
power law is found only at a special point in parameter
space, the model displays a large critical region[22]. Even in
equilibrium, critical fluctuations that overwhelm systems at
their critical points remain significant well beyond these
points, within so-called “critical regions”[23]. It follows that
almost critical dynamics may provide a more realistic expla-
nation for the ubiquity of fractals in nature because it is more
likely to emerge(and is therefore more robust) than genuine
criticality [19,24]. This suggestion is supported by a recent
survey of the scaling range of fractals in nature, which found
that experimental reports of fractal behavior are usually
based on scaling ranges that span only 0.5 to 2 decades[25].

In this paper, we introduce a new type of almost critical
dynamics, which emerges when systems are driven rapidly
away from equilibrium. We call this phenomenon “rapid self-
organized criticality” (RSOC) to distinguish it from other
forms of SOC, all of which necessitate driving rates that
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approach zero[2,14,16,26]. Hereafter, slowly driven SOC is
referred to as traditional SOC. An important result of this
paper is that RSOC generates power law(fractal) event size
distributions and 1/f noise despite more than an order of
magnitude variation in driving rate. Indeed, as driving rate is
increased RSOC systems become increasingly similar to a
critical system, indicated by an average branching rate that
approaches 1.

Although in nonliving systems the fine-tuning of specific
parameters, such as driving rate, is rare and unlikely[16], in
living systems natural selection can be a powerful evolution-
ary force. It follows that if there is some benefit associated
with criticality (self-organized or otherwise), natural selec-
tion might act on control parameters to tune systems towards
their critical points[27]. In this paper, we begin with an
initial set of parameter values, and perform two numerical
experiments in which we progressively fine-tune an RSOC
system to obtain an average branching ratessd closer to 1. In
the first experiment, we focus on the effects of a variable
driving rate, which spanned almost 2 decades. In the second
experiment, the driving rate was kept constant while lattice
size was increased from 20320 to 80380, a procedure that
allowed us to investigate the finite system size effects on
model dynamics. The paper is organized as follows. In Sec.
II, we introduce the model and describe statistical methods.
In Sec. III, we present results and in Sec. IV, the main dif-
ferences between RSOC and traditional SOC are discussed
and conclusions presented.

II. THE MODEL AND DATA ANALYSIS

The inspiration for this work was the feeding behavior of
the Argentine ant(Linepithema humile), which uses a
pheromone-based mass-recruitment system to communicate
the location and quality of food sources[28]. There is often
a rapid build-up of ants at high-quality food sources, which
become crowded as a result. In a previous study, we found
that workers arriving at food sources sometimes disturbed
nestmates that were already feeding[29]. These disturbances
were slightly autocatalytic, and single wandering ants occa-
sionally unleashed avalanches of disturbance, particularly if
food sources were crowded and feeding ants were visibly
bloated. The distribution of avalanches followed a rough
power law distribution over 1 decade[29]. The model pre-
sented here is based on this disturbance pattern. However, we
are investigating parameter values that are unrealistic for
ants, but which allow us to investigate the general phenom-
enon of RSOC.

Ants are distinguishable by an internal variable, but oth-
erwise behave identically and are created at random sites on
lattice borders in a Poisson process at an average rate,l
(driving rate of the system). For example, ifl=10 an aver-
age of 10 new ants appear on lattice borders every time step.
While on the lattice, ants are either “wandering” in random
walks or “feeding.” Once ants have fed for a total of 460
time stepsstd, they become “satiated” and wander in random
walks until they leave the lattice. The status of each ant is
updated once every time step in a “random asynchronous”
manner. In other words, at each time step the population list

(a list comprising all ants on the lattice) is updated, then the
status of each ant on the list is updated in random order. At
each time stept, an ant is characterized by the following
parameters: position on the lattice, feeding status(feeding or
wandering), and level of satiation(between 0 and 460 food
units). Regardless of driving rate, the average number of ants
leaving the lattice equals the average number entering if sys-
tems have attained a steady state. At rapid driving rates, sys-
tems attain a steady state rather quickly(,2500 s for L
=20, l=1; ,18 000 s for L=80,l=40). In this paper, we
are concerned only with steady states, and all data were col-
lected after suitable transient periods. The rules of behavior
for the model are as follows.

(1) Ants may only move horizontally or vertically to ad-
jacent squares on the lattice, not diagonally.

(2) If an unsatiated ant wanders onto an unoccupied
square, it will feed at that square until satiated or disturbed,
at which point it will wander until it either leaves the lattice
or begins feeding again(if not yet satiated).

(3) If an unsatiated ant wanders onto an occupied square,
the ant that was feeding at that square will become disturbed
and begin wandering, and the first ant will begin feeding at
that square.

(4) Both satiated and unsatiated ants will disturb a feed-
ing ant if they wander onto its square.

(5) If two or more unsatiated ants wander onto the same
unoccupied square in the same time step, in the next time
step one of these ants is selected through the random asyn-
chronous updating process to begin feeding on that square,
and the remaining ant(s) continue wandering. If the square
was already occupied, then this still applies with the initial
occupant of the square being disturbed into a wandering state
by the ant that was randomly selected first to feed.

An avalanche propagates through chains of disturbances.
Consider the following:

t A is wandering, B is feeding
t+1 A disturbs B, B stops feeding

t+2 A feeds, B wanders

t+3 A feeds, B feeds

This represents the simplest case of an avalanche of magni-
tudessd=1, with two participants. An avalanche may propa-
gate further as follows:

t A is wandering, B is feeding, C is feeding,
D is feeding

t+1 A disturbs B, B stops feeding

t+2 A feeds, B wanders and disturbs C,
C stops feeding

t+3 A feeds, B feeds, C wanders and disturbs
D, D stops feeding

t+4 A feeds, B feeds, C feeds, D wanders

t+5 A feeds, B feeds, C feeds, D feeds

So,s=3 with four participants.

A single ant may participate in the same avalanche more than
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once.

t A is wandering, B is feeding, C is feeding,
t+1 A disturbs B, B stops feeding

t+2 A feeds, B wanders and disturbs C,
C stops feeding

t+3 B feeds, C wanders and disturbs A,
A stops feeding

t+4 C feeds, A disturbs B, B stops feeding

t+5 C feeds, A feeds, B wanders

t+6 C feeds, A feeds, B feeds,

So,s=4 with three participants.

Note that an ant will also terminate its participation in an
avalanche if it wanders off the lattice, and both satiated and
unsatiated ants may wander off the lattice.

In a situation where two ants, each participating in differ-
ent avalanches, both simultaneously wander onto an occu-
pied square and disturb its occupant, the wandering ant
whose status is randomly updated first will bring the feeding
ant into its avalanche. This is also the ant that will begin
feeding at that square, provided it is unsatiated. A satiated ant
may single-handedly initiate a large avalanche while wander-
ing back to the lattice boundary, as it can no longer feed at
vacant squares. The corresponding probability distribution
Pssd is expected to obey power law behavior with exponent
t, i.e., Pssd,s−t [2,30]. Special care was taken to ensure all
avalanches were complete before being counted. Note that
when the system is driven very rapidly, an excess of wander-
ing ants constantly disturbs the population of feeding ants,
resulting in a complex entanglement of social interactions.

Avalanche exponents, which describe how many larger
avalanches occur relative to smaller ones, were calculated
using linear regressions of log-transformed magnitude and
frequency data, so that the upper and lower scales of the
model did not affect the calculated exponent(as suggested in
Ref. [31]). In the sand-pile model of SOC, the branching rate
equals the number of new tumbles directly caused by a tum-
bling site[21]. In our model the branching rate of a wander-
ing ant is the number of disturbances it initiates while it is in
an uninterrupted bout of wandering. By way of example,
consider the following case where ant A is satiated:

t A is wandering, B is feeding, C is feeding,
D is feeding

t+1 A disturbs B, B stops feeding

t+2 A disturbs C, B wanders, C stops feeding

t+3 A disturbs D, B feeds, C wanders,
D stops feeding

t+4 A leaves the lattice, B feeds, C feeds,
D wanders

t+5 B feeds, D disturbs C, C stops feeding

t+6 B feeds, D feeds, C wanders

t+7 B feeds, C disturbs D, D stops feeding

t+8 B feeds, C feeds, D wanders

t+9 B feeds, C feeds, D feeds

This would give branching rates of:sA =3, sB=0, sC1
=0, sC2=1, sD1=1, sD2=0. The case for A is simple: in the
one wandering bout it initiates three disturbances. Similarly,
ant B has a single wandering bout but initiates no distur-
bances. Ant C has two bouts of wandering within the ava-
lanche: during the first boutst+2 to t+4d, it initiates no dis-
turbances, but in the second wandering boutst+5 to t+8d it
disturbs ant D. Ant D has two wandering bouts,t+3 to t+6
and t+7 to t+9. During the first bout it initiates no distur-
bances, but initiates one during its second bout. Hence, for
this particular avalanche there are six branching rates for
four ants. The average branching rate is calculated by sum-
ming s for all wandering bouts, then dividing by the total
number of wandering bouts, which in this case equals 5/6 or
approximately 0.83.

Average branching rates for each set of parameter values
were calculated using at least 1 million branching rates. Un-
fortunately, the rapidly changing dynamics of the model
meant that it was not possible to run long simulations for
large lattice sizes, as is characteristic for studies on slowly
driven SOC. Thus, fast Fourier transforms(FFTs) were based
on 16 384s214d time steps, except for the case of L=70 and
L=80, where 8192 time steps were used. Power spectrassfd
were calculated from these FFTs for three variables in each
run (the total number of ants, the number of wandering ants,
and the number of feeding ants) to establish the presence of
1/ f noise. Power spectra are consistent with 1/f noise if they
behave as 1/f~, where the exponent~ is between 0.5 and
1.5. White noise and Brownian noise have exponents roughly
equal to 0 and 2, respectively[1,32]. Each combination of
parameter values was replicated ten times, and averages cal-
culated for all summary statistics.

III. SIMULATIONS AND RESULTS

A. Rapid driving

We began with a lattice size of 20320 and ran simula-
tions for driving ratessld of 1, 3, 5, and 10 and then through
to l=80 (where computer limitations were encountered) in
increments of 10. We tracked avalanche response distribu-
tions, avalanche exponents, average branching rates, and the
power spectra of three variables: the total number of ants in
the system, the number of wandering ants, and the number of
feeding ants over time.

Figure 1(a) displays the probability distributionPssd for
systems driven at a rate of 1, 10, 20, 30, 40, 50, 60, 70, or
80 ants/ time step. All distributions overlapped except forl
=1, where systems departed significantly from an almost
critical state, indicated by a branching rate close to 0.5(see
below). When 10ølø80, we find near-perfect overlap of
the probability distributions, indicating almost critical behav-
ior over a broad range of driving rates. Figure 1(b), which
shows the exponent,t, of each probability distribution, con-
firms this result, and Fig. 2 reveals that regardless of driving
rate systems of linear dimensionL=20 are invariably sub-
critical, indicated by an average branching ratessd that pla-
teaus around 0.87±0.01.
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Analyzing the power spectra of the three variables(total
number of ants, number of wandering ants, and number of
feeding ants), we find several regions of 1/f noise. Figure 3
shows the power spectra(averaged across ten replicates) for
(a) the total number of ants;(b) the number of wandering
ants; and(c) the number of feeding ants over time, for driv-
ing ratesl=1 (gray line) andl=80 (black line). Around 1.5
decades of 1/f noise were found for both the total number of
ants and the number of wandering ants, for all driving rates
exceptl=1. When l=1, the power spectrum of the total
number of ants had exponent~=1.67±0.02, indicating a sig-
nal more closely resembling Brownian noise. In contrast, the

exponent of the power spectrum for the total number of ants
for driving rates higher thanl=1 was around 1.2, well
within the 1/f~ range of 0.5,~,1.5 [1,32]. The power
spectrum of the number of wandering ants had an exponent
of around 1.3 for all driving rates equal to or greater than 10,
while the power spectrum exponent for a driving rate ofl
=1 was 1.24±0.03. In addition to the 1.5 decades of 1/f
noise for both the total number of ants and the number of
wandering ants for all driving rates greater thanl=1, 1/f
noise was also found in the number of feeding ants, but only
when the driving rate fell between the bounds 10ølø40.
For driving rates greater thanl=40, the signal comprising
the number of feeding ants over time increasingly resembled
white noise. At the highest driving rate testedsl=80d, ~

FIG. 1. Impact of driving rate on model dynamics. All systems
were 20320 in size and the driving ratesl−1, 10, 20, 30, 40, 50,
60, 70, or 80 arriving ants/time step were used.(a) Avalanche prob-
ability distributions,Pssd, for the different driving rates. Note that
all distributions overlap except forl=1 arriving ants/time step.(b)
Avalanche probability distribution exponents,t. Standard errors are
not shown because they are smaller than markers.

FIG. 2. Evolution of the average branching ratessd as driving
rate increased from 1 to 80 arriving ants/time step.s=average av-
erage number of disturbances per ant per wandering bout. All sys-
tems are 20320 in size. Standard errors are not shown because
they are smaller than markers.

FIG. 3. A sample of power spectraSsfd for driving rates ofl
=1 (gray line) or l=80 (black line ). The time signals used in
analyses were(a) the total number of ants in systems over time;(b)
the number of wandering ants in systems over time; and(c) the
number of feeding ants in systems over time. Periodogram values
were averaged over ten replicates. Two lines with exponents −1.0
and −2.0 are shown for reference.
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=0.06±0.01. In contrast, whenl,10, the signal comprising
the number of feeding ants closely resembled Brownian
noise (at l=1, ~=1.94±0.03). Although the range of 1/f
noise is limited, the systems studied in this numerical experi-
ment were only 20320 in size. Given this size limitation,
the persistence of 1/f noise in two variables despite more
than an order of magnitude variation in driving rate is re-
markable.

B. Finite size effects

Finite size scaling theory attempts to predict how long-
scale collective phenomena(associated with the onset of
fluctuations near critical points) manifest themselves in small
samples, such as those commonly used in numerical simula-
tions [33]. Since the theory of SOC suggests that long-range
spatial and temporal correlations in nature arise from self-
organized dynamics, it is important to investigate how the
collective properties of SOC-like models are affected by fi-
nite system size.

The second numerical experiment explored how RSOC
dynamics is influenced by lattice size, and begins with a
lattice size ofL=20. L was then increased in increments of
10 to a maximum ofL=80, at which point computer limita-
tions were again encountered. The driving rate remained at
l=40 ants/time step throughout this experiment, and ava-
lanche probability distributions, avalanche exponents, aver-
age branching rates, and power spectra of the three variables
were again calculated.

As system size increased, the magnitude of the largest
avalanche observed also increased(,4000 for L=20,
,48 000 forL=40, ,92 000 forL=60, and,170 000 for
L=80). Figure 4(a), which shows the avalanche probability
distributions for L=20 and L=80, reveals that there is a
slight reduction in the slope of the distribution asL increases,
suggesting a corresponding reduction in avalanche expo-
nents. Figure 4(b), which plots the avalanche exponent,t,
against increasing lattice size, confirms this suggestion. In
some previous models of SOC, the avalanche exponent var-
ies with the inverse of system size(tL=t`+const/L [34]) or
with the inverse of the logarithm of system size(tL=t`

+const/ lnL [35]). In these cases, an estimate of the exponent
of the infinite systemst`d can be obtained by extrapolation
sL→`d from data obtained for different values ofL. We
tried fitting RSOC avalanche exponents at different system
sizes to both functions, but were unable to estimatet` by
linear extrapolation. The change int was more accurately
described by the exponential functiontL=1.957s1/Ld0.024.
However, this function suggests that, asL→`, t approaches
zero, a curious result indicating that all avalanche magni-
tudes occur with equal frequency at infinite system size.
Clearly, data at larger lattice sizes are needed. Without evi-
dence of a limiting value oft for infinite system size, clas-
sification of the universality class of the model is impossible.

Figure 5 shows the average branching rate as a function of
the inverse of system size. An excellent fit of these data to
the functionsL=sL`+const/L facilitates linear extrapolation
of the average branching rate to infinite system size. Regres-
sion analysis of the transformed data yields an estimate of

sL`=0.9742±0.0004, indicating that in the limit of infinite
system size, the RSOC system we studied is invariably sub-
critical. The reason for the subcritical nature of our model
may be due to the finite food capacity of individual ants.
After 460 time steps of total feeding time, ants are fully
satiated and cannot resume feeding. Such ants regularly dis-
turb the population of feeding(unsatiated) ants as they wan-
der around in random walks.

In the second numerical experiment, regions of 1/f noise
were detected in every set of parameter values. Furthermore,
for both the total number of ants and the number of wander-
ing ants, the number of decades of 1/f noise increased from
around 2 to 2.5 as lattice size increased fromL=20 to L
=80 [Figs. 6(a) and 6(b)]. The exponents of the power spec-
tra for the total number of ants and the number of wandering
ants were similar across all lattice sizes, around 1.3 and 1.4,

FIG. 4. Impact of finite system size on model dynamics.(a)
Avalanche probability distributions,Pssd, for lattice sizesL=20 and
L=80. (b) Avalanche probability distribution exponents,t, as lattice
size (L) increased fromL=20 to L=80. All systems were exposed
to an average driving rate of 40 arriving ants/time step.

FIG. 5. Evolution of the average branching rates as lattice size
(L) was increased from 20 to 80.s=average number of distur-
bances per ant per wandering bout. All systems were exposed to an
average driving rate of 40 arriving ants/time step. Standard errors
are not shown because they are smaller than markers.
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respectively. In contrast, the number of decades of 1/f noise
in the number of feeding ants decreased with increasing lat-
tice size, beginning at around 2 decades for a lattice size of
20320, and around 1.5 decades forL=80. The exponent of
the power spectra also changed over this range of lattice
sizes(L=20, ~=0.53±0.02;L=80, ~=1.13±0.06).

IV. COMPARISON OF RSOC AND
TRADITIONAL SOC

Analysis of branching rates indicates that for all systems
studieds,1. Such systems are more accurately termed al-
most critical, not genuinely critical in a mathematical sense.
Nonetheless, all combinations of parameter values led to

power law avalanche distributions over several decades and
1/ f noise was detected in two variables: the total number of
ants over time and the number of wandering ants over time.
Although further work is needed to reveal the limits of 1/f
noise and power law avalanche distributions in RSOC sys-
tems, these results indicate that fractal formation is surpris-
ingly robust with respect to changes in driving rate, a finding
that is unique in the study of SOC. It is frequently stated that
slow driving is essential for maintaining the effect of thresh-
olds and ensuring a separation of time scales between the
source of driving and that of avalanche propagation
[2,14,16,36,37]. For example, if the spring-block(earth-
quake) model is rapidly driven, thresholds associated with
springs are constantly overcome and system behavior is
dominated by external drive rather than critical dynamics[2].
In our model, there are no obvious thresholds associated with
ants or with sites. Instead, feeding ants begin wandering
whenever they are contacted by wandering ants, and wander-
ing ants begin feeding spontaneously on unoccupied lattice
sites. These two simple features facilitate almost critical dy-
namics in the face of rapid driving.

Another interesting feature of RSOC is that the largest
avalanches can be greater than system(lattice) size. For ex-
ample, on a lattice of 400 squaress20320d, the largest ava-
lanche observed for a driving rate of 10 ants/time step was of
magnitude 2262. The magnitude of the largest avalanches
increased further with increasing driving rate to a maximum
of 9208 for a driving rate of 80 arriving ants/time step. This
result appears to suggest that rapid driving enables RSOC
systems to decouple links between avalanche magnitude and
system size. Percolation theory suggests that once interac-
tions span the system, the system is, by definition, critical
[38]. However, our branching rate at the limit of infinite
system size indicates an inherently subcritical nature for our
model, despite avalanches being able to percolate from one
end of the system to the other.

Another difference between RSOC and traditional SOC is
that in an SOC system, most sites are stable and avalanches
are confined to intermittent(effectively instantaneous) peri-
ods [39]. Between avalanche events, the system is poised in
marginally stable(metastable) states, in which small inputs
of energy can trigger arbitrarily large avalanches, possibly as
large as the system itself[5]. Thus, the overall behavior of a
traditional SOC system comprises a series of isolated ava-
lanche events interspersed by metastable configurations. In
other words, each avalanche takes the system from one meta-
stable state to the next[16,37,40]. Such systems have “sparse
percolation-like geometry”[2]. In our model, the steady state
during which avalanche statistics are stable does not com-
prise a series of metastable states. Instead, multiple ava-
lanches are occurring all the time, and local configurations
are highly dynamic. Consequently, RSOC gives rise to an
extremely thick and dynamic branching geometry.

As well as fractal avalanches, two variables in our model
(total number of ants and number of wandering ants) dis-
played 1/f noise as driving rate ranged from 3 to 80 ants/
time step and lattice sizes varied between 20 and 80. Noise
with a 1/f power spectrum is emitted from an astonishing
variety of sources, including quasars, sunspots, river flows,
and voltage fluctuations across conductors carrying electric

FIG. 6. A sample of power spectraSsfd for driving rates ofl
=40 and lattice sizeL=20 (gray line) and L=80 (black line). The
time signals used in analyses were(a) the total number of ants in
systems over time;(b) the number of wandering ants in systems
over time; and(c) the number of feeding ants in systems over time.
Periodogram values were averaged over ten replicates. Two lines
with exponents −1.0 and −2.0 are shown for reference.
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current[12,32,40,41]. Interestingly, 1/f noise and power law
scaling have also been found in electroencephalographic
(EEG) recordings and some models of neural network activ-
ity, leading several authors to entertain the idea that the hu-
man brain is in an SOC state[4,42]. If the brain were sub-
critical, any input signal could interact with only limited
portions of stored information. Conversely, if the brain were
supercritical any input would result in explosive branching
processes in which new information connects with all previ-
ous knowledge[4,43]. In a critical state, however, the brain
could be both stable and variable, and may be optimally
suited for information processing. This proposal is consistent
with the observation that a characteristic feature of normal
brains(with or without sensory input) is the background ac-
tivity pattern[44]. Unlike transistors, which have their long-
est life by remaining inactive, neurons must constantly emit
pulses or they atrophy and die. Furthermore, the pulse trains
among arrays of neurons must be aperiodic or they eventu-
ally entrain, the synchrony becoming manifest as epilepsy
[44]. Thus, SOC might play a key role in generating noise
and maintaining the health of brain tissue[45].

It is becoming clear that in biological systems, noise can
be a useful property[46]. Stochastic resonance is a well-
documented phenomenon in which noise is harnessed to in-
crease the ability of some nonlinear systems to detect weak
signals[47]. Stochastic resonance could play an important
role in information processing in both the brain and central
nervous system[46,48]. Consequently, the idea that SOC
occurs in the brain is receiving increasing attention. How-
ever, it is difficult to reconcile the slow driving requirement
and “sparse percolation-like geometry” of SOC systems[2]
with what is known about the architecture of the human
brain. At the height of its development, the human brain has

been estimated to generate several hundred thousand new
nerve cells every minute[49], and each of the 1011 or so
cortical neurons connects to around 10 000 others[50]. In
addition, the dendritic trees of neurons facilitate expansive
nonlinear synaptic interactions in many different regions of
the tree simultaneously. Such geometry is thought to play a
key role in information processing[51], and can hardly be
described as sparse. The complex entanglement of interac-
tions is more similar to the rapidly changing dynamics of
RSOC systems. The problem of whether RSOC is applicable
to neural systems is outside the scope of this paper. Never-
theless, we do suggest that RSOC might be a better theory
than traditional SOC in understanding brain dynamics.

In summary, we introduce a type of SOC called rapid
self-organized criticality(RSOC). Like some models of tra-
ditional SOC, RSOC is associated with power law avalanche
distributions and 1/f noise. However, RSOC differs from
traditional SOC because it is characterized by an extremely
thick and dynamic branching geometry, whereas traditional
SOC has been described as having sparse percolation-like
geometry[2]. In addition, RSOC can emerge in systems that
face extreme nonequilibrium environments, while traditional
SOC is overwhelmed in the face of driving rates that rise
significantly above zero. Together, SOC and RSOC suggest
that the fractal geometry of nature might arise easily through
almost critical dynamics.
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