Seminar: Physik in der Biologie Physik des Innenohrs

Stefan Waselikowski Johannes Asal

18. Juli 2006

Ubersicht

Der Weg des Schalls

- Aufbau des Ohrs
- Bis zum Innenohr
- Im Innenohr
- Modelle des Innenohrs 2
 - Wellenausbreitung
 - Mathematische Grundlagen
 - Modell der Basilarmembran

- Overstärkung als aktiver Prozess
 - Der Mechanismus des Hörens
 - Modelle f
 ür Verst
 ärkung
 - Spontane Oszillationen
- 4 Modell f
 ür aktive Verst
 ärkung

- Differentialgleichungen
- Zustandsdiagramm
- Ergebnisse

Der Weg des Schalls

Modelle des Innenohrs Verstärkung als aktiver Prozess Modell für aktive Verstärkung Aufbau des Ohrs Bis zum Innenohr Im Innenohr

・ロン ・回 と ・ ヨン ・ ヨン

-2

Aufbau des Ohrs

Aufbau des Ohrs Bis zum Innenohr Im Innenohr

Der Weg des Schalls bis zum Innenohr

- "Einfang" durch Ohrmuschel
- Anregung des Trommelfells
- Weiterleitung per Knöchelchen
- Übertragung in Schnecke

Image: A □ = A

Aufbau des Ohrs Bis zum Innenohr Im Innenohr

Der Weg des Schalls im Innenohr

- Übertragung in Schnecke
- Zunächst durch Scala vestibuli
- Übergang in Scala tympani
- Welle endet am Runden Fenster

Image: A □ = A

Der Weg des Schalls

Modelle des Innenohrs Verstärkung als aktiver Prozess Modell für aktive Verstärkung Aufbau des Ohrs Bis zum Innenohr Im Innenohr

Der Weg des Schalls

Modelle des Innenohrs Verstärkung als aktiver Prozess Modell für aktive Verstärkung Aufbau des Ohrs Bis zum Innenohr Im Innenohr

Stefan Waselikowski, Johannes Asal

-2

Wellenausbreitung Mathematische Grundlagen Modell der Basilarmembran

▲ □ ► ▲ □ ►

Wellenausbreitung in der Schnecke

- Basilarmembran wird angeregt
- Frequenzabhängiges Resonanzverhalten
- Hohe Frequenzen: Maximum näher am ovalen Fenster
- Tiefe Frequenzen: Maximum näher am Helicotrema

Wellenausbreitung Mathematische Grundlagen Modell der Basilarmembran

Mathematische Grundlagen

Physikalische Annahmen zur Modellbildung

- Flüssigkeit in Schnecke inkompressibel und nicht viskos
- Grundlegende Gleichungen:
 - Masse: $\frac{d}{dt} \int_{V} \varrho dV = -\int_{S} \varrho (\mathbf{u} \cdot \mathbf{n}) dS = 0$ Impuls: $\frac{d}{dt} \int_{V} \varrho u_{i} dV = -\int_{S} [(\mathbf{u} \cdot \mathbf{n}) \varrho u_{i} + pn_{i}] dS$

• Mit Divergenztheorem folgt:

$$\int_{V} \left(\varrho \frac{\partial u_{i}}{\partial t} + \varrho \nabla \cdot (u_{i} \mathbf{u}) + \frac{\partial p}{\partial x_{i}} \right) dV = 0$$
(1)

und

$$\int_{V} \nabla \cdot \mathbf{u} dV = 0.$$
 (2)

Wellenausbreitung Mathematische Grundlagen Modell der Basilarmembran

• Für kleine Amplituden:

$$\varrho \frac{\partial \mathbf{u}}{\partial t} + \nabla p = 0 \tag{3}$$

$$\nabla \cdot \mathbf{u} = 0 \tag{4}$$

• Mit
$$\mathbf{u} = \nabla \phi$$
:

$$\varrho \frac{\partial \phi}{\partial t} + \rho = 0$$
(5)

$$\nabla^2 \phi = 0 \tag{6}$$

・ロト ・回ト ・ヨト ・ヨト

-2

Wellenausbreitung Mathematische Grundlagen Modell der Basilarmembran

・ロト ・回ト ・ヨト

- ∢ ⊒ →

Modell der Basilarmembran

- Unabhängige harmonische Oszillatoren
- Kopplung nur indirekt über Flüssigkeit
- Vertikale Anregung an den Enden

Wellenausbreitung Mathematische Grundlagen Modell der Basilarmembran

Differentialgleichung

$$m(x)\frac{\partial^2 \eta}{\partial t^2} + r(x)\frac{\partial \eta}{\partial t} + k(x)\eta = p_2(x,0,t) - p_1(x,0,t)$$
(7)
+ $F_0(t)\delta(x) - F_L(t)\delta(x-L)$

mit
$$F_0(t) = F_0 e^{i\omega t}$$
 und $F_L(t) = F_L e^{i\omega t}$.

Zusammenhang zwischen Druck und Potential:

$$\varrho \frac{\partial \phi_1}{\partial t} + p_1 = \varrho \frac{\partial \phi_2}{\partial t} + p_2 = 0$$
(8)

$$\nabla^2 \phi_1 = \nabla^2 \phi_2 = 0 \tag{9}$$

イロト イヨト イヨト イヨト

Wellenausbreitung Mathematische Grundlagen Modell der Basilarmembran

Randbedingungen

Zusammenhang der Auslenkungen:

$$\frac{\partial \eta}{\partial t} = \frac{\partial \phi_i}{\partial y}\Big|_{y=0}$$
(10)

Anregung des Potentials:

$$\frac{\partial \phi_1}{\partial x}\Big|_{x=0} = \frac{\partial F(y,t)}{\partial t}$$
(11)
$$\frac{\partial \phi_1}{\partial x}\Big|_{x=L} = 0$$
(12)

イロト イヨト イヨト イヨト

Wellenausbreitung Mathematische Grundlagen Modell der Basilarmembran

イロン イヨン イヨン イヨン

-2

Druck der Schallwelle (Fourierentwicklung):

$$p(x,y) = \sum_{n=-\infty}^{+\infty} \alpha_n \frac{\cosh[2\pi n(y-l)/L]}{\cosh(2\pi nl/L)} e^{2\pi i n x/L}$$
(13)

mit
$$\partial p/\partial y|_{y=l} = 0.$$

Daraus folgt:

$$-i\omega\eta = \frac{1}{i\omega\varrho}\frac{\partial p(x,0)}{\partial y} = -\frac{1}{i\omega\varrho}\sum_{n=-\infty}^{+\infty}\alpha_n \frac{2\pi n}{L}\tanh(2\pi nl/L)e^{2\pi inx/L}$$
(14)

Wellenausbreitung Mathematische Grundlagen Modell der Basilarmembran

Näherung

Aus der Annahme $\lambda \ll L$ folgt tanh $(2\pi nl/L) \approx \text{sign}(n)$ und somit

$$-i\omega\eta \approx -\frac{1}{i\omega\varrho} \sum_{n=-\infty}^{+\infty} \alpha_n \frac{2\pi n}{L} |n| e^{2\pi i n \times /L}$$
(15)

イロン イヨン イヨン イヨン

-2

Wellenausbreitung Mathematische Grundlagen Modell der Basilarmembran

Der Amplitudenverlauf ist somit

$$|\eta| = 2\eta_0 |\xi(\omega)| \exp[\lambda x + \beta(\omega)(1 - e^{\lambda x})]$$
(16)

Die Position des Maximums ergibt sich zu

$$x_p(\omega) = -\frac{1}{\lambda} \ln \beta \tag{17}$$

イロト イヨト イヨト イヨト

mit
$$\beta(\omega) = \left(\frac{2\omega^3 \varrho r_0}{\lambda(k_0^2 + \omega^2 r_0^2)}\right)$$
 und $\xi(\omega) = \frac{\omega \varrho}{i\omega \varrho + k_0}$

Wellenausbreitung Mathematische Grundlagen Modell der Basilarmembran

Stefan Waselikowski, Johannes Asal

Physik des Innenohrs

< 臣 → < 臣 →

Wellenausbreitung Mathematische Grundlagen Modell der Basilarmembran

Zusammenfassung

- Modell liefert qualitativ korrektes Resonanzverhalten
- Abweichung vom Experiment bei kleinen Frequenzen
- \Rightarrow Modell gibt Komplexität des Ohrs nicht vollständig wieder

Die weiteren Vorgänge des Hörprozesses folgen im zweiten Teil

Der Mechanismus des Hörens Modelle für Verstärkung Spontane Oszillationen

Der Mechanismus des Hörens

- Schwingung der Basilarmembran induziert Flüssigkeitsbewegung
- Haarzellen registrieren Schwingung
- Unterscheidung (beim Säugetier) in innere (IHC) und äußere Haarzellen (OHC)
- Nur die IHC leiten Signale an das Gehirn

▲□ > < □ >

Der Mechanismus des Hörens Modelle für Verstärkung Spontane Oszillationen

Warum Verstärkung?

- Menschliches Gehör umfasst großen Frequenz- und Dynamikbereich
- Schwache akustische Signale liegen im Bereich thermischen Rauschens
- Dämpfung durch Viskosität muss kompensiert werden
- ⇒ Verstärkungsmechanismus notwendig

Der Mechanismus des Hörens Modelle für Verstärkung Spontane Oszillationen

Verstärkung durch äußere Haarzellen

Bei Säugetieren wird eine aktive Oszillation der OHC's beobachtet:

- Äußere Haarzellen registrieren Schwingung in Flüssigkeit und schwingen gleichphasig mit
- Schwingung der Basilarmembran wird frequenzselektiv verstärkt

Wie und warum läuft dieser Prozess ab?

< 🗇 🕨 < 🖻

Der Mechanismus des Hörens Modelle für Verstärkung Spontane Oszillationen

Die Haarzelle im Querschnitt

Stefan Waselikowski, Johannes Asal Physi

Physik des Innenohrs

Der Mechanismus des Hörens Modelle für Verstärkung Spontane Oszillationen

Modelle für Verstärkung

Mechanismus bisher nicht exakt bekannt. Modelle:

A Aktive Oszillation der Haarzelle als Ganzes

- Anregung der Stereozilien
- Polarisation der Zelle
- Elongation bzw. Kontraktion

< A > < 3

Der Mechanismus des Hörens Modelle für Verstärkung Spontane Oszillationen

B Aktive Oszillation der Stereozilien

- Stereozilien werden ausgelenkt
- Ionenkanal wird geöffnet
- Motor in Stereozilien regt Bewegung an

Im folgenden wird auf dieses zweite Modell eingegangen.

Der Mechanismus des Hörens Modelle für Verstärkung Spontane Oszillationen

3

Spontane Oszillationen

Beobachtung in vitro: Stereozilien oszillieren spontan Ist diese Oszillation ein aktiver Prozess?

Der Mechanismus des Hörens Modelle für Verstärkung Spontane Oszillationen

Einfaches mathematisches Modell

Mittlere Auslenkung der Stereozilien

$$\langle X(t) \rangle = \int_{-\infty}^{t} \chi(t-t') f(t') dt'$$
 (18)

mit f(t) externe Kraft, $\chi(t)$ lineare Antwortfunktion des Systems.

Die Autokorrelationsfunktion C(t) der Auslenkung ist gegeben als

$$C(t) = \langle X(t+t_0)X(t_0)\rangle$$
(19)

イロト イポト イヨト イヨト

Der Mechanismus des Hörens Modelle für Verstärkung Spontane Oszillationen

- Passive Prozesse erfüllen Dissipations-Fluktuations Theorem (DFT)
- Verletzung des DFT ist Hinweis auf aktiven Prozess

DF-Theorem

Fluktuationseigenschaften eines Prozesses stehen in direkter Relation zu seiner linearen Antwortfunktion

Für die spontanen Oszillationen lautet das DFT

$$-k_B T \chi(t) = \frac{dC(t)}{dt}$$
(20)

oder nach Fourier-Transformation von C(t)

$$\tilde{C}(\omega) = 2k_B T \frac{\operatorname{Im}(\tilde{\chi}(\omega))}{\omega}$$
(21)

Der Mechanismus des Hörens Modelle für Verstärkung Spontane Oszillationen

Nach T aufgelöst erhält man

$$T = \frac{\omega \tilde{C}(\omega)}{2k_B \text{Im}(\tilde{\chi}(\omega))} =: T_{eff}(\omega)$$
(22)

Wenn $T_{eff}(\omega) = T_{env}$ für alle ω , so ist das DFT erfüllt.

Definiere Maß für Abweichung von DFT:

$$\epsilon = \frac{T_{eff}(\omega)}{T_{env}} = \frac{\omega \tilde{C}(\omega)}{2k_B T \ln(\tilde{\chi}(\omega))}$$
(23)

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

Der Mechanismus des Hörens Modelle für Verstärkung Spontane Oszillationen

A (1) > (1)

Im Experiment wurde ϵ für verschiedene ω ermittelt.

⇒ Signifikante Abweichung von $\epsilon = 1$ wurde festgestellt ⇒ Oszillation muss aktiver Prozess sein!

Der Mechanismus des Hörens Modelle für Verstärkung Spontane Oszillationen

Imaginärteil der Antwortfunktion hat negativen Bereich ⇒ Dissipation ist bereichsweise negativ ⇒ Aktiver Prozess

围

Differentialgleichungen Zustandsdiagramm Ergebnisse

Modell für Bewegung der Stereozilien

Annahme: Zwei krafterzeugende Mechanismen

• Federkraft an Drehpunkten der Stereozilien

$$F_{sp} = K_{sp} \cdot x \tag{24}$$

- 4 回 ト - 4 三 ト

• Kraft durch "Gating Springs"

$$F_{gs} = K_{gs} \cdot (x - x_a - \frac{d}{\gamma} p_0)$$
(25)

Differentialgleichungen Zustandsdiagramm Ergebnisse

Differentialgleichungen

Dynamik der Haarbündelposition

$$\lambda \frac{dx(t)}{dt} = -F_{gs}(t) - F_{sp}(t) + F_{ext} + \eta$$
(26)

mit λ Reibungskoeffizient, η stochastische Störung.

Dynamik der Molekularmotoren

$$\lambda_a \frac{dx_a(t)}{dt} = F_{gs}(t) - F_0 + \eta_a \tag{27}$$

mit F₀ mittlere Kraft der Motoren,

$$F_0 = \gamma N_a F_m p(C) \tag{28}$$

- 4 同 2 4 日 2 4 日 2

Differentialgleichungen Zustandsdiagramm Ergebnisse

Dynamik der Ca²⁺ Konzentration

$$\tau \frac{dC(t)}{dt} = C_0 - C(t) + C_M P_0 + \eta_C \tag{29}$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

mit

au Relaxationszeit

C₀ Gleichgewichtskonzentration bei geschlossenen Kanälen

- C_M Maximale Konzentration
- P₀ Öffnungsw'keit für lonenkanal.

Differentialgleichungen Zustandsdiagramm Ergebnisse

Simuliertes Zustandsdiagramm ohne Rauschen

- (Bi-)Stabile Bereiche
- Oszillatorischer Bereich
- Übergang durch Hopf-Bifurkation

▲ □ ▶ ▲ 三

Differentialgleichungen Zustandsdiagramm Ergebnisse

<⊡> < ⊡

-

Ergebnis ohne Fluktuationen

- Antwortfunktion zeigt Singularitäten
- Nicht vereinbar mit Experiment
- \Rightarrow Simulation mit Fluktuationen besser?

Differentialgleichungen Zustandsdiagramm Ergebnisse

Stärke der Fluktuationen

Wie groß müssen die Fluktuationsterme in den DGL gewählt werden?

Theoretische Überlegungen liefern in erster Näherung:

$$\langle \eta(t)\eta(0)\rangle = 2k_B T\lambda\delta(t)$$
 (30)

イロト イヨト イヨト イヨト

$$\langle \eta_a(t)\eta_a(0)\rangle = 2k_B \frac{3}{2}T\lambda_a\delta(t)$$
 (31)

$$\langle \eta_c(t)\eta_c(0)\rangle = 2C_M^2 \frac{1}{N} P_0(1-P_0)\tau_c\delta(t)$$
(32)

Differentialgleichungen Zustandsdiagramm Ergebnisse

< 🗇 > <

Simulation mit Fluktuationen

 \Rightarrow Experimentelle Daten bestätigen das Modell

Differentialgleichungen Zustandsdiagramm Ergebnisse

Sensitivitäten für kleine bzw. große Anregungen:

 \Rightarrow Verstärkung der Größenordnung 10!

Differentialgleichungen Zustandsdiagramm Ergebnisse

Zusammenfassung

- Im Ohr findet aktive Verstärkung schwacher Signale statt
- Dadurch hohe Frequenzselektivität und großer Dynamikumfang
- Fluktuationen scheinen dabei eine Rolle zu spielen
- Die Prozesse sind noch lange nicht vollständig verstanden