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Econometrics, Vol. 37, No. 3 (July, 1969) 

INVESTIGATING CAUSAL RELATIONS BY ECONOMETRIC MODELS 

AND CROSS-SPECTRAL METHODS 

There occurs on some occasions a difficulty in deciding the direction of causality between 
two related variables and also whether or not feedback is occurring. Testable definitions 
of causality and feedback are proposed and illustrated by use of simple two-variable models. 
The important problem of apparent instantaneous causality is discussed and it is suggested 
that the problem often arises due to slowness in recording information or because a 
sufficiently wide class of possible causal variables has not been used. It can be shown that 
the cross spectrum between two variables can be decomposed into two parts, each relating 
to a single causal arm of a feedback situation. Measures of causal lag and causal strength 
can then be constructed. A generalisation of this result with the partial cross spectrum 
is suggested. 

1. INTRODUCTION 

THEOBJECT of this paper is to throw light on the relationships between certain 
classes of econometric models involving feedback and the functions arising in 
spectral analysis, particularly the cross spectrum and the partial cross spectrum. 
Causality and feedback are here defined in an explicit and testable fashion. It is 
shown that in the two-variable case the feedback mechanism can be broken down 
into two causal relations and that the cross spectrum can be considered as the 
sum of two cross spectra, each closely connected with one of the causations. 
The next three sections of the paper briefly introduce those aspects of spectral 
methods, model building, and causality which are required later. Section 5 presents 
the results for. the two-variable case and Section 6 generalises these results for 
three variables. 

2. SPECTRAL METHODS 

If X ,  is a stationary time series with mean zero, there are two basic spectral 
representations associated with the series : 

(i) the Cramer representation, 

where z,(o) is a complex random process with uncorrelated increments so that 

(ii) the spectral representation of the covariance sequence 
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If X ,  has no strictly periodic components, dFx(o) = ,fx(w) d o  where fx(w) is 
the power spectrum of X , .  The estimation and interpretation of power spectra 
have been discussed in [ 4 ]  and [ S ] . The basic idea underlying the two spectral 
representations is that the series can be decomposed as a sum (i.e. integral) of 
uncorrelated components, each associated with a particular frequency. It follows 
that the variance of the series is equal to the sum of the variances of the components. 
The power spectrum records the variances of the components as a function of 
their frequencies and indicates the relative importance of the components in 
terms of their contribution to the overall variance. 

If X ,  and Y , are a pair of stationary time series, so that Y, has the spectrum fy(o) 
and Cramer representation 

then the cross spectrum (strictly power cross spectrum) Cr(w) between X ,  and Y, 
is a complex function of o and arises both from 

E[dzx(w) dz,(o)l = 0, w f A ,  

= Cr(o) do, o = A ,  

and 

eiTWCr(w),LL:~ = E [ X t x - , ]  = d o .i_". 
It follows that the relationship between two series can be expressed only in terms 

of the relationships between corresponding frequency components. 
Two further functions are defined from the cross spectrum as being more useful 

for interpreting relationships between variables : 
(i) the coherence, 

which is essentially the square of the correlation coefficient between corresponding 
frequency components of X ,  and Y , ,  and 

(ii) the phase, 

,imaginary part of Cr(w) 
4(0)= tan-
real part of Cr(o) ' 


which measures the phase difference between corresponding frequency components. 
When one variable is leading the other, $(o)/o measure the extent of the time lag. 

Thus, the coherence is used to measure the degree to which two series are 
related and the phase may be interpreted in terms of time lags. 

Estimation and interpretation of the coherence and phase function are discussed 
in [4, Chapters 5 and 61. It is worth noting that 4(o)  has been found to be robust 
under changes in the stationarity assumption [4, Chapter 91. 
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If X,, E; ,  and 2,are three time series, the problem of possibly misleading cor- 
relation and coherence values between two of them due to the influence on both 
of the third variable can be overcome by the use of partial cross-spectral 
methods. 

The spectral, cross-spectral matrix (fij(w)) = S(w) between the three variables 
is given by 

where 

Lj(w) = fx(w) when i = j = x, 

= CrXY(w) when i = x, j = y ,  

etc. 
The partial spectral, cross-spectral matrix between X, and Y,  given Z, is found 

by partitioning S(w) into components : 

The partitioning lines are between the second and third rows, and second and third 
columns. The partial spectral matrix is then 

Interpretation of the components of this matrix is similar to that involving 
partial correlation coefficients. Thus, the partial cross spectrum can be used to 
find the relationship between two series once the effect of a third series has been 
taken into account. The partial coherence and phase are defined directly from the 
partial cross spectrum as before. Interpretation of all of these functions and 
generalisations to the n-variable case can be found in [4, Chapter 51. 

3. FEEDBACK MODELS 

Consider initially a stationary random vector X, = {XI,,X,,,  . . . ,X,,), each 
component of which has zero mean. A linear model for such a vector consists of a 
set of linear equations by which all or a subset of the components of X, are "ex- 
plained" in terms of present and past values of components of X,. The part not 
explained by the model may be taken to consist of a white-noise,random vector E,, 
such that 

where I is a unit matrix and 0 is a zero matrix. 
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Thus the model may be written as 

where m may be infinite and the A's are matrices. 
The completely general model as defined does not have unique matrices A j  as an 

orthogonal transformation. Y,  = AX,  can be performed which leaves the form of 
the model the same, where A is the orthogonal matrix, i.e., a square matrix having 
the property AA' = I. This is seen to be the case as y, = As, is still a white-noise 
vector. For the model to be determined, sufficient a priori knowledge is required 
about the values of the coefficients of at least one of the A's, in order for constraints 
to be set up so that such transformations are not possible. This is the so-called 
"identification problem" of classical econometrics. In the absence of such a priori 
constraints, A can always be chosen so that the A. is a triangular matrix, although 
not uniquely, thus giving a spurious causal-chain appearance to the model. 

Models for which A, has nonvanishing terms off the main diagonal will be called 
"models with instantaneous causality." Models for which A, has no nonzero term 
off the main diagonal will be called "simple causal models." These names will be 
explained later. Simple causal models are uniquely determined if orthogonal 
transforms such as A are not possible without changing the basic form of the model. 
It is possible for a model apparently having instantaneous causality to be trans- 
formed using an orthogonal A to a simple causal model. 

These definitions can be illustrated simply in the two variable case. Suppose the 
variables are X,, Y, .  Then the model considered is of the form 

If bo = co = 0, then this will be a simple causal model. Otherwise it will be a 
model with instantaneous causality. 

Whether or not a model involving some group of economic variables can be a 
simple causal model depends on what one considers to be the speed with which 
information flows through the economy and also on the sampling period of the 
data used. It might be true that when quarterly data are used, for example, a simple 
causal model is not sufficient to explain the relationships between the variables, 
while for monthly data a simple causal model would be all that is required. Thus, 
some nonsimple causal models may be constructed not because of the basic pro- 
perties of the economy being studied but because of the data being used. It has 
been shown elsewhere [4, Chapter 7; 31 that a simple causal mechanism can appear 
to be a feedback mechanism if the sampling period for the data is so long that 
details of causality cannot be picked out. 
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4. CAUSALITY 

Cross-spectral methods provide a useful way of describing the relationship 
between two (or more) variables when one is causing the other(s). In many realistic 
economic situations, however, one suspects that feedback is occurring. In these 
situations the coherence and phase diagrams become difficult or impossible to 
interpret, particularly the phase diagram. The problem is how to devise definitions 
of causality and feedback which permit tests for their existence. Such a definition 
was proposed in earlier papers [4, Chapter 7; 31. In this section, some of these 
definitions will be discussed and extended. Although later sections of this paper will 
use this definition of causality they will not completely depend upon it. Previous 
papers concerned with causality in econonlic systems [I,6,7,8]have been particu- 
larly concerned with the problem of determining a causal interpretation of simul- 
taneous equation systems, usually with instantaneous causality. Feedback is not 
explicitly discussed. This earlier work has concentrated on the form that the param- 
eters of the equations should take in order to discern definite causal relationships. 
The stochastic elements and the natural time ordering of the variables play relative- 
ly minor roles in the theory. In the alternative theory to be discussed here, the stoch- 
astic nature of the variables and the direction of the flow of time will be central 
features. The theory is, in fact, not relevant for nonstochastic variables and will rely 
entirely on theassumption that the future cannot cause the past. This theory will not, 
of course, be contradictory to previous work but there appears to be little common 
ground. Its origins may be found in a suggestion by Wiener [9].The relationship be- 
tween thedefinition discussed hereand the work ofGood [2]has yet to bedetermined. 

If A, is a stationary stochastic process, let A, represent the set of past values 
(A,-j, j = 1,2,. . .,m) and 2, represent the set of past and present values (A,-j, 
j = 0, 1,. . . ,a}.Further let A(k) represent the set {A,_j, j = k, k + 1,. . . ,a). 

Denote the optimum, unbiased, least-squares predictor of A, using the set of 
values B, by P,(AI B). Thus, for instance, P,(XIX) will be the optimum predictor of X, 
using only past X,. The predictive error series will be denoted by s,(AIB) = A, -
P,(AIB). Let a2(AIB) be the variance of &,(AIB). 

The initial definitions of causality, feedback, and so forth, will be very general in 
nature. Testable forms will be introduced later. Let U, be all the information in the 
universe accumulated since time t - 1 and let U, - Y, denote all this information 
apart from the specified series Y , .  We then have the following definitions. 

DEFINITION1:Causality. If 02(Xl U) < 02(X/ U - Y), we say that Y is causing X, 
denoted by Y, -X,. We say that Y, is causing X, if we are better able to predict X, 
using all available information than if the information apart from I:had been used. 

DEFINITION2 : Feedback. If 

o2(x1E)< oZ(XIU- Y), 

a2(y1G) < 02(YIU - X), 

we say that feedback is occurring, which is denoted Y ,oX,, i.e., feedback is said 
to occur when X, is causing Y, and also Y, is causing X,. 
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DEFINITION3 : Instantaneous Causality. If 0 2 ( X I U ,7)< a 2 ( X 1 V ) ,we say that 
instantaneous causality Y , => X , is occurring. In other words, the current value of X ,  
is better "predicted" if the present value of Y,is included in the "prediction" than if 
it is not. 

DEFINITION X , ,  we define the (integer) causality lag m to4 :Causality Lag. If Y,  * 
be the least value of k such that 0 2 ( X I U  - Y(k)) < 0 2 ( X I U  - Y(k + 1)). Thus, 
knowing the values Y,-j, j = 0, 1, .  . . ,m - 1, will be of no help in improving the 
prediction of X , . 

The definitions have assumed that only stationary series are involved. In the 
nonstationary case, ~ ( ~ 1 8 )etc. will depend on time t and, in general, the existence 
of causality may alter over time. The definitions can clearly be generalised to be 
operative for a specified time t. One could then talk of causality existing at this 
moment of time. Considering nonstationary series, however, takes us further away 
from testable definitions and this tack will not be discussed further. 

The one completely unreal aspect of the above definitions is the use of the series 
U , , representing all available information. The large majority of the information in 
the universe will be quite irrelevant, i.e., will have no causal consequence. Suppose 
that all relevant information is numerical in nature and belongs to the vector set of 
time series Y y  = { Y f ,i E D j  for some integer set D. Denote the set {i E D , i # j )  by 
D ( j )and {Yf, i E D ( j ) ) by YP(j), i.e., the full set of relevant information except one 
particular series. Similarly, wecould leave out more than one series with the obvious 
notation. The previous definitions can now be used but with U , replaced by Y,and 
U ,  - Y, by YD"'. Thus, for example, suppose that the vector set consists only of 
two series, X ,  and Y, and that all other information is irrelevant. Then 0 2 ( X I X )  
represents the minimum predictive error variance of X ,  using only past X ,  and 
a 2 ( X I X .7)represents this minimum variance if both past X ,  and past Y,are used to 
predict X, .  Then Y , is said to cause X ,  if 0 2 ( X I X )> a 2 ( X I X ,P).The definition of 
causality is now relative to the set D. If relevant data has not been included in this 
set, then spurious causality could arise. For instance, if the set D was taken to 
consist only of the two series X ,  and Y , ,but in fact there was a third series Z , which 
was causing both within the enlarged set D' = ( X , ,I:,Z,),then for the original set D, 
spurious causality between X ,  and Y ,  may be found. This is similar to spurious 
correlation and partial correlation between sets of data that arise when some other 
statistical variable of importance has not been included. 

In practice it will not usually be possible to use completely optimum predictors, 
unless all sets of series are assumed to be normally distributed, since such optimum 
predictors may be nonlinear in complicated ways. It seems nitural to use only 
linear predictors and the above definitions may again be used under this assumption 
of linearity. Thus, for instance, the best linear predictor of X, using only past X i  and 
past Y,will be of the form 

where the aj7s and hj's are chosen to minimise a 2 ( X I X ,Y). 
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It can be argued that the variance is not the proper criterion to use to measure 
the closeness of a predictor Pi to the true value Xi .Certainly if some other criteria 
were used it may be possible to reach different conclusions about whether one 
series is causing another. The variance does seem to be a natural criterion to use in 
connection with linear predictors as it is mathematically easy to handle and simple 
to interpret. If one uses this criterion, a better name might be "causality in mean." 

The original definition of causality has now been restricted in order to reach a 
form which can be tested. Whenever the word causality is used in later sections it 
will be taken to mean "linear causality in mean with respect to a specified set D." 

It is possible to extend the definitions to the case where a subset of series D* of D 
is considered to cause X , . This would be the case if 02(XIY D )< 02(XIYD-"*)and 
then YD" X i .  Thus, for instance, one could ask if past X ,  is causing present X,. 
Because new concepts are necessary in the consideration of such problems, they 
will not be discussed here in any detail. 

It has been pointed out already [3] that instantaneous causality, in which know- 
ledge of the current value of a series helps in predicting the current value of a 
second series, can occasionally arise spuriously in certain cases. Suppose Y ,* X ,  
with lag one unit but that the series are sampled every two time units. Then al- 
though there is no real instantaneous causality, the definitions will appear to 
suggest that such causality is occurring. This is because certain relevant informa- 
tion, the missing readings in the data, have not been used. Due to this effect, one 
might suggest that in many economic situations an apparent instantaneous 
causality would disappear if the economic variables were recorded at more fre- 
quent time intervals. 

The definition of causality used above is based entirely on the predictability of 
some series, say X, .  If some other series Y,contains information in past terms that 
helps in the prediction of X i  and if this information is contained in no other series 
used in the predictor, then I:is said to cause X, .  The flow of time clearly plays a cen- 
tral role in these definitions. In the author's opinion there is lfttle use in the practice 
of attempting to discuss causality without introducing time, although philosophers 
have tried to do so. It also follows from the definitions that a purely deterministic 
series, that is, a series which can be predicted exactly from its past terms such as a 
nonstochastic series, cannot be said to have any causal influences other than its 
own past. This may seem to be contrary to common sense in certain special cases 
but it is difficult to find a testable alternative definition which could include the 
deterministic situation. Thus, for instance, if X ,  = bt and Y ,  ='c(t + I), then X i  
can be predicted exactly by b + X i - ,  or by (blc)I:-,. There seems to be no way 
of deciding if I: is a causal factor of X ,  or not. In some cases the notation of the 
"simplest rule" might be applied. For example, if X i  is some complicated poly- 
nomial in t and I: = X i +,,then it will be easier to predict X ,  from I.;-, than 
from past X, .  In some cases this rule cannot be used, as the previous example 
showed. In any case, experience does not indicate that one should expect economic 
laws to be simple in nature. 

Even for stochastic series, the definitions introduced above may give apparently 
silly answers. Suppose X ,  = A,-,  + E , ,  Y, = A,  + y,, and 2,= A, + y,,where E , ,  
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y,, and y ,  are all uncorrelated white-noise series with equal variances and At is 
some stationary series. Within the set D = ( X , ,  Y,) the definition gives Y , =-X , .  
Within the set D' = ( X i , Y , ) , it gives Z ,  => X i .  But within the set D" = ( X i , Y,, Z,),  
neither Y,nor Z, causes X , ,  although the sum of Y, and 2,would do  so. How is one 
to decide if either E; or 2, is a causal series for X,? The answer, of course, is that 
neither is. The causal series is A ,  and both Y, and Z ,  contain equal amounts of 
information about A,.  If the set of series within which causality was discussed was 
expanded to include A, , then the above apparent paradox vanishes. It will often be 
found that constructed examples which seem to produce results contrary to 
common sense can be resolved by widening the set of data within which causality is 
defined. 

5 .  TWO-VARIABLE MODELS 

In this section, the definitions introduced above will be illustrated using two- 
variable models and results will be proved concerning the form of the cross spect- 
rum for such models. 

Let X , ,  Y ,be two stationary time series with zero means. The simple causal model 
is 

where E,,  y, are taken to be two uncorrelated white-noise series, i.e., E[E,E,]= 0 = 

E[y,y,], s # t ,  and E[E,E,]= 0 all t , s. In (5.1)m can equal infinity but in practice, of 
course, due to the finite length of the available data, nz will be assumed finite and 
shorter than the given time series. 

The definition of causality given above implies that Y, is causing X, provided 
some b j is not zero. Similarly X i  is causing Y, if some c j is not zero. If both of these 
events occur, there is said to be a feedback relationship between Xi and E;. It will 
be shown later that this new definition of causality is in fact identical to that intro- 
duced previously. 

The more general model with instantaneous causality is 

... ... 

Y, + c o x ,  = x + 1djY , - j  + y,.c ~ X , - ~  
j =  1 j =  1 

If the variables are such that this kind of representation is needed, then instant- 
aneous causality is occurring and a knowledge of Y, will improve the "prediction" 
or goodness of fit of the first equation for X i .  
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Consider initially the simple causal model (5.1).In terms of the time shift operator 
U--UX, = X, - ,--these equations may be written 

where a(U) ,  b(U). c(U).  and d ( U )are power series in U with the coefficient of U 0zero, 
i.e., a(U)= xy= ajUj , etc. 

Using the Cramer representations of the series, i.e., 

and similarly for E, and y, ,  expressions such as a ( U ) X ,can be written as 

a ( U ) X ,  = J eir"a(e- 'w)  dZ,(w) . 
-R 

Thus, equations (5.3)may be written 

1, e".[(l - a(e-'O)) dZ,(m) - b(e-'") dZ,(m) - dZ,(m)] = 0, 

11, 
-n 

e""[ - dZ, (o)  + (1  - - dZ&w)]= 0,~ ( e - ' ~ )  d(e -'")) dZ,,(w) 

from which it follows that 

where 

and where a is written for a(eCi"), etc.. and d Z ,  for dZ,(w), etc. 
Thus, provided the inverse of A exists, 

As the spectral, cross-spectral matrix for X,, Y, is directly obtainable from 

these functions can quickly be found from (5.5)using the known properties of d Z ,  
and dZ,. One finds that the power spectra are given by 
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where A = j(l - a)( l  - d) - bcI2.Of more interest is the cross spectrum which has 
the form 

Thus, the cross spectrum may be written as the sum of two components 

where 

and 

If Y,  is not causing X, ,  then b = 0 and so C2(w)vanishes. Similarly if X,is not 
causing Y,then c = 0 and so C l ( w )vanishes. It is thus clear that the cross spectrum 
can be decomposed into the sum of two components-one which depends upon 
the causality of X by Y and the other on the causality of Y by X. 

If, for example, Y is not causing X so that C2(w)vanishes, then Cr(w)= C l ( o )  
and the resulting coherence and phase diagrams will be interpreted in the usual 
manner. This suggests that in general C l ( o )and C2(w)caneach be treated separately 
as cross spectra connected with the two srms of the feedback mechanism. Thus, 
coherence and phase diagrams can be defined for X * Y and Y *X. For example, 

may be considered to be a measure of the strength of the causality X * Y plotted 
against frequency and is a direct generalisation of coherence. We call C,-,(w) the 
causality coherence. 

Further, 

imaginary part of C1(w) 


q5x;;(o) = tan-' 
real part of C,(co) 

will measure the phase lag against frequency of X =-Y and will be called the 
causality phase diagram. 

Similarly such functions can be defined for Y => X using Cz(w) .  
These functions are usually complicated expressions in a,b:c,and d ;for example, 

Such formulae merely illustrate how difficult it is to interpret econometric models 
in terms offrequency decompositions. It should be noted that 0 < ] C ~ ( w ) l< 1 and 
similarly for C;(co). 
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As an illustration of these definitions, we consider the simple feedback system 

X, = + E , ,  

(5.81 
Y ,  = cX,-2 + I?,, 

where 0: = 5; = 1. 
In this case 

The spectra of the series {X,), ( Y , )  are 

and 

and thus are of similar shape. 
The usual coherence and phase diagrams derived from the cross spectrum be- 

tween these two series are 

c2 + b2 + 2bc cos w 
-C(0) = -

(1 + bZ)(l+ c2) 

and 
c sin 2 0  - b sin 0 

$(a)= tan- l 
ccos 2 0  + b cos w' 

These diagrams are clearly of little use in characterising the feedback relationship 
between the two series. 

When the causality-coherence and phase diagrams are considered, however, we 
get 

Both are constant for all w,and, ifb f 0,c # 0.$,-;(o) = 2w (time lag oftwo units):' 
$;('x(~) = o (time-lag of one unit). 

The causality lags are thus seen to  be correct and the causality coherences to be 
reasonable. In particular, if b = 0 then C,-,(o) = 0, i.e., no causality is found when 
none is present. (Further, in this new case, 4;(w) = 0.) 

' A discussion of the interpretation of phase diagrams in terms of time lags tnay be found in Granger 
and Hatanaka [4, Chapter 51. 
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Other particular cases are also found to give correct results. If, for example, we 
again consider the same simple model (4.8)but with 0; = 1,o; = 0, i.e.,y, = 0 for 
all t, then one finds 

C,-,(w) = 1, 

C,-;(o) = 0, 

i.e., X is "perfectly" causing Y and Y is not causing X, as is in fact the case. 
If one now considers the model (5.2)in which instantaneous causality is allowed, 

it is found that the cross spectrum is given by 

where 
A ' =  1(1 - a ) ( l  - d) - (b - bo)(c - cO)l2. 

Thus, once more, the cross spectrum can be considered as the sum of two compon- 
ents, each ofwhich can be associated with a "causality," provided that this includes 
instantaneous causality. It is, however, probably more sensible to  decompose 
Cr(w) into three parts, Cr(c0) = Cl(w) + C2(w)+ C3(w), where Cl(w) and C2(o)  
are as in (5.7) but with A replaced by A' and 

representing the influence of the instantaneous causality. 
Such a decon~position may be useful but it is clear that when instantaneous 

causality occurs, the measures of causal strength and phase lag will lose their 
meaning. 

It was noted in Section 3 that instantaneous causality models such as (5.2) in 
general lack uniqueness of their parameters as an orthogonal transformation A 
applied to the variables leaves the general form of the model unaltered. It is 
interesting to note that such transformations do not have any effect on the cross 
spectrum given by (5.9) or the decomposition. This can be seen by noting that 
equations (5.2) lead to 

with appropriate A.  Applying the transformation A gives 

so that 
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which is the same as if no such transformation had been applied. From its defini- 
tion, A will possess an inverse. This result suggests that spectral methods are more 
robust in their interpretation than are simultaneous equation models. 

Returning to the simple causal mode1 (5.3), 

throughout this section it has been stated that Y,+ X i  ifb = 0.On intuitive grounds 
this seems to fit the definition ofno causality introduced in Section 4, within the set 
D of series consisting only of X i  and E;. If b - 0 then X ,  is determined from the first 
equation and the minimum variance of the predictive error of X i  using past X i  
will be 0:. This variance cannot be reduced using past Y, .  It is perhaps worthwhile 
proving this result formally. In the general case, it is clear that 0 2 ( X J X ,F) = o:, i.e., 
the variance of the predictive error of X i ,  if both past X i  and past E; are used, will be 
o: from the top equation. If only past X i  is used to predict X,, it is a well known 
result that the minimum variance of the predictive error is given by 

(5.11) 0 2 ( X I X )= expin s:. log47cf,(w) d o .  

It was shown above in equation (5.6) that 

where A = 1(1 - a ) ( l  - d )  - bcI2.TO simplify this equation, we note that 

by symmetry. Thus if, 

then 0 2 ( X I X )= a,. For there to be no causality, we must have a, = o:. It is clear 
from the form of f x ( o )that in general this could only occur if Ibl E 0, in which case 
2.nf,(w) = 0,2/11 - aI2 and the required result follows. 

The above results can be generalised to the many variables situation, but the 
only case which will be considered is that involving three variables. 

Consider a simple causal model generalising (5.1): 
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whereal(U), etc., are polynomials in U ,the shift operator, with the coefficient of U 0  
zero. As before, ci,,,i = 1,2,3, are uncorrelated, white-noise series and denote the 
variance E ~ , ,= o f .  

- 1, p = b2 -

a bl 

;3 1;Let a 1, y = c,  - 1, and= a ,  

c1 

A = 

where b ,  = bl(e-'"), etc., as before. Using the same method as before, the spectral, 
cross-spectral matrix S(w)is found to be given by S ( o )= A- 'k (A f ) - '  where 

One finds, for instance, that the power spectrum of X i  is 

fx(w) = lAl-2[o: lp~- c2b3I2 + dIctb3 - YbtI2 + o:lblci - C I ~ ~ ~ I 
where A is the determinant of A. 

The cross spectrum between X, and Y, is 

Thus, this cross spectrum is the sum of three components, but it is not clear that 
these can be directly linked with causalities. More useful results arise, however, 
when partial cross spectra are considered. After some algebraic manipulation it is 
found that, for instance, the partial cross spectrum between X, and I: given 2, is 

where 

f:(w) = a:JBy - c2b3I2+ o$Iclb3- blyI2 + o;lblc2 - c1BI2 

Thus, the partial cross spectrum is the sum of three components 

C:?.z(o) = C?Y.Z + cxY.z  + c x y s z
2 3 

where 

CXY.Z = -a:aib3a3 
1 , etc.f :(w) 

These can be linked with causalities. The component C;?,'(w) represents the inter- 
relationships of X ,  and Y, through Z,, and the other two components are direct 
generalisations of the two causal cross spectra which arose in the two variable 
case and can be interpreted accordingly. 
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In a similar manner one finds that the power spectrum of X,, given 2,is 

The causal and feedback relationships between X, and I:can be investigated 
in terms of the coherence and phase diagrams derived from the second and third 
components of the partial cross spectrum, i.e., 

---t JC;Y.z12
coherence (xy, z ) ,,-,= etc. 

7. CONCLUSION 

The fact that a feedback mechanism may be considered as the sum of two causal 
mechanisms and that these causalities can be studied by decomposing cross or 
partial cross spectra suggests methods whereby such mechanisms can be in- 
vestigated. Hopefully, the problem of estimating the causal cross spectra will be 
discussed in a later publication. There are a number of possible approaches and 
accumulated experience is needed to indicate which is best. Most of these 
approaches are via the model-building method by which the above results were 
obtained. It is worth investigating, however, whether a direct method of estimating 
the components of the cross spectrum can be found. 

T h e  University of' Nottingham 
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