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Multivariate tests for the evaluation of high-dimensional EEG data
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Abstract

In this paper several multivariate tests are presented, in particular permutation tests, which can be used in multiple endpoint problems as
for example in comparisons of high-dimensional vectors of EEG data. We have investigated the power of these tests using artificial data in
simulations and real EEG data. It is obvious that no one multivariate test is uniformly most powerful. The power of the different methods
depends in different ways on the correlation between the endpoints, on the number of endpoints for which differences exist and on other
factors. Based on our findings, we have derived rules of thumb regarding under which configurations a particular test should be used. In order
to demonstrate the properties of different multivariate tests we applied them to EEG coherence data. As an example for the paired samples case,
we compared the 171-dimensional coherence vectors observed for the alpha1-band while processing either concrete or abstract nouns and
obtained significant global differences for some sections of time. As an example for the unpaired samples case, we compared the coherence
vectors observed for language students and non-language students who processed an English text and found a significant global difference.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The improvement of EEG/MEG measurement equipment
permits the registration of a high number of channels. Ad-
ditionally, modern analysis procedures yield large sets of
high-dimensional parameters, which have to be evaluated
statistically. Furthermore, the statistical evaluation of spec-
tral parameters of different frequency bands becomes nearly
unmanageable.

Many authors use anα-level test for each single com-
ponent or endpoint of the observational vector, see e.g.
Rappelsberger and Petsche (1988). However, this practice
results in a large number of false positive statements. There
exist several techniques to cope with this general drawback
in multiple comparisons. Corresponding multiple tests will
be considered in a forthcoming paper. In this paper, we
will deal with so-called global tests or multivariate tests. A
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multivariate test provides one joint statement on all end-
points, whereas a multiple test provides a statement for each
endpoint.

A well-known multivariate test is Hotelling’sT2-test.
However, this test cannot be executed if the dimension
of the data is higher than the number of subjects, which
is the usual situation in EEG studies. Another drawback
is that theT2-test requires multivariate normal distribu-
tions. Therefore, several new statistical methodologies have
been developed. Recently, several authors have proposed
special test statistics in permutation tests for evaluating
high-dimensional EEG data (see e.g.Karniski et al., 1994;
Galan et al., 1997; Harmony et al., 2001). Permutation tests
do not require special distributions and have several other
advantages (seeLudbrook and Dudley, 1998).

Our paper has the following aims: (a) to give an overview
of appropriate multivariate tests including novel methods,
(b) to study and to compare the power characteristic of dif-
ferent multivariate tests using simulations with different data
configurations, (c) to derive general rules for determining
which test is suitable for which configuration, and (d) to
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demonstrate the use of different multivariate tests in compar-
isons of large sets of coherence values obtained from EEG
recordings during language processing in one group of sub-
jects under different conditions (paired samples problem)
and in two groups of subjects performing the same cognitive
task (two independent samples problem).

2. Methods

2.1. Multivariate tests

In analogy to the univariate case, we must differentiate
between the case of paired samples and unpaired samples,
i.e. two independent samples. In the paired samples case, we
observen subjects under two different conditions, say A and
B. In the case of two independent samples, we observen1
subjects under condition A andn2 subjects under condition
B.

Our observations are vectors of dimensionk. Let x =
(x1, . . . , xk) andy = (y1, . . . , yk) denote the random vec-
tors with means(µx1, . . . , µxk

) and(µy1, . . . , µyk
), respec-

tively. In the paired and the unpaired samples case,x stands
for the observations under condition A andy under condi-
tion B. We now can formulate the individual null hypothe-
sesH1 : µx1 = µy1, . . . , Hk : µxk

= µyk
and the global

hypothesisH0 : µx1 = µy1, . . . , µxk
= µyk

. This means,
H0 is the intersectionH0 = H1 ∩ . . . ∩ Hk. Tests forH0 are
called global tests or multivariate tests, tests forH1, . . . , Hk

are called multiple tests.

2.1.1. The methods of Bonferroni and Simes
The simplest way to testH0 at level α is to test all in-

dividual hypothesesH1, . . . , Hk at level α/k and to reject
H0, if and only if, at least oneHi can be rejected. This is
the well-known Bonferroni method. LetP1, . . . , Pk be the
P-values obtained when testingH1, . . . , Hk, and letP(1) ≤
. . . ≤ P(k) denote the orderedPi. Then, the Bonferroni
method rejectsH0 if P(1) ≤ α/k.

Another simple test is the global test ofSimes (1986).
This test rejectsH0 if P(i) ≤ αi/k for at least onei (1 ≤ i ≤
k). Note, that the mathematical proof that this test keeps the
α-level was given only for the case of uncorrelatedP-values.
However, simulations bySimes (1986), Samuel-Chan (1996)
and other authors permit the conclusion that with two-sided
comparisons theα-level is always kept. It is also kept with
one-sided comparisons when theP-values are positively
correlated. Only with negative correlations a slight but ac-
ceptable anti-conservativeness could be observed. Hence,
there are no practical objections against using this test,
generally.

A disadvantage of the Bonferroni method and the Simes
test is that they cannot take into consideration the correlation
between the endpoints orP-values. Nevertheless, with cer-
tain configurations they have higher power than some other
tests that consider the correlation, seeSection 3.

2.1.2. Methods of the O’Brien type
A pure multivariate test, which considers the correlation,

is Hotelling’sT2-test, which is well known. However, as al-
ready mentioned inSection 1, this test is not appropriate
for the analysis of EEG data, which comprise many com-
ponents with few subjects. Another disadvantage is that this
test requiresk-variate normal distributions. TheT2-test has
also the drawback that it cannot differentiate between any
departures fromH0 and departures of all endpoints into the
same direction, i.e. it is not very sensitive against effects in
the same direction.

In order to overcome the latter disadvantage of theT2-test,
several attempts have been made, e.g. inO’Brien (1984),
Pocock et al. (1987), Tang et al. (1989). The rationale behind
all methods proposed is the following: For each subject, one
calculates a single score from itsk component values. In this
way, thek-variate problem is reduced to a univariate prob-
lem. With these scores, the matched pairst-test is executed in
the paired samples situation and the two-samplet-test in the
two independent samples situation. For example, the score
belonging to a subject of the so-called ordinary least squares
(OLS) test of O’Brien is simply the sum of its standardized
component values, and OLR stands for a version that uses
the corresponding ranks. Unfortunately, it turned out that
with these methods theα-level could not be kept when the
sample sizes are small, i.e. these tests are anti-conservative,
see Kropf (2000), Reitmeir and Wassmer (1996), Frick
(1997). However,Läuter et al. (1996)succeeded in con-
structing corresponding tests that exactly keep theα-level
that are sensitive against departures fromH0 either in one
direction or in both directions, and that can be used with
anyk andn. We will consider three different tests ofLäuter
et al. (1996), namely the standardized sum test (SS test), the
principal component test (PC test) without scale correction
and the PC test with scale correction. The SS test is sensitive
against departures fromH0 in all endpoints into the same
direction. With this test, the different components may be
measured in different scales, e.g. one in mm, another in kg,
etc. or also if the ranges of possible values are different, e.g.
if the range of one endpoint is 1–10 mm and the range of an-
other endpoint 20–50 mm. The PC test with scale correction
should be used if the different endpoints are measured in dif-
ferent scales or if the endpoints differ in their ranges. Other-
wise, the PC test without scale correction is recommended.
Useful descriptions of Läuter tests and other tests of the
O’Brien type can be found inBregenzer (2000)as well as in
Kropf (2000).

These tests have one of the disadvantages of theT2-test:
they requirek-variate normality. Tests that do not require
special distributions are permutation tests.

2.1.3. Permutation tests
The idea of permutation tests is an old one, however

their broad practical application became possible only by
fast computers. Below we will use numerical examples
in order to explain the permutation principle for paired
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Table 1
Permutations of paired samples data of dimensionk = 2 with n = 3 subjects, and values of different test statistics

Permutation Subject (x1, x2) (y1, y2) t1 t2 tsum t|sum| tmax

1 (original data) 1 (8, 6) (5, 2) 3.46 5.20 8.66 8.66 5.20
2 (4, 3) (3, 1)
3 (6, 7) (4, 4)

2 1 (8, 6) (5, 2) 0.46 0.48 0.94 0.94 0.48
2 (4, 3) (3, 1)
3 (4, 4) (6, 7)

3 1 (8, 6) (5, 2) 1.11 0.90 2.01 2.01 1.11
2 (3, 1) (4, 3)
3 (6, 7) (4, 4)

4 1 (8, 6) (5, 2) 0.00 −0.15 −0.15 0.15 −0.15
2 (3, 1) (4, 3)
3 (4, 4) (6, 7)

5 1 (5, 2) (8, 6) 0.00 0.15 0.15 0.15 0.15
2 (4, 3) (3, 1)
3 (6, 7) (4, 4)

6 1 (5, 2) (8, 6) −1.11 −0.90 −2.01 2.01 −1.11
2 (4, 3) (3, 1)
3 (4, 4) (6, 7)

7 1 (5, 2) (8, 6) −0.46 −0.48 −0.94 0.94 −0.48
2 (3, 1) (4, 3)
3 (6, 7) (4, 4)

8 1 (5, 2) (8, 6) −3.46 −5.20 −8.66 8.66 −5.20
2 (3, 1) (4, 3)
3 (4, 4) (6, 7)

sample and two independent sample analyses that employ
t-statistics.

2.1.3.1. Paired samples.We consider an artificial numeri-
cal example given inBlair and Karniski (1993), seeTable 1.
The sample size isn = 3, the dimension of observational
vectorsx andy is k = 2.

The total number of permutations is 2n = 23 = 8. What
we call permutation 1 is the original data. A permutation
is obtained by exchanging thex-vector of a subject for the
y-vector of the same subject. Note that completex- and
y-vectors must be exchanged as their components are corre-
lated. In this way, permutation 2 was obtained by exchang-
ing the x-vector for they-vector of subject 3, permutation
3 by exchanging thex-vector for they-vector of subject 2,
permutation 4 by exchanging thex-vectors for they-vectors
of subjects 2 and 3, etc. This approach is justified because
all such permutations are equally likely when the null hy-
pothesis of no difference between the two conditions is true.

Now, for each permutation, the paired samplest-statistic
was calculated separately for each component.t1 is the
t-value when comparingx1 andy1, andt2 when comparing
x2 andy2. In order to combine the information from the uni-
variate test statistics in a single multivariate test statistic, we
have various possibilities. We can calculatetsum = ∑k

j=1tj

or t|sum| = ∑k
j=1|tj| or tmax = t′j, wheret′j is equal to thetj

(j = 1, . . . , k) which has the greatest absolute value. These

test statistics were already used inBlair et al. (1994). In our
example we havetsum = t1 + t2, t|sum| = |t1| + |t2| and
tmax = t1 if |t1| > |t2| or tmax = t2 if |t1| ≤ |t2|.

The different test statistics are sensitive to different spe-
cific forms of departures fromH0. tsum is sensitive to depar-
tures of all endpoints in the same direction, in contrast to
t|sum|. tmax is sensitive to departures in only a few endpoints.
Other appropriate multivariate test statistics are thet-values
of the Läuter tests which are denoted bytSS for the SS test
and bytPC for the PC test without scale correction and by
tPC+ for the PC test with scale correction. The use of these
test statistics in permutation tests was already proposed in
Kropf (2000).

The statistict|sum| permits only two-sided testing, in con-
trast to the other statistics. One-sided testing requires to
specify a direction of testing in advance. In our example,
one-sided testing means to show that the mean vector ofx1
andx2 tends to be greater than that ofy1 andy2. Two sided
testing does not specify a direction.

The sampling distribution of multivariate permutation
statistics is obtained by computing the desired test statis-
tic for all permutations. As underH0 all permutations are
equally likely, we can easily calculate theP-value, i.e. the
probability of obtaining an observation which underH0 is
at least as extreme as that of the original data. In our case,
the P-value is the number of permutations for which the
test statistic has a value not smaller than that of the original
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data, divided by the total number of permutations. In our
example, the test statisticstsum, t|sum|, andtmax attain their
maximum value for permutation 1, i.e. for the original data.
Therefore, the probability of obtaining fortsum a value
not smaller than 8.66 is 1/8 = 0.125 as only one of the
eight tsum values is not smaller than 8.66, i.e. the one-sided
P-value is 0.125. The same applies totmax. For t|sum| we
have only a two-sided test. ItsP-value is 2/8 = 0.25. In
order to calculate two-sidedP-value for tsum (or tmax), we
determine the number of permutations where the absolute
value of tsum (tmax) is equal to or greater than the corre-
sponding absolute value for the original data, and divide it
by the number of permutations. Then the two-sidedP-value
for tsum (andtmax) is 0.25.

If n is large, it is difficult to perform the calculations for all
2n permutations. Then, the so-called Monte Carlo method
is used which means thatM permutations are randomly se-
lected out of all possible permutations. TheP-value is then
the number of permutations for which the test statistic has a
value not smaller than that for the original data, divided by
M. The difference between the exact and the Monte Carlo
method is negligible whenM is large.

2.1.3.2. Two independent samples.Before we explain the
permutation test for two independent samples we introduce
a new multivariate test statistics for two-sided comparisons
of two independent samples. Its use in permutation tests
showed a surprisingly high power for some configurations,
seeSection 3. The suggestion comes fromGood (2000)who
used the term

∑n2
i=1(yi − x̄)2 in a test statistic for detecting

differences between means in the univariate case for a special
situation.

Let thek-variate observations we obtain for two indepen-
dent samples be given in a data matrix




x11 · · · x1k

...
...

xn11 · · · xn1k

y11 · · · y1k

...
...

yn21 · · · yn2k




.

For all components, we calculate the sample means
x̄j = (1/n1)

∑n1
i=1xij and ȳj = (1/n2)

∑n2
i=1yij , the

sample variancess2
xj

= (1/(n1 − 1))
∑n1

i=1(xij − x̄j)
2

and s2
yj

= (1/(n2 − 1))
∑n2

i=1(yij − ȳj)
2, and the dif-

ferences vij = (yij − x̄j)/
√

s2
yj

+ s2
xj

/n1 and wij =
(xij − ȳj)/

√
s2
xj

+ s2
yj

/n2 (j = 1, . . . , k). Note that the

denominators invij and wij are the estimates of the stan-
dard deviations of the respective numerators. Now we
calculate the means̄v = (1/kn2)

∑k
j=1
∑n2

i=1vij and w̄ =
(1/kn1)

∑k
j=1
∑n1

i=1wij , the differencesaij = vij − v̄ (i =

1, . . . , n2, j = 1, . . . , k) anda∗
ij = wij − w̄ (i = 1, . . . , n1,

j = 1, . . . , k), and the component-wise test statisticsaj =
(1/n2)

∑n2
i=1a

2
ij + (1/n1)

∑n1
i=1(a

∗
ij )

2 (j = 1, . . . , k). Finally
we determineta = max{a1, . . . , ak}, which is the new
global test statistic we propose. Note thataj (j = 1, . . . , k)
and with it ta are symmetric inx andy, i.e. exchanging the
two samples gives the same value.

The rationale behind this proposal will be explained under
simplifying assumptions. Let the mean vectors(µx1, ..., µxk

)

and (µy1, ..., µyk
) differ in exactly m components, for ex-

ampleµyi − µxi = ∆i (i = 1, . . . , m) andµyi − µxi = 0
(i = m + 1, . . . , k). Assume thatn1 andn2 are very large,
so thats2

xj
ands2

yj
can be replaced by their respective expec-

tationsσ2
xj

andσ2
yj

, ands2
xj

/n1 ands2
yj

/n2 by 0. In addition

assume thatσ2
xj

= σ2
yj

= σ2
j . Then

E(aij ) = E(yij ) − E(x̄j)

σj

− E(v̄) = ∆j

σj

− 1

k

m∑
l=1

∆l

σl

,

and

E(a∗
ij ) = E(xij ) − E(ȳj)

σj

− E(w̄) = −
(

∆j

σj

− 1

k

m∑
l=1

∆l

σl

)

(j = 1, . . . , m).

Thus, for large values of |∆j/σj | we can expect that|aij | and
|a∗

ij | with it aj and finallyta are large.
Note thatE(aij ) = E(a∗

ij ) = 0, if m = k and∆1/σ1 =
· · · = ∆k/σ, so thatta provides a low power. This can be
seen in our simulation results inFigs. 3 and 4in Section 3.
However, such a situation will rarely be met in practice.

We now explain the permutation principle when com-
paring two independent samples. Again, we use a simple
numerical example, seeTable 2. The two independent sam-
ples have the sizesn1 = 3 (subjects under condition A) and
n2 = 2 (subjects under condition B). The dimension of the
observational vectorsx andy is k = 2. Permutation 1 is the
original data. The way of permuting is different from that in
the paired samples case. We now exchange vectors observed
in subjects under A for vectors observed in (other) subjects
under B. So permutation 2 was obtained by exchanging the
x-vector of the first subject of the sample under A for the
y-vector of the first subject of the sample under B, permu-
tation 3 by exchanging thex-vector of the second subject
under A for they-vector of the first subject under B, etc. In
this way we obtain(n1 + n2)!/(n1!n2!) = 5!/(3!2!) = 10
permutations. The justification for this approach is similar
as in the paired samples case. Now, for each permutation,
the valuest1 and t2 of the t-statistic for the case of two
independent samples were calculated separately for each of
the two components. Finally, the multivariate test statistics
tsum, t|sum|, and tmax were calculated fromt1 and t2 in the
same way as in the paired samples case. In addition, the
new test statisticta was calculated. Now, theP-values can
be calculated as described for the paired samples case. For
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Table 2
Permutations of two-dimensional data of two independent samples with sizesn1 = 3 andn2 = 2, and values of different test statistics

Permutation (x1, x2) (y1, y2) t1 t2 tsum t|sum| tmax ta

1 (original data) (8, 6) (5, 2) 1.20 2.40 3.60 3.60 2.40 1.72
(4, 3) (3, 1)
(6, 7)

2 (5, 2) (8, 6) −0.25 0.18 −0.07 0.43 −0.25 0.82
(4, 3) (3, 1)
(6, 7)

3 (8, 6) (4, 3) 2.37 1.42 3.79 3.79 2.37 1.22
(5, 2) (3, 1)
(6, 7)

4 (8, 6) (6, 7) 0.61 −0.12 0.59 0.73 0.61 0.97
(4, 3) (3, 1)
(5, 2)

5 (3, 1) (5, 2) −1.36 −0.12 −1.48 1.48 −1.36 1.22
(4, 3) (8, 6)
(6, 7)

6 (8, 6) (5, 2) 0.61 0.89 1.50 1.50 0.89 0.78
(3, 1) (4, 3)
(6, 7)

7 (8, 6) (5, 2) −0.25 −0.44 −0.69 0.69 −0.44 0.77
(4, 3) (6, 7)
(3, 1)

8 (5, 2) (8, 6) −0.71 −0.44 −1.15 1.15 −0.71 0.84
(3, 1) (4, 3)
(6, 7)

9 (5, 2) (8, 6) −2.85 −5.40 −8.25 8.25 −5.40 3.94
(4, 3) (6, 7)
(3, 1)

10 (8, 6) (4, 3) 0.17 −0.81 −0.64 0.98 −0.81 1.10
(5, 2) (6, 7)
(3, 1)

example, as we have two permutations withtsum ≥ 3.60,
the one-sidedP-value fortsum is 2/10 = 0.2. The one-sided
P-value fortmax is 0.1. The two-sidedP-values fortmax and
ta are 0.2, and fortsum andt|sum| are 0.3.

2.2. Artificial data and real data (EEG data)

2.2.1. Artificial data
We generated samples fromk-variate normal, exponen-

tial and log-normal distributions for special configurations
of means and correlation coefficients, and executed the dif-
ferent multivariate tests described inSection 2.1. The com-
ponents ofk-variate normally distributed vectorsx and y
had common variance 1. For all distributions, the means
µx1, ..., µxk

andµy1, ..., µyk
were chosen so, thatµyi−µxi =

∆ (i = 1, . . . , m) andµyi − µxi = 0 (i = m + 1, . . . , k).
This means we consideredm false andk−m true hypotheses,
and the deviations of the false hypotheses were all into the
same direction. The value ofm was varied between 1 andk.

In the paired samples case, we denote the coefficients of
correlation between the differencesxi−yi andxj −yj by ρij

(1 ≤ i ≤ j ≤ k). In the case of two independent samples,

ρij denotes the coefficient of correlation between the com-
ponentsxi andxj as well as between the componentsyi and
yj (1 ≤ i ≤ j ≤ k). For both paired and unpaired samples,
we first considered the caseρij = ρ (i �= j), i.e. constant
(low, moderate or high) correlation. However, in most prac-
tical situations, the correlation coefficientsρij do not have
the same value and the same sign. Therefore, we also consid-
ered the following two types of correlation matrices Corr1
and Corr2. The matrix

Corr1=




1
k − 1

k

k − 2

k
· · · 1

k
k − 1

k
1

k − 1

k
· · · 2

k
k − 2

k

k − 1

k
1 · · · 3

k
...

...
... · · · ...

1

k

2

k

3

k
· · · 1




may be typical for longitudinal observations, e.g. time se-
ries where neighboring observations have higher correlations



116 C. Hemmelmann et al. / Journal of Neuroscience Methods 139 (2004) 111–120

than more distant observations. The matrix

Corr2=




R1 R2 R2

R2 R1 R2

R2 R2 R1




with

R1 =




1 2/3 · · · 2/3

2/3 1 · · · 2/3
...

... · · · ...

2/3 2/3 · · · 1




and

R2 =




−1/3 −1/3 · · · −1/3

−1/3 −1/3 · · · −1/3
...

... · · · ...

−1/3 −1/3 · · · −1/3




was used in order to investigate a case where both, positive
and negative correlations occur.

The number of repeated simulations for any configuration
was 5000, the number of permutations in each permutation
test was 1000.

2.2.2. EEG data
The EEG was recorded with 19 gold-disc electrodes ac-

cording to the 10–20 system against the averaged signals
(A1+A2)/2 of both ear lobe electrodes. Filter settings were
0.3–35 Hz, sampling frequency was 256 Hz. Epochs with ar-
tifacts were eliminated from further processing.

2.2.2.1. Word processing under different conditions.
Twenty-three right-handed female native German speakers
participated in the experiment (age 22–26). Two word lists
each containing either 25 concrete or 25 abstract German
nouns were selected and psycholinguistically controlled
(e.g. Weiss and Müller, 2003). Nouns had a mean word
length of 0.9 s± 0.08 and were auditorily presented with an
interstimulus interval of 2.5 s. Participants were requested
to memorize the presented nouns and had to recall them af-
ter the presentation. A trigger marked the beginning of each
word presentation, and the following 1 s EEG epochs were
selected for coherence analysis. Instantaneous coherence
values for each electrode pair of the alpha1-band (8–10 Hz)
were computed with a time resolution of approximately
4 ms in accordance with the sampling frequency of 256 Hz
on the basis of an ARMA model with time-varying model
parameters (see e.g.Schack et al., 1999, 2003). The chosen
frequency resolution was 0.5 Hz. Averaging was performed
within the alpha1-band (8–10 Hz) over adjacent spectral
lines. For each trial 250 instantaneous coherence values
were obtained. The next step was averaging over the single
trials time point by time point. For data reduction, the 1 s
trials were divided into 10 sections of 100 ms. This yielded

10 coherence values per presentation mode and per word
category.

The comparison of coherence values for all 171 electrode
pairs accompanying concrete and abstract nouns processing
requires a multivariate test for paired samples.

2.2.2.2. Foreign language processing by different groups.
A group of 19 foreign language students (all studying En-
glish language and linguistics at university level) and a sec-
ond group of 19 non-language students (studying other sub-
jects than languages), all mother-tongue German speakers,
participated in the experiment. The subjects had to watch
various video sequences of TV news on a TV screen. The
stimulus material used in this study comprised nine individ-
ual tasks. Each task was a sequence of an approximately
2 min video-recorded TV news text. The TV news texts were
presented in British English, in American English and in
Austrian German, and in three modalities: visual+ auditory
(TV mode), auditory only and visual only. Looking at a gray
flickering picture was chosen as a control situation in order
to control individual base-line effects.

For all electrode pairs ordinary coherence values of the
alpha1-frequency band (8–10 Hz) were calculated according
to the Bartlett algorithm by using 2 s intervals for averaging
procedures.

We evaluated one of the three TV-news (British English)
which were presented in TV mode (visually+ auditory).
The comparison of the 171-dimensional vectors of coher-
ence values of the two groups of subjects requires a multi-
variate test for two independent samples.

3. Results

3.1. Power characteristics and power comparisons

Power is a statistical term. The power of a multivariate test
is the probability of rejecting the global null hypothesis if it
is false. It may depend on various quantities, e.g. the corre-
lation between the components, the number of components,
the number of components where differences exist, etc. In
order to estimate the power and to study its dependence on
these quantities it is common to perform computer simula-
tions. For this purpose, we generated samples fromk-variate
distributions as described inSection 2.2.1, and applied the
different multivariate tests introduced inSection 2.1. The re-
sults reported in the sequel are restricted to two-sided testing
and to normal distributions. The results for other distribu-
tions were similar. They are not shown here.

We observed that the power of most (but not all) meth-
ods increases with increasingm/k. This is what one would
expect.

When ρij = ρ for i �= j, i.e. when the correlation is
the same for all pairs of components, the influence of the
correlation on the power is different for different methods,
seeFigs. 1 and 2.
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Fig. 1. Power dependence on the correlationρ in the paired samples case
for m = 5 (left side) andm = 35 (right side) (k = 40, n = 20, ∆ = 0.4,
α = 0.05).

The power of the permutation test withtmax is higher than
the power of all other methods, ifm/k is small, seeFig. 1,
left side. A comparison of the remaining methods shows
that the Simes method and the Bonferroni method have a
relatively high power ifρ is small or medium. A different
characteristic and rank order of the methods can be observed
if m/k is large, seeFig. 1, right side. Note also that with large
m/k the power decreases whenρ increases. This tendency
was also reported in other papers, e.g. inBlair et al. (1994).

tmax is superior also with mediumm/k as long as the cor-
relation is high, seeFig. 2, right side. However,tmax and
also Bonferroni and Simes are inferior with low correlation
and largem/k, seeFig. 2, left side. Note that in each situa-
tion a better test exists than the methods of Simes or Bon-
ferroni. This applies also for the two independent samples
case. Hence, in the power plots for this case we will omit
the Simes and Bonferroni methods.

In the two independent samples case, we obtained similar
results as in the paired samples case when using the same

Fig. 2. Power dependence onm/k in the paired samples case forρ = 0.2
(left side) andρ = 0.8 (right side) (k = 40, n = 20, ∆ = 0.4, α = 0.05).

Fig. 3. Power values in the two independent samples case fork = 20
(left side) andk = 100 (right side) (ρ = 0.8, n1 = n2 = 10, ∆ = 0.7,
α = 0.05).

test statistics. When applying the new statisticta introduced
in Section 2.1.3.2, we obtained more powerful tests for equal
correlations, seeFig. 3. Note that the power of the test with
ta is higher fork = 100 than fork = 20 whenm/k is 0.1
or 0.9, whereas the power of the other tests seems to be
independent ofk. Only, whenm = k, ta provides a low
power, see alsoFig. 4. The explanation is given inSection
2.1.3.2.

When considering the correlation structures given by the
matrices Corr1 and Corr2, we obtained the power estimates
in Fig. 4. Under Corr1 the power curves do not differ so
strongly as under Corr2 where the tests withtSS and tsum
are distinctly better. Under both correlation structuresta pro-
vides low power. However, as already mentioned, in these
simulations allm mean differencesµyi − µxi were positive.
If we considered positive and negative differences, the power
for tSS andtsum would be lower and the power forta higher.

Table 3provides an overview of which methods were best
in which configuration. The statements there may be helpful

Fig. 4. Power values in the two independent samples case with correlation
matrix Corr1 (left side) and correlation matrix Corr2 (right side) (k = 15,
n1 = n2 = 10, ∆ = 0.7, α = 0.05).
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Table 3
Best multivariate tests under different configurations for paired samples and two independent samples

Correlation Relative number of false hypotheses Paired samples Two independent samples

ρ = 0.2 Small tmax, Simes, Bonferroni ta
Medium t|sum| t|sum|
Large t|sum|, tsum, tSS, tPC t|sum|, OLS, tSS

ρ = 0.8 Small tmax ta
Medium tmax ta
Large tmax, t|sum|, tsum tSS, t|sum|

Corr1 Small tmax ta
Medium tmax tmax

Large tsum, t|sum|, tSS, tPC tsum, t|sum|, tSS, tPC

Corr2 Small tsum, tSS tsum, OLS, tSS, OLR
Medium tsum, tSS tsum, OLS, tSS, OLR
Large tsum, tSS, t|sum| tsum, OLS, tSS, OLR

to decide which of the different tests or test statistics should
be used for evaluating data at hand.

3.2. Applications of multivariate tests to EEG coherence
data

3.2.1. Paired samples of word processing under two
different conditions

The data we now evaluate come from the experiment
described inSection 2.2.2.1. The number of subjects was
23. For each subject, a vector of 171 coherence values was
obtained under two different conditions, namely under the
processing of either concrete or abstract nouns. The co-
herence values are given for 10 sections of time: 0–100,
100–200,. . . , 900–1000 ms. For each section, we tested
the global hypothesis of no difference between concrete
and abstract nouns processing in all 171 components. The
P-values obtained for the permutation test with the differ-
ent test statistics are given inTable 4. P-values smaller than
0.05 are in bold type, which means that the correspond-
ing tests rejected the global hypothesis at the 5% level.
TheP-values for the Bonferroni and the Simes methods are
omitted. Neither rejected the global hypothesis. The pure
Läuter tests also did not provide significance in contrast to
permutation tests that used the Läuter test statistics. It can

Table 4
P-values of the multivariate permutation test with different test statistics for 10 sections of time

Test Time in ms

0–100 100–200 200–300 300–400 400–500 500–600 600–700 700–800 800–900 900–1000

tsum 0.0164 0.1202 0.1216 0.3455 0.0344 0.0482 0.3091 0.3433 0.6591 0.5607
t|sum| 0.0212 0.1462 0.0842 0.1910 0.0230 0.0308 0.2198 0.2743 0.4269 0.5005
tmax 0.2845 0.0368 0.0660 0.0576 0.0252 0.0174 0.0458 0.0336 0.2517 0.7197
tSS 0.0144 0.1218 0.1290 0.3575 0.0336 0.0526 0.3133 0.3477 0.6591 0.5581
tPC 0.0138 0.0928 0.0640 0.1616 0.0202 0.0208 0.2250 0.2887 0.5581 0.5167
tPC+ 0.0148 0.1022 0.0732 0.2216 0.0236 0.0308 0.2835 0.3285 0.5617 0.5143

be seen that in different sections different tests provided
significance.

3.2.2. Paired samples from longitudinal observations of
word processing for only one component under two
different conditions

In this section, we consider the same data as in the for-
mer section. However, we now evaluate only the coherence
values obtained for one of the 171 components, namely for
the electrode pair P3/O1, as a function of time. As we have
10 sections of time, we have a multivariate test problem of
dimensionk = 10. The mean coherence values under pro-
cessing of abstract and concrete nouns are given for the 10
sections of time inFig. 5, left side.

This illustration and also the boxplots of the pairwise dif-
ferences inFig. 5, right side, suggest that the presentation
of abstract nouns results in higher coherence values than
the presentation of concrete nouns for this electrode pair.
When we separately test each of the 10 differences with
the Wilcoxon test, we obtainP-values greater than 0.05,
seeFig. 5, right side. However, theP-values of the multi-
variate permutation tests with the test statisticstsum andtSS
are 0.05 and 0.046, respectively, seeTable 5. This permits
the rejection of the global null hypothesis and confirms that
the curve of coherence values over the 10 sections of time
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Fig. 5. Mean coherence values for the electrodes P3 and O1 for abstract and concrete nouns processing (left side) and corresponding boxplots and
Wilcoxon testP-values of coherence differences (right side).

Table 5
P-values of the multivariate permutation test with different test statistics
when comparing coherence values of the electrode pair P3/O1 over 10
sections of time

Test statistics P-value

tsum 0.050
t|sum| 0.062
tmax 0.300
tSS 0.046
tPC 0.137
tPC+ 0.058

is significantly higher for abstract nouns than for concrete
nouns.

3.2.3. Independent samples data of foreign language
processing by two different groups

In this section, we evaluate data of the experiment as de-
scribed inSection 2.2.2.2. The aim is to compare coherence
values of the language students and the non-language stu-
dents. Again, for each student a vector of 171 coherence val-
ues is given. We have to test the global null hypothesis that
the vectors of both groups have the same expectations. The
P-values of the permutation test with different test statis-
tics are given inTable 6. At the 5% level, we can reject
the global null hypothesis of no difference between the two
groups with the test statisticstsum, t|sum|, tmax, tSS, andta.

Table 6
P-values for the multivariate permutation test with different test statistics
when comparing coherence values of language and non-language students

Test statistics P-value

tsum 0.037
t|sum| 0.049
tmax 0.026
tSS 0.035
tPC 0.072
tPC+ 0.052
ta 0.048

4. Discussion

With multiple endpoints, two different aims are of interest:
(1) to test globally whether there is an overall effect when
considering all endpoints simultaneously and (2) to provide
an efficacy statement for each individual endpoint. We need
so-called multivariate or global tests for the first aim and
multiple tests for the second aim. In this paper we only deal
with multivariate tests. It should be mentioned that multiple
tests frequently fail to detect effects for individual endpoints,
whereas a multivariate test provides significance. This means
that different endpoints may jointly explain a treatment effect
when using a multivariate test.

In this paper, we have introduced several multivariate tests
with an emphasis on multivariate permutation tests. The
computational effort of permutation tests is relatively high.
But permutation tests have various advantages.Good (2000)
states: ‘Permutation tests permit us to choose the test statis-
tic best suited to the task at hand’.

All simulation results presented in this paper were ob-
tained underk-variate normality. With exponential and
log-normal distributions we obtained similar results as with
normal distributions. Hence, they are not reported in this
paper.

Our investigations of the varying power characteristics
showed that among the different multivariate tests or test
statistics, no specific one can be determined as the best.
It depends, on the correlation structure, on the number of
endpoints for which differences exist, on the magnitude of
the differences, on the total number of endpoints and on other
factors, which test is able to reject the global hypothesis.
Thus, prior knowledge concerning the correlation between
the components and the relative number of components at
which differences exist should be used to find an appropriate
multivariate test. Advice and recommendations as to which
methods are appropriate can be found inTable 3of Section
3.1.

In order to demonstrate the properties of different mul-
tivariate tests we applied them to EEG coherence data
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obtained while participants processed either different word
categories or an English text.

Firstly, multivariate tests for paired samples were applied
to the processing of concrete and abstract nouns. It is well
known that processing of concrete and abstract nouns dif-
fers in various ways, which has been assessed with several
different neuro-physiological and -psychological techniques
(e.g. Bleasdale, 1987; Coltheart, 1987; Kiehl et al., 1999;
Weiss et al., 1999). With several of our tests, we obtained
significant global differences between the 171-dimensional
coherence vectors for concrete and abstract nouns for the
time intervals between 0–200 and 400–800 ms. These find-
ings partly correspond to previous results on phase relations
which showed the most prominent differences between con-
crete and abstract nouns processing between 300–500 and
600–800 ms, respectively (Schack et al., 2003). The time
intervals showing the most significant differences coincide
with the results of an ERP-study ofWest and Holcomb
(2000), who noticed that concrete words elicited a more neg-
ative ERP than abstract words between 300 and 800 ms.

Secondly, multivariate tests for independent samples
were applied to EEG coherence data from high and low
proficiency second language speakers processing English
TV news reports. It is a commonsense argument that people
differ in their proficiency and amount of training in their
second languages, hence have different levels of perfor-
mance. EEG coherence has been used to detect the differ-
ences between high and low foreign language performers
(Reiterer and Rappelsberger, 2001). A significant global
difference between the 171-dimensional vectors of coher-
ence values (intensity of coherence) of language students
and non-language students could be found with most of our
multivariate tests. Obviously, this was caused by differences
for most electrode pairs with a tendency of larger coherence
values for language students.
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