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Methods 

 

Network Databases 

Transcriptional networks. The E. coli network was described (S1) and is available at 

www.weizmann.ac.il/mcb/UriAlon. The S. cerevisiae transcriptional network is based on the 

YPD database (S2). Interactions between transcription factor proteins and genes are included. 

Each protein complex of transcription factors is represented by a single node. This network is 

available at www.weizmann.ac.il/mcb/UriAlon. 

 Food webs. The database of seven ecosystem food webs, provided by N. Martinez, was 

described (S3, S4). 

 Neuronal network. We used the data (S5) as employed in (S6), with only neurons that 

have five or more synaptic connections. The same motifs are found also in a smaller, more 

stringent data set of 69 neuron classes, representing neurons with five or more synapses found in 

at least three of four sides of two animals studied, represented in figure 8 of (S7). 

 Electronic circuits. Electronic circuits were directly parsed from the ISCAS89 

benchmark data set (S8), available at www.cbl.ncsu.edu/CBL_Docs/iscas89.html. The parsed 

networks are available at www.weizmann.ac.il/mcb/UriAlon. 

 World Wide Web. We used the database of (S9), available at 

www.nd.edu/~networks/database/index.html. 

 Internet. We used nondirected connections representing a router-level map (S10), 

provided by R. Govindan (source: www.isi.edu/~honqsuda/pub/int081099.adj.gz). 

 

Generation of Randomized Networks 

Two different algorithms were used to generate randomized networks with the same incoming 

and outgoing degree per node as the real network. The two algorithms gave identical results for 

the subgraph statistics. 



 Algorithm A. We employed a Markov-chain algorithm (S11, S12), based on starting with 

the real network and repeatedly swapping randomly chosen pairs of connections (X1  Y1, X2 

 Y2 is replaced by X1  Y2, X2  Y1) until the network is well randomized. Switching is 

prohibited if the either of the connections X1  Y2 or X2  Y1 already exist. 

 Algorithm B. Identical statistics were obtained by using a direct construction algorithm, 

modified from (S13). As in algorithm A, this algorithm does not allow spurious multiple 

connections between nodes (more than one directed connection between two nodes). Each 

network was presented as a connectivity matrix M, such that Mij = 1 if there is a connection 

directed from node i to node j, and 0 otherwise. The goal is to create a randomized connectivity 

matrix Mrand, which has the same number of nonzero elements in each row and column as the 

corresponding row and column of the real connectivity matrix: Ri = ∑jMrand,ij = ∑jMij, Ci = 

∑iMrand,ij = ∑iMij. To generate the randomized networks, we start with an empty matrix Mrand. We 

then repeatedly randomly choose a row n according to the weights pi = Ri/∑Ri and a column m 

according to the weights qj = Rj/∑Rj. If Mrand,nm = 0, we set Mrand,mn = 1. We then set Rm = Rm – 1 

and Cn = Cn – 1. If the entry (m, n) was previously entered to the randomized matrix, that is, if 

Mrand,mn = 1, or if m = n, we choose a new (m, n). This process is repeated until all Ri = 0 and Cj = 

0. Rarely the algorithm can find no solution, and the process is started from scratch. 

 

Controlling for Appearances of (n – 1)-Node Motifs 

We generate a series of randomized network ensembles, each of which has the same (n – 1)-node 

subgraph count as the real network, as a null hypothesis for detecting n-node motifs. This is done 

to avoid assigning high significance to a structure only because of the fact that it includes a 

highly significant substructure. 

 For a null hypothesis randomized network as a basis for detecting three-node motifs, we 

preserve the numbers of the in- and outgoing edges for each node, as well as the number of 

mutual edges (X  Y) for each node. This is implemented with algorithm A, treating double 

edges and single edges separately. A double edge is switched only with a different double edge 

(X1  Y1, X2  Y2 to X1  Y2, X2  Y1), and only if both (X1 and Y2) and (X2 

and Y1) are unconnected by an edge in any direction. Similarly, the single directed edge 



switches (X1  Y1, X2  Y2 is replaced by X1  Y2, X2  Y1) are performed only if they 

do not form new double edges. 

 For a random null hypothesis network for assigning significance to the four-node 

subgraphs, we generate randomized networks that have the same three-node subgraph counts as 

the real network. This is done with a Metropolis Monte-Carlo approach (S14). Let Vreal,k, k = 

1…13 be the number of appearances of each of the 13 three-node subgraphs (Fig. 1B) in the real 

network and Vrand,k be the corresponding vector in the randomized network. We define an energy 

E = ∑k|Vreal,k – Vrand,k|/(Vreal,k + Vrand,k). The energy E is zero only when all the three-node 

subgraph counts of the real and randomized graphs are equal. We start by fully randomizing the 

network according to algorithm A above. Then, we generate a random switch (X1  Y1, X2  

Y2 to X1  Y2, X2  Y1, and similarly for double edges, as described above). If this switch 

lowers E, it is accepted. Otherwise, it is accepted with probability exp(–∆E/T), where ∆E is the 

difference in energy before and after the switch and T is an effective temperature. This process is 

repeated, with a simulated annealing regiment (S14, S15) to lower T slowly until a solution with 

E = 0 is obtained. This can be readily generalized to form (n – 1)-node null-hypothesis networks 

for detecting n-node motifs also for n > 4. 

 

Network Motif Detection 

To efficiently count all connected n-node subgraphs in a connectivity matrix M, the algorithm 

loops through all rows i. For each nonzero element (i, j), it loops through all connected elements 

Mik = 1, Mki = 1, Mjk = 1, and Mkj = 1. This is recursively repeated with elements (i, k), (k, i), (j, 

k), and (k, j) until an n-node subgraph is obtained. A table is formed that counts the number of 

appearances of each type of subgraph in the network, correcting for the fact that multiple 

submatrices of M can correspond to one isomorphic architecture owing to symmetries. This 

process is repeated for each of the randomized networks. The number of appearances of each 

type of subgraph in the random ensemble is recorded, to assess its statistical significance. The 

present concepts and algorithms are easily generalized to nondirected or directed graphs with 

several “colors” of edges and nodes, multipartite graphs, and so forth. 

 



Criteria for Network Motif Selection 

For the purposes of the present study, network motifs are subgraphs that meet the following 

criteria: 

 (i) The probability that it appears in a randomized network an equal or greater number of 

times than in the real network is smaller than P = 0.01. In the present study, P was estimated (or 

bounded) by using 1000 randomized networks. 

 (ii) The number of times it appears in the real network with distinct sets of nodes is at 

least U = 4. 

 (iii) The number of appearances in the real network is significantly larger than in the 

randomized networks: Nreal – Nrand > 0.1Nrand. This is done to avoid detecting as motifs some 

common subgraphs that have only a slight difference between Nrand and Nreal but have a narrow 

distribution in the randomized networks. 

 

Algorithms for Nondirected Networks 

Algorithm A was used, treating all edges as double edges as described above. 

 

Network Motifs in Nondirected Networks 

 

Table S1. Subgraphs and motifs in nondirected networks. Shown are the two types of three-node 

and six types of four-node nondirected subgraphs, as well as their concentration C in two 

networks (C is the fraction of times a given n-node subgraph occurs among the total number of 

occurrences of all possible n-node subgraphs). The networks are a 1843 node/2203 edge yeast 

protein-interaction database (S16) and a 228,262 node/320,147 edge database of connections 

between internet routers (S10). Motifs are indicated along with their Z score. ND, not determined 

because of the fact that the subgraph did not appear in the randomized network ensemble. Anti-

motifs are subgraphs that satisfy the following: (i) the probability that they appear in randomized 

networks fewer times than in the real network is P < 0.01 and (ii) Nrand – Nreal > 0.1Nrand. 

 



 
 
 
 

Pattern Protein interactions Internet routers 
 Not a motif 

C = 0.981 
Not a motif 
C = 0.977 
 

 Motif (Z = 48) 
C = 0.019  

Motif (Z = 4600) 
C = 0.023  

 Motif (Z = 15) 
C = 0.680 
 

Not a motif 
C = 0.931 

 Anti-motif (Z = -19) 
C = 0.024  

Motif (Z = 18) 
C = 0.013 

 Anti-motif (Z = –18) 
C = 0.292  

Anti-motif (Z = –7) 
C = 0.048 

 Not a motif 
C = 0.0013  

Motif (Z = 356) 
C = 0.004 

 Anti-motif (Z = -4.5) 
C = 0.0019  

Motif (Z=137) 
C = 0.002 

 Not a motif 
C = 0.0004  

Motif (Z ND) 
C = 0.0005 
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