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Abstract

This paper surveys the emerging role of statistical mechanics and polymer theory in protein folding. In the polymer
perspective, the folding code is more a solvation code than a code of localfc propensities. The polymer perspective
resolves two classic puzzles:~1! the Blind Watchmaker’s Paradox that biological proteins could not have originated from
random sequences, and~2! Levinthal’s Paradox that the folded state of a protein cannot be found by random search. Both
paradoxes are traditionally framed in terms of random unguided searches through vast spaces, and vastness is equated
with impossibility. But both processes are partlyguided. The searches are more akin to balls rolling down funnels than
balls rolling aimlessly on flat surfaces. In both cases, the vastness of the search is largely irrelevant to the search time
and success. These ideas are captured by energy and fitness landscapes. Energy landscapes give a language for bridging
between microscopics and macroscopics, for relating folding kinetics to equilibrium fluctuations, and for developing
new and faster computational search strategies.
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This paper describes a perspective on protein folding that derives
in part from simple statistical mechanical and polymer models. As
with any perspective, this one is a personal opinion, with all the
limitations that implies. The first part of this paper explores the
folding code.~1! Structure: How is the native structure encoded in
the amino acid sequence?~2! Thermodynamics: Why is folding so
cooperative?~3! Kinetics: What determines the speed and the rate-
limiting steps of folding? Polymer modeling suggests that the fold-
ing code is more a solvation code and less a linear encoding of
torsion angles along the peptide bond, even though the latter is not
negligible. The second part explores the energy landscape perspec-
tive on folding kinetics. Polymer modeling suggests that the fold-
ing process more closely resembles balls rolling down bumpy
funnels than balls rolling aimlessly on flat surfaces or rolling sin-
gle file along identical trajectories.

DISCUSSION

Side-chain interactions contribute to architecture,
just as backbone interactions do

The backbone forces of folding

Table 1 compares two different perspectives on the folding code.
A backbone-centric, helix-centric perspective arose over the 50

year time frame, from the 1930s to 1980s. It originated with Mir-
sky and Pauling in 1936~Mirsky & Pauling, 1936!, who proposed
that backbone hydrogen bonding is a prominent folding force.
During the next 15 years, Pauling’s group used the structures of
small molecule hydrogen-bonding compounds to predict that folded
proteins would havea-helical andb-sheet structures~Pauling &
Corey, 1951a, 1951b, 1951c, 1951d; Pauling et al., 1951!. The first
X-ray crystal structures of globular proteins gave strong support to
this view by confirming the existence of the predicteda-helices
andb-sheets~Kendrew et al., 1958!. Hydrogen bonding was seen
to be an important structure-causing force in proteins.

During the same period, a step was taken toward understanding
folding cooperativity through an understanding of the helix-coil
transition. For many years it had been known that protein folding
is cooperative, i.e., that there is a dramatic transition from dena-
tured to native states upon only small changes in solvent, pH, or
temperature. In the 1950s and 1960s, theoretical work particularly
of Schellman~1958!, Zimm and Bragg~1959!, Poland and Scheraga
~1970!, and experiments~Doty & Yang, 1956; Doty et al., 1956!
showed that long peptide chains can undergo a helix-coil transition
that is cooperative. The helix-coil transition is driven by hydrogen
bonding andfc propensities among near-neighbor groups along
the chain. For many years, this has been the main model for con-
formational cooperativity in biomolecules.

To complete the picture of structure, thermodynamics, and ki-
netics, experiments beginning in the 1970s showed that helices can
form rapidly ~Kim & Baldwin, 1982; Williams et al., 1996!. One
inference was that folding is hierarchical and can be explained by
a scheme 18 r 28 r 38: the primary structure leads to secondary
structure~fast!, which is then assembled into tertiary structure
~slower!. Hierarchical assembly was seen as a solution to the prob-
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lem of how the protein sorts through conformational space hay-
stack quickly on its way to finding the native state needle. The
same hierarchy has been widely explored as a computational strat-
egy for predicting native states from amino acid sequences: use
local helix and sheet propensities to predict secondary structures,
then assemble them into tertiary structures.

The upshot was a perspective in which the backbone inter-
actions—hydrogen bonding andfc propensities—have been seen
as a large part of the explanation of the structures, thermodynam-
ics, and kinetics of protein folding~Honig & Cohen, 1996; Aurora
et al., 1997; Baldwin & Rose, 1999a, 1999b!. Thefc propensities
are not equivalent to hydrogen bonding, since hydrogen bonds are
involved in nonlocal interactions, whereasfc interactions, by def-
inition, are not. Nevertheless, from the perspective of thesequence-
dependentinteractions, and sequence-structure relationships, a
backbone-centric view is largely afc-centric view, since there has
been little basis for believing one amide-carbonyl backbone hy-
drogen bond has a substantially different strength than another in
a sequence-dependent way. On the other hand, hydrophobic inter-
actions, which were first identified as important for protein folding
by Kauzmann~1959!, were seen as a nonspecific glue that aided
collapse but otherwise played little role in dictating the specific
architectures of native proteins~Anfinsen & Scheraga, 1975!. Hy-
drophobic interactions are mainly expressed by the side chains.
They are “through-space” and solvent-mediated contact inter-
actions, rather than “through-nearest-neighbor-bonds,” as arefc
interactions. This distinction between torsion-based nearest-neighbor
“through-chain” interactions that involvefc angles, and contact-
based “through-space” interactions, that involve displacement or
exchange of solvent, seems less ambiguous than distinctions be-
tween secondary vs. tertiary forces, or local vs. nonlocal forces.
The fc interactions are mainly steric torsional constraints cap-
tured in Ramachandran plots. Contact interactions, such as side-
chain contacts, include hydrogen bonding and hydrophobic
interactions and van der Waals interactions among non-neighboring
monomers.

Thefc perspective does not address a key issue. As with most
other polymers, a large conformational space is a consequence of
weak preferences of each monomer unit for one region of torsion-
angle space relative to another region. But if they are to account for
the folding code,fc propensities must be different in the native
state than in the denatured state. In particular,fc interactions must
change when folding conditions are turned on. But there is little
evidence that tri- and tetra-peptides adopt native-like conforma-
tions and overcome the chain entropy, when the solvent or tem-
perature are changed.

The side-chain forces of folding
A different perspective has developed from polymer modeling

over about the past 15 years. The polymer perspective is side-chain
centric, rather than backbone centric. The idea is that folding is
dictated not so much by the propensities for nearest neighbor amino
acids to favor particularfc values~a-helix or b-sheet propensi-
ties!, even though there is abundant evidence for such preferences
~Honig & Cohen, 1996; Aurora et al., 1997!. Rather, in the side-
chain-centric view the greater contribution to the free energy of
folding is encoded in a more delocalized “solvation” code: there
are very few conformations of the full chain that can bury nonpolar
amino acids to the greatest possible degree~Dill, 1985; Dill et al.,
1995!. Even short peptides, such as amphipathic helices, can be
driven by solvation. Hydrophobic interactions, however they are
defined, are among the strongest interactions among amino acids
in water. And in large proteins, there are many of them. In this
view, hydrophobic interactions are not nonspecific glue, but a cru-
cial structure-determining driving force. In this view, folding co-
operativity more closely resembles a process of polymer collapse
in a poor solvent than a helix-coil transformation. In this view, fast
secondary structure formation is less a consequence of strong helix
propensities, and more an indirect consequence of a drive toward
nonpolar desolvation.

The true balance between side-chain and backbone forces is not
yet known. The side-chain-centric view has been based on the
following logic. Simplified models that include side-chain inter-
actions, but have thefc preferences “turned off,” predict many
properties of globular proteins. In contrast, models that keepfc
propensities and turn off side-chain interactions predict only heli-
ces or strands and no compact folded state~Thomas & Dill, 1993!.
Indeed, helix-coil experiments show thatfc propensities control
structures for sequences that are unable to collapse. For example
highly charged poly-benzyl-l-glutamate is the classical helix-
former.

It follows that aminimal modelof globular protein behavior can
be constructed from a side-chain-centric perspective but not from
a backbone-centric perspective. This means that it may be possible
to design polymers that could fold and perform protein-like func-
tions, even without peptide backbones. RNA molecules already
provide some proof of this principle. Minimal models are guides
for such general principles.

But minimal models do not tell us the actual balance of forces
in real proteins. If our goal is an accurate model of proteins, we
undoubtedly cannot ignore backbone interactions~Honig & Cohen,
1996! or details of steric packing, or the differentfc interactions
among the amino acids. In the end, since protein stability is a small
difference of large interactions, all interactions can contribute to
structure, thermodynamics, and kinetics.

What is the evidence for the side-chain-centric view?~1! A
backbone centric view does not predict collapse. A coordination of
fc choices to cause collapse would be extraordinarily fortuitous.
~2! Helix and strand propensities tend to be weak. Excepting poly-
alanine-based sequences~Scholtz & Baldwin, 1992!, peptides that
are found to be in helices or strands in globular proteins are un-
stable when isolated in solution. Moreover, most helices and strands
are amphipathic~Eisenberg et al., 1984; Bowie et al., 1990; Branden
& Tooze, 1999!, implicating solvation forces. Thea-helical and
b-strand propensities are context dependent~Kabsch & Sander,
1984; Minor & Kim, 1994!, and the nonlocal interactions inb-sheets
are large~Smith & Regan, 1995! and numerous.~3! In a globular
protein, the number of local interactions is proportional to the

Table 1.

Backbone-centric
view

Side-chain
centric view

Dominant force FC, Hydrogen bonds Hydrophobicity,
hydrogen bonds

Thermodynamic
cooperativity

Helix-coil transition Collapse transition

Kinetics Helix formation is fast Desolvation is fast
Role of

hydrophobicity
Nonspecific Drives specific

architecture
Folding code FC-centric ~18 r 28 r 38! Solvation code
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number of amino acidsN, but the number of nonlocal interactions
is proportional to about 2N, so the latter should dominate in larger
proteins.~4! Helices and strands often take their conformational
instructions from their context or from the solvent~Kuroda et al.,
1996; Predki et al., 1996!. ~5! To a first approximation, a fold is
determined by the binary sequence of hydrophobic0polar mono-
mers, even whenfc propensities are largely chosen randomly
~Reidhaar-Olson & Sauer, 1988; Bowie et al., 1990; Lim & Sauer,
1991; Gassner et al., 1992; Lim et al., 1992; Kamtekar et al., 1993;
Matthews, 1993; Munson et al., 1994, 1996; Lazar et al., 1997;
Roy et al., 1997; Schafmeister et al., 1997; Wu & Kim, 1997!.
~6! Protein folds are less affected by mutations on their surfaces
than in their hydrophobic cores~Lim & Sauer, 1991; Matthews,
1993!. ~7! Some experiments show that protein folding is not
hierarchical, implying that secondary structures are not pre-
assembled and used as building blocks in tertiary assembly. For
example, ab-sheet protein can fold via a helical intermediate
~Shiraki et al., 1995; Hamada et al., 1996!. ~8! Hydrophobic clus-
tering, like secondary structure formation, can be very fast~Chan
et al., 1997; Ramachandra Shastry & Roder, 1998; Ramachandra
Shastry et al., 1998!, and it can drive helix and sheet formation.

Simplified models are hypothesis generators

The predictions described above come, in part, from models that
involve considerable simplification. An example is the HP model,
in which each amino acid is represented as a bead, each bond is a
straight line, bond angles are a few discrete options rather than a
continuum, different conformations conform to lattices in two or
three dimensions, and the 20 amino acids are condensed into a
two-letter alphabet: H~hydrophobic! or P~polar! ~Dill, 1985; Dill
et al., 1995!.

While statistical mechanical models aresimplified in their rep-
resentation of energies and atomic details, they aremore refined
in other respects~Camacho & Thirumalai, 1993; Bryngelson
et al., 1995; Dill et al., 1995; Karplus, 1997; Onuchic et al., 1997!:
~1! their full conformational space can be explored extensively,
sometimes without sampling or approximation, and~2! sometimes
the full sequence space can be explored. For some questions, it is
more important to get right the representation of conformational or
sequence spaces than it is to get right the atomic details. Many
questions of structure, stability, and kinetics are not about the
locations of the hydrogen bonds in native lysozyme. They are not
questions that are answerable by crystallography. They are about
distributions and ensembles, flexibilities and entropies, energy land-
scapes, folding kinetics, big conformational changes, or sequence
space. They are low-resolution questions that have low-resolution
answers. Apart from X-ray crystallography and NMR, the work-
horses of biomolecule science for many years have been low-
resolution experiments—CD, fluorescence, small-angle scattering,
some NMR experiments, calorimetry, chromatography, ANS bind-
ing, melting curves, etc.

For questions involving conformational ensembles, conforma-
tional entropies, sequence space, long time and large spatial scales,
ensemble averaging, or non-native states like transition states, mol-
ten globules, intermediates or denatured states, there is currently
little alternative to some degree of simplification in models. It is
sometimes helpfulnot to have atomic details, picosecond by pico-
second, because it is hard to see the forest of principles through the
trees of detail. It would be a mistake to believe that any model is
“improvable” by adding structural detail. Sometimes details are the

problem, not the solution. This is a key message from the successes
of the two-dimensional lattice Ising model in the revolution that
took place in understanding critical phenomena~Stanley, 1971!.
The inability of earlier models of phase transitions to capture sub-
tle critical behavior was attributable, not to the lack of realism and
atomic detail, but to a lack of rigor in the mathematics of the
models.

Mathematician Mark Kac once said that the purpose of models
is “to polarize our thinking,” to help us formulate questions. A
model manifests a point of view; it regards certain components of
a problem as relevant, important, or dominant, and other compo-
nents as irrelevant, unimportant, or negligible, and then devises a
chain of logic leading to predictions from those premises. Most
broadly, the point of a model is to make decisive and testable
predictions, regardless of whether its fine structure looks realistic.
A key advantage of simplified models is that their parameters are
physical and minimal in number. The chain of logic from premises
to conclusions is direct. Simplified models serve to generate hy-
potheses that often cannot be generated in any other way, but that
can then be tested by experiments or refined simulations.

Simplified models have been useful for exploring entropies and
combinatoric principles of conformational and sequence spaces.
Two problematic paradoxes of protein science have been shown
by polymer modeling to be neither problematic nor paradoxical.
~1! The Blind Watchmaker Paradox: The probability that natural
proteins could be found in a random search of sequence space was
seen to be impossibly small.~2! The Levinthal Paradox: The prob-
ability that a protein could find its native state by random search
was seen to be impossibly small. Both paradoxes have been framed
in terms of random unguided processes that search for a single
point, theendstate, in a vast space. Biological evolution searches
through sequence space; the endstate is a single protein having a
particular function. Protein folding searches through conforma-
tional space; the endstate is the single native structure of a given
protein. In both cases, the vastness of the search~i.e., the size of
the search space! is taken, according to the paradox, to be the key
to the impossibility of reaching the endstate.

Creationists, evolutionists, and blind watchmakers:
Can proteins arise from random sequences?

Sequence space is a large place. For protein chains of 100 amino
acids, the number of possible sequences of the 20 different amino
acids is 20100 5 10130 ~see Fig. 1!. Creationists have used such
numbers to argue the impossibility that proteins, and life, could

Fig. 1. Sequence space is large. There are 20100 different 100-mer se-
quences. The probability of finding one particular sequence is 202100, but
the probability of finding any sequence that folds to a particular structure
is predicted to be more than 100 orders of magnitude larger.

1168 K.A. Dill



have arisen from the random sequences that were plausibly on the
prebiotic earth. Creationists solve the large numbers problem by
invoking divine intervention. Evolutionists solve the large num-
bers problem instead by the accretion of advantage that happens
through natural selection~Dawkins, 1996!. But both evolutionists
and creationists start from the same premise, the large numbers
problem. Evolutionists too assume that natural proteins are infin-
itesimal specks in an impossibly vast and meaningless sequence
space, as indicated by the following quotes: “Only a very small
fraction of this unimaginably large number of polypeptide chains
would adopt a single stable three-dimensional conformation”~Al-
berts et al., 1998!, and “It is certain that we need a hefty measure
of cumulative selection in our explanations of life”~Dawkins,
1996!. It is this numbers problem that I refer to, with the help of
the wonderful metaphor of Richard Dawkins, as the Blind Watch-
maker’s paradox.

But statistical mechanical modeling~Lau & Dill, 1990; Chan &
Dill, 1991; Lipman & Wilbur, 1991! shows that there is very little
numbers problem in the first place. Reach into a soup of random
amino acid sequences. The chance of pulling out a biologically
important molecule depends on what is meant by “biologically
important.” The following two questions are vastly different~see
Fig. 1!: ~1! What is the probability of pulling from that soupa
specific sequence? ~2! What is the probability of pulling from that
soupany sequence that folds to a specific structure? The answer to
question~1! is 102130 for a 100-mer. The chance of pulling out a
polypeptide having, say, the lysozyme sequence, is essentially zero.
But to achieve biological function, we care only about finding a
particularfold, not a particularsequence. And modeling shows that
the probability of finding a structure is likely to be more than 100
orders of magnitude larger than the probability of finding a se-
quence~Lau & Dill, 1990; Chan & Dill, 1991!. The chance of
pulling outany sequencethat folds to roughly lysozyme’s structure
is closer to 10210 to 10220. While this number too may seem
impossibly small, nature works with these sorts of numbers all the
time. These numbers would imply about one such sequence in a
liter of random sequences at nanomolar concentrations! And the
probability of finding any chain fold, not just lysozyme, is even
higher.

Why does the numbers problem disappear when we seekstruc-
turesrather thansequences? There is an enormous “degeneracy” in
sequence space: many different sequences can fold to the same
native structure. A protein can be mutated substantially without
changing its fold. The explanation for this is simple. If, as noted
above, a fold is primarily determined by the binary sequence of
hydrophobic0polar monomers, then the essential features of the
full 20100 sequence space are found by searching a space of only
about the 2100 5 1030 sequences that are written in a binary al-
phabet~H 5 hydrophobic, P5 polar!, a reduction of 100 orders of
magnitude. Degeneracy means that hydrophobic monomers are
largely interchangeable with each other, and polar monomers are
interchangeable with each other, for determining a fold.~Function
may have additional requirements, but estimates indicate that these
do not change the numbers much~Lau & Dill, 1990!.!

Moreover, modeling~Lau & Dill, 1990; Chan & Dill, 1991! and
experiments~Reidhaar-Olson & Sauer, 1988; Matthews, 1993! show
that the relevant space is even smaller, because only aboutN03 of
the residues are crucial for folding—those that define the hydro-
phobic core. To first approximation, most surface sites can be
mutated without changing structure or function.~The factor ofN03
comes from the geometry of surface0volume ratios. Pack 100

amino acid spheres together to make a protein; 67 of them will be
on the surface and 33 will be in the core.! Therefore, the real
search for protein structure takes place, not in a space of 20N, but
in a space nearer in size to 2N03 5 233 5 1010 for N 5 100. The
other 120 orders of magnitude in sequence space are highly de-
generate; the folded states of those sequences will look much like
ones already found in the search of the smaller space.

Sequence space is therefore not likely to be vast darkness with
infinitesimal specks of protein-like light spots. It is not perfectly
light either. On a logarithmic scale, sequence space is predicted to
be more like a beige sea in which virtually all molecules are
“nearly folded.” A typical random chain of 100 amino acids is
predicted to be highly compact in water, have considerable sec-
ondary structure, and be structured much like a molten globule
~Lau & Dill, 1990; Chan & Dill, 1991!. This is a far better starting
point for natural selection than are specks in astronomically large
sequence spaces.

But whatever the starting point, there remains the need for a
process of improvement. Evolution can improve proteins by nat-
ural selection. Richard Dawkins has explained natural selection
using the metaphor of a Blind Watchmaker. By invoking “Watch-
maker,” he means the endstate has the appearance of having been
designed. The traditional inference is that an object that appears
designed was built by a systematic step by step procedure, as in
building a watch. But Dawkins’ term “Blind” means that, on the
contrary, the natural selection process is not so systematic and does
not involve a specific pre-ordained sequence of events. Natural
selection is a Blind Watchmaker that improves proteins through
incremental steps, each of which involves some bias, however
small, at the same time it also involves considerable random choice
among alternatives.

The Blind Watchmaker is also a useful metaphor for protein
folding kinetics, the systematic accretion of native structure over
the time course of a folding experiment~Zwanzig et al., 1992!. A
native protein has the appearance of design. For example, the steric
fit of side chains in a protein core is as precise as that of a
jigsaw puzzle. But tight packing of irregular objects can also be
achieved by shaking up nuts and bolts in a jar, with no design
involved~Bromberg & Dill, 1994!. The appearance of design does
not mean that folding happens in serial step by step fashion. Even
a jigsaw puzzle can be constructed through different parallel se-
quences of events~Harrison & Durbin, 1985!. The native structure
can be reached, over the time course of folding, by a process that
~1! starts from different initial conformations and~2! proceeds by
incremental improvements, each of which has some bias but also
involves considerable random choice among alternatives. Even a
very small bias~deviation from randomness! in choosing among
alternatives can speed up the search time~compared to a random
search! by tens to hundreds of orders of magnitude~see below!.
When perfect randomness is not the driver, the vastness of the
search becomes irrelevant to the search time~Dill, 1993!. These
ideas are captured inlandscapes: fitness landscapes in sequence
space or energy landscapes in conformational space. We now focus
on the latter.

The old and new views of folding kinetics:
Different questions

Protein folding kinetics has been described in terms of so-called
Old and New Views~Baldwin, 1994, 1995; Dill & Chan, 1997!. To
define these views, we first distinguishmodels, old and new, from
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views of microscopic folding processes, old and new. For models,
the terms old and new is too stark a contrast. It leads to the
perception that we should be asking: Why do we need new mod-
els? What was wrong with the old ones? Which models are better?
But these questions miss the mark. Old and new models do not
address the same questions. The old models are mass action mod-
els used to fit experimental data on folding relaxation times and
amplitudes. The new view is not a denial of these models. Mass
action models remain valid for representing such data. While mass
action modeling gives amacroscopicdescription of experimental
data, the new statistical mechanical models give amicroscopic
frameworkto explain that data.

Where old and new views differ, however, is in their interpre-
tation of the microscopic processes of folding. In the hope that
changing terminology can help untangle some confusion, I will
replace “old view” with “Sequential Micropath view” and “New
view” with “Ensemble view.”

Table 2 summarizes the differences between the two views of
folding kinetics~Dill & Chan, 1997!. The language of the Sequen-
tial Micropath view—pathways, transition states, reaction coordi-
nates, on-path and off-path intermediates—is intended to explain
what exponentials do~i.e., what you see in experiments!. Experi-
mental relaxation data are interpreted in terms of mass-action di-
agrams having arrows that connect symbols likeD ~denatured!, I
~intermediate!, andN ~native!. Nothing in this language says what
any one molecule is doing at any given time, or how the kinetics
of folding is related to the monomer sequence, or how to assign
microscopic chain conformations to labelsI or D or transition
state, etc. But the language of the Ensemble view—landscapes,
folding funnels—is intended to describewhat molecules do~i.e.,
how individual molecules progress toward the folded state!, and
how different monomer sequences lead to different kinetics.

Sequential micropath perspective

The main problem, according to the Sequential Micropath view,
was thesearch problem, which has been called theLevinthal par-
adox. As Levinthal posed it~Levinthal, 1968; Wetlaufer, 1973!, a
random search of conformations would take a protein forever.
Levinthal saw folding as a search through a vast conformational
space, the haystack, for the native structure, the needle. Suppose
the conformational space is represented by four preferredfc an-
gles for each peptide bond:a-helical,b-strand, and two others. In
terms of those discrete options, the size of the space for a 100

residue chain is 4100 ' 1060 chain conformations. Only one of
these is the native structure. Levinthal’s proposed solution for find-
ing the needle in the haystack was that all chains must follow the
same microscopic pathway, like ants single file on a trail~Levinthal,
1968!. By “same pathway,” he specified that every chain follows
the same sequence of bond angle changes, in the same order, to
reach the native state. In the Sequential Micropath view, kinetic
intermediates~if they were on-pathway! were seen as helpful mile-
posts because they would show what route was taken, and there-
fore what routes were avoided, and therefore how the haystack was
searched efficiently. Two-state kinetics was seen as uninformative
about the mileposts of folding.

Ensemble perspective

In the Ensemble view, the vastness of the search is largely
irrelevant. The more important problem is kinetic traps~Chan &
Dill, 1994, 1998!. Chains can sort very quickly through vast stretches
of conformational space. In this view, chains fall energetically
downhill, as when balls roll down bumpy funnels. Chains do not
fold by random searches on level energy landscapes. In this view,
two-state kinetics often means the chain is folding at nearly its
maximum possible diffusion-limited speed, without kinetic traps.
In this view, stable intermediates are mainly seen as kinetic traps
that slow down the folding process.

Here’s why the vastness of the search is irrelevant. Even a very
small bias, in the form of the forces of protein folding, can be the
difference between folding times measured in “lifetimes of the
universe” vs. milliseconds~Bryngelson & Wolynes, 1987; Dill,
1987; Zwanzig et al., 1992!. ~On a large flat golf course, a golf
ball will “never” find the hole by random processes, but if the
golf course has even a small tilt that funnels toward the hole, no
problem!!

What causes the funnel-like tilt on a folding landscape? The first
estimates of the shapes of folding energy landscapes were based on
mean-field theories~see Fig. 2! ~Dill, 1985; Bryngelson & Wolynes,
1987!. Hydrophobic collapse leads to compact chain conforma-
tions. The funnel arises because the drive to collapse is also a drive
toward a reduced ensemble of conformations. There are many
non-native states~high energy!, but only one native state~low
energy!. The fraction of conformations that are compact is infin-
itesimal compared to the total conformational space. If there are
4100 conformations of a chain, Flory–Huggins-like theories predict
that only about~40e!100 ' 1017 of those conformations are com-
pact~Dill, 1985!. More accurate recent estimates predict a number
that is even smaller~Yue & Dill, 1995!: the number of compact
conformations having a hydrophobic core may even be as small as
1 for some sequences. This estimate is supported by experiments
on reduced alphabets based on hydrophobicity codes; a small frac-
tion of sequences appear to fold relatively uniquely~Riddle et al.,
1997; Roy et al., 1997; Schafmeister et al., 1997!.

In short, the Ensemble view is a reversal of the sequential
micropath view. What was seen as the slow step—the search through
the huge haystack of non-native chain conformations—is now
seen as happening at near diffusion-limited speed. Collapse can be
fast. Sifting through most of the haystack is fast; the slow part is
the endgame of reconfiguring a very small set of near-native con-
formations. In the past few years, new fast experimental methods
~Burton et al., 1997; Callendar et al., 1999! have shown that pro-
teins can fold at nearly diffusion-limited rates, on submillisecond
time scales~Huang & Oas, 1995; Ballew et al., 1996a, 1996b;
Pascher et al., 1996; Burton et al., 1997; Chan C-K et al., 1997;

Table 2.

Sequential
micropath view Ensemble view

Language Paths, intermediates,
transition states,
reaction coordinates

Landscapes, funnels

Explains What exponentials do
~what you see!

What molecules do
~how it works!

Main problem Search problem Trap problem
Proposed solution Sequential pathways Funnels
Intermediates Mileposts Traps
Two-state kinetics No information Implies fast folding
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Gilmanshin et al., 1997a, 1997b, 1998; Ramachandra Shastry &
Roder, 1998; Ramachandra Shastry et al., 1998!. Energy land-
scapes provide the language that can help describe folding events
at any level, from the microscopic to the macroscopic.

Energy landscapes connect single-chain microscopics
to experimental macroscopics

One long-term goal of protein folding experiments has been to
help understand the microscopic basis for the folding code. But
this remains a promise, not a reality. Why? Prior to energy land-
scapes, there has been no way to connect the macroscopics that
experiments measure to the microscopics that are needed in com-
putational folding algorithms. Here is the problem.

Figure 3 illustrates the kind of folding kinetics data that is tra-
ditionally measured, and the mass-action models that are used to

interpret them. When a single exponential decay is observed in
both folding and unfolding directions, it is described as “two-state”
kinetics, because two mass action symbols, such asN ~native! and
D ~denatured!, and an arrow interconnecting them, provide the
simplest scheme that can model the data. But when multiple ex-
ponentials are observed, at least one additional symbol must be
invoked in a mass-action law. When there are three such symbols,
say N, D, and I ~intermediate!, there are two main ways those
symbols have been interconnected by arrows:I is called an “On-
pathway” intermediate orI is an “Off-pathway” intermediate.

But even when experiments provide a perfectly accurate mass
action model for the folding and unfolding kinetics of a particular
protein, it does not give enough information to make a microscopic
model of how folding takes place. Experimental data are too av-
eraged to inform the local decisions that must be made in confor-
mational searching. Amicrostateis a single chain conformation. A
macrostate—such as the unfolded stateU, an intermediate stateI,
a molten globuleM, or a transition stateT—is some collection of
individual conformations. The native stateN is often appropriately
regarded as both a microstate and a macrostate. To construct a
folding algorithm requires a computational recipe that will begin
with a microstate—some particular chain conformation—then eval-
uate its energy, then choose which specific bonds to change and by
how much, in order to take a computational step to make it a more
native conformation.

But experimentally obtained mass action models give only rec-
ipes for dealing withmacrostates, such asI ~intermediate!, D ~de-
natured state!, T ~transition state!, etc., and not for dealing with
microstates. Here are macrorecipes for how to move a chain con-
formation toward the native structure. From an on-pathway inter-
mediate state, move uphill alongthe reaction coordinatein the
forward direction. From a transition state conformation, move down-
hill. From an off-pathway intermediate, go back to the denatured
state and try again to go forward along the reaction coordinate.

But these macrorecipes do not answer the following questions.
~1! What is the macrostate to which a particular chain conforma-

Fig. 2. Smooth funnel landscape~bottom!. Denatured conformations fol-
low different folding routes to the native state. The top figure shows the
Flory–Huggins excluded volume estimate for the landscape shape~turned
sideways!: V ; ~N0r!!0@~N0r!N~N0r 2 N!!#, whereV is the number of
chain conformations,N is chain length, and 0# r # 1 is the compactness
of the chain, an approximate measure of the depth on the landscape~Dill,
1985!.

Fig. 3. Simple mass-action schemes describe observed relaxation rates
and amplitudes, using symbols such asN ~native!, D ~denatured!, and I
~intermediate!.
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tion should be assigned? Or choose a macrostate: what micro-
scopic conformations are in it? What is the ensemble called
“intermediate state,” or “denatured state,” or “transition state”?
Currently, such assignments must be made arbitrarily. Macrostates
are averages over many microscopic conformations; they are not
descriptions of single chain conformations.~2! What series of chain
conformations defines the reaction coordinate? A reaction coordi-
nate is a macrovariable, not a microvariable~see below!. For pro-
tein folding, the reaction coordinate is not known in microscopic
terms.~3! Even if we knew the reaction coordinate, how do we
know which way is forward? Which specific bond angles should
we change to progress toward the native state? Every protein fold-
ing algorithm must make these kinds of microdecisions at every
step. But no experiment yet gives such microinformation. Energy
landscapes can provide the common language to bridge between
micro- and macrodescriptions.

What is an energy landscape?

According to the principles of thermodynamics, if a system has
n degrees of freedomf 5 @f1, f2, . . . , fn#, the stable state of the
system can be found by determining the set of valuesf* 5 @f*1,
f*2, . . . , f*n# that gives the minimum value of the free energy func-
tion F~f! 5 F~f1, f2, . . . , fn!, when explored over all possible
values off ~see Fig. 4!. Such functionsF~f! are calledenergy
landscapes. Energy landscapes,per se, are neither new, nor con-
troversial, nor limited to proteins. “Energy landscape” is nothing
more than a name for this function. For protein folding,f may be
the backbone and sidechain bond angles, for example.

Distinguishing between microscopics and macroscopics

The distinction between the old and new views is the distinction
between an energy landscape and a reaction coordinate diagram,

which, in turn, is a distinction between microscopics and macro-
scopics~see Fig. 5!. The Sequential Micropath view postulates a
simple relationship between these two types of diagrams. In the
Ensemble view, the relationship can be complex, but, in general, is
not known. A microstate is a single point on an energy landscape
and has free energyFmicro5 F~f!, which is also called theinternal
free energy~Dill & Chan, 1997!. A macrostate has free energy
Fmacro5 F~j!, wherej is just a scalar quantity, such as a reaction
coordinate or a progress variable. A given value ofj represents
some particular ensemble of microscopic conformations.

Figure 6 illustrates the difference betweenFmicro andFmacro, in
a simple model. Suppose we choose as a progress variable the
number of hydrophobic contacts,j 5 0, 1, 2, . . . ,m, to reflect the
extent of folding. This is just one of many possible progress vari-
ables; it is just chosen here for illustration because it simplifies the
math. Thedensity of states g~j! is a count of the number of
different microstatesf that define a particular macrostatej. Fig-
ure 6 shows one of theg~0! ' 500,000 conformations that have
j 5 0 hydrophobic contacts, one of theg~4! 5 67 conformations
that havej 5 4 hydrophobic contacts, and theg~6! 5 1 confor-
mation that hasj 5 6 hydrophobic contacts; this is the native
structure in this model.

To determineFmicro, focus on a particular conformation. For that
conformation, sum all the energies due to bond angles, torsions,
stretches, van der Waals interactions, hydrogen bonds, electrostat-
ics, and include the solvation free energy due to the relative amounts
of buried and exposed hydrophobic and polar surface.Fmicro is a
freeenergy, rather than just an energy, because it includes solvation
and desolvation entropies and the hydrophobic effect.Fmicro is not
the total free energy, however, because it doesnot include the
chain conformational entropy: it treats only a single conformation.
In the HP model, in which hydrophobicity dominates, a given
chain conformation hasj hydrophobic contacts, soFmicro 5 jE,
whereE , 0 is the free energy of desolvating two nonpolar groups
and bringing them into contact.

The relationship between energy landscapes and reaction dia-
grams is a relationship betweenFmacroandFmicro. Fmacrodoesinclude
the chain conformational entropy,

Fmacro~j! 5 2kT ln V 5 2kT ln@g~j!e2Fmicro0kT#

5 Fmicro~j! 2 kT ln g~j!, ~1!

where V is the partition function,Fmicro~j! is the internal free
energy for each conformation that hasj hydrophobic contacts, and
g~j! is the number of conformations havingj hydrophobic con-
tacts. Other progress variables can be more complex, but this sim-
ple model is sufficient for present purposes. If we express the
conformational entropy of the macrostatej asSconformational~j! 5
k ln g~j!, then Equation 1 becomes

Fmacro~j! 5 Fmicro~j! 2 TSconformational~j!, ~2!

The main point is thatFmicro is the free energy of a single chain
conformation whereasFmacro is the free energy of some ensemble
of conformations that collectively have some macroscopic mean-
ing, such as an intermediate, transition state, molten globule, or the
denatured state.Fmacroincludes a conformational entropy~k ln g~j!!,
due to the number of microscopic conformations in the particular

Fig. 4. Energy landscapes are free energies,Fmicro~f1, f2, . . .!, as a func-
tion of the degrees of freedom,f1, f2, . . . ,such as backbone and side-chain
bond angles.
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macrostate.Fmacro~j! is a function of a single variablej, and
therefore it corresponds to just an ordinary two-dimensional plot,
of the folding free energy vs. reaction coordinatej. This is the

traditional reaction coordinate diagram~see Fig. 5B!. In contrast,
Fmicro~f! is the energy landscape; it is a function of many degrees
of freedom. Landscapes are usually plotted in three dimensions, as
a simplification, since it is impossible to draw high-dimensional
surfaces. Traditional terms such as intermediate state, pathway,
transition state, and free energy barrier refer toFmacro~j!. In con-
trast, computer simulations usually exploreFmicro~f!.

What are “folding pathways”? Micropaths and
microbarriers vs. macropaths and macrobarriers

The distinction between micro and macro also applies to folding
kinetics. A micropath is one trajectory that one protein follows as
it folds. At time t, the degrees of freedom have the valuef~t!. That
is, f~0! 5 @f1~0!, f2~0!, . . . , fn~0!# at time t 5 0, thenf~t1! 5
@f1~t1!, f2~t1!, . . . , fn~t1!# at time t 5 t1, etc.f~t! describes the
path a fly might take in a multidimensional space. Most computer
simulations have explored one or a few micropaths, although a few
modeling efforts have been able to explore more complete ensem-
ble averages~Chan & Dill, 1994, 1998!. Because proteins are
subject to Brownian motion, a micropath involves much motion
that would seem pointless to an observer. For example, a chain can
pass back and forth through a given configuration many times. In
contrast, a macropath describes some progress variablej~t!, which
involves different ensembles at different times during the folding
or unfolding process. Experiments have given information only
about macropaths, whereas simulations usually give only informa-
tion about micropaths.

The key to the Sequential Micropath view is an implicit assump-
tion of equivalence betweenmacropathsandmicropaths. The prem-
ise of the Sequential Micropath view is that there is a simple and
direct relationship betweenf~t! andj~t!, just as there is in tradi-
tional chemical kinetics~see Fig. 7!. If an energy landscape has an
energy well corresponding to reactantsA, another energy well
corresponding to productsB, and a lowest-energy “superhighway,”
which defines the route that most molecules take fromA to B, then
a one-dimensional reaction pathwayj can be obtained by painting
a stripe along the centerline of the superhighway through the multi-

A B

Fig. 5. ~A! Energy landscape vs.~B! reaction diagram. A landscape is a free energyFmicro of each individual chain conformation vs.
the many microscopic degrees of freedom. A reaction diagram is a free energyFmacro of an ensemble of molecules, and includes the
chain conformational entropy. HereFmacro is a function of a single variable,j, such as a reaction coordinate. The reaction coordinate
is usually not known for protein folding. The red arrow on the landscape indicates a possible micropath, an individual folding trajectory.
In this case, the micropath never involves an uphill step, and yet the reaction diagram has a free energy barrier. The barrier is due to
the slow entropic search of many different chains seeking the entry to the central steep funnel.

Fig. 6. The density of statesg~j! is a count of the number of chain con-
formations, in this case havingj hydrophobic contacts. On the energy
ladder, more hydrophobic contacts corresponds to lower energy.
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dimensionalf space fromA to B. In some cases, particularly near
the end of the folding process, this way of defining reaction path-
way may be useful and adequate. But this direct relationship be-
tweenf andj is valid only when molecules, like ants along a single
file trail, all follow essentially the same route. That is, if one mol-
ecule folds by first forming a helix at the N-terminal end, then form-
ing a contact between residues 1 and 27, then undoing the helix, then
forming a contact between monomers 3 and 18, etc., then the equiv-
alence of micropaths and macropaths would mean that all the other
molecules will undergo exactly the same sequence of events too.

But while micropaths in chemical reaction kinetics overwhelm-
ingly overlap with each other, the micropaths in protein folding
can be very different. Chemical bonding involves energies much
greater thankT, whereas each interaction in a folding process is not
much larger thankT, so thermal motions can cause much larger
variations in folding than in chemical reactions. One molecule may
form its N-terminal helix first, while another molecule in solution,
bombarded differently by Brownian motion, may form its C-terminal
contacts first. In the end, both molecules will fold, but each follows
a different micropath. Simulations usually show some degree of
preference among microroutes, particularly in late stages of fold-
ing, but there cannot be perfect registry in the early stages of the
micropaths because the starting points~the denatured conforma-
tions! are so different.

Figure 8A illustrates that for traditional chemical reactions
~Fig. 7!, there is a direct correspondence between the macrolevels

~reaction coordinate diagram! and microlevels~energy landscape!.
Peaks and valleys along the reaction profile represent microscopic
milestones along the energy landscape. But Figure 8B illustrates
that sometimes there may be no such correspondence for some
folding processes. For folding, a given experimental observation
~as manifested in the reaction coordinate profile! can arise from
many different landscape shapes. A landscape uniquely specifies a
reaction diagram, but a reaction diagram does not uniquely specify
a landscape. Figure 8B illustrates that folding becomes increas-
ingly pathway-like at late stages, because the molecules become
localized near the native state in conformational space. When chem-
ical reactions have a single exponential time dependence, it implies
an identifiable energy barrier. But for a single exponential, or any
other particular time dependence in folding processes, no direct
inference about microscopic bottlenecks is possible, as shown below.

Sometimes micropaths can be very different from macropaths.
Figures 5 and 9 show two landscape features in which micropaths
do not coincide with macropaths.~1! A downhill micropath con-
tributes to an uphill macropath. A downhill micropath means that
the chain does not break favorable contacts, say hydrophobic con-
tacts. But this can involve a barrier on a reaction diagram because
the microscopic meandering on flat plains on an energy diagram
can be slow~Fig. 5!. This will be manifested as a conformational
entropy barrier~uphill! on the reaction diagram but only as a slight
downhill slope on the energy landscape.~2! A downhill macropath
can include some uphill micropaths. An uphill micropath can arise
when one chain breaks favorable contacts, while most other chains
find lower energy routes that avoid breaking contacts~Fig. 9!. It is
because we do not yet know the relationships between micropaths
and macropaths that we cannot use experimental data and mass-
action models~macropaths!, to help us forge folding algorithms,
which require knowledge of microscopic details.

Energy landscapes are funnels:
The bottom is smaller than the top

While the shapes of folding energy landscapes are not yet known
in detail, it is uncontestable that they are funnel like, in the sense
of the term that we use here~Dill & Chan, 1997!. Here, “funnel”
means that many conformations have high energy and few have
low energy. More specifically, conformations having highFmicro

~denatured states! have high conformational entropy and states
having lowFmicro ~native state and other deep minima! have low
conformational entropy.~By some definitions, “funnel” also car-
ries the connotation ofsmoothlandscapes, so it also has implica-
tions about dynamics and time dependence, namely that barriers
are small so the process happens quickly. Here, the term funnel
carries no such implication about kinetics or barrier heights or
smoothness or any landscape shape feature other than: there are
many conformations of high free energy~Fmicro! and few confor-
mations of low free energy.!

Energy landscapes also have funnel-like shapes for processes of
ligand binding to biomolecules: there are few tightly bound con-
formations, and many unbound or weakly bound conformations
~Frauenfelder et al., 1991; Miller & Dill, 1997; Tsai et al., 1999!.

The chicken–egg problem: Collapse first or
secondary structure first?

Which comes first in the folding process, collapse or secondary
structure? Just as the answer to where chickens come from is more
complex than “chicken” or “egg,” so also folding is undoubtedly

Fig. 7. Classical energy landscape for chemical reactions. Reactants, prod-
ucts, and intermediate states are low-energy depressions. The reaction path-
way is a lowest energy highway from reactants to products. Transition
states are peaks along the pathway. For simple chemical reactions, most
molecules follow essentially the same reaction path.
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more complex than “collapse first” or “secondary structure first.”
“Collapse,” “secondary structure,” and “hierarchical” assembly
~Baldwin & Rose, 1999a, 1999b! are macroterms, like “reaction
coordinate,” since each describes an ensemble property. Hierarchic
folding has been recently defined “as a process in which folding
begins with structures that are local in sequence and marginal in
stability; these local structures interact to produce intermediates of
ever-increasing complexity and grow, ultimately, into the native
conformation” ~Baldwin & Rose, 1999a, 1999b!. It is proposed
that hierarchical folding involves multiple folding routes, rather
than a unique sequential pathway. By these criteria, there is little to
distinguish hierarchical folding from the Ensemble view. Growing
stability corresponds to a downhill flow on a landscape, and the
early preference for local contacts is similar to that found in energy-
based microscopic models, such as the following. The diffusion-
collision model is based on assuming thatfc preferences are
established early, then secondary structures assemble into tertiary
structures~Karplus & Weaver, 1976; Lee et al., 1987; Yapa et al.,
1992!. A zippers model also proposes that local contacts form
earlier, on average, than the nonlocal contacts. But the zippers
model supposes that structure development is driven by solvation
forces~Dill et al., 1993; Fiebig & Dill, 1993!.

A B

Fig. 8. A: For chemical reactions~energies.. kT!, the macrostates on reaction coordinate diagrams correspond to the time series of
microstates on the energy landscape.B: For folding processes~energies per interaction' kT!, the observed macrostates may not
uniquely specify the time series of microstates on the energy landscape.

Fig. 9. An uphill micropath~red line! is surrounded by more favorable
routes that do not involve uphill steps to reach the native state.
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Alternatives to the sequential micropath
and ensemble views?

There have been efforts to marry old and new views~Pande
et al., 1998; Pande & Rokhsar, 1999!. Those efforts aim to recon-
cile how there can be preferred folding routes at the same time that
individual chains follow different micropaths. But no marriage is
needed. Preferred routes and states are part and parcel of the En-
semble perspective. In my opinion, the Ensemble perspective is
not one model, one result, or one energy landscape shape. It is not
a denial of patterns, pathways, uniqueness, or structure. It is just a
perspective based on recognizing the general funnel-like nature of
the energy functionFmicro~f! with bumps and wiggles and shapes
that have yet to be determined. The funnel perspective is univer-
sally captured in many different models, monomer sequences, po-
tential functions, move sets, and definitions of transition states.
While particular results can depend on model details, the funnel
concept is a broad brush picture of how a large ensemble leads to
a small ensemble, how an unstructured population changes through
time to become a single structure, and how the degrees of freedom
diminish from being many and uncoupled and unsynchronized to
being few and coupled and synchronized. This process is bound to
involve preferences.

Indeed, at the end of the folding process, it would be remarkable—
and maybe impossible—to have large diversity in conformations
or trajectories. Most of the simulations that have led to the En-
semble perspective have found preferred folding routes in the late
stages of folding~Miller et al., 1992; Lazaridis & Karplus, 1997!.
What is new in the new view, and what was the essence of
Levinthal’s problem, was what happens in theearly stagesof
folding, not the late stages. Levinthal’s concern was how to search
the huge space of denatured conformations. The Ensemble view
merely asserts that molecules cannot be synchronized at the be-
ginning of folding because different chains have such different
unfolded conformations. Although the denatured state is a single
macrostate, it is a very heterogeneous collection of microstates.

It will surely remain a matter of opinion for any given simula-
tion whether what is interesting is the pathway or the variance
from it. In either case, energy landscapes provide the basis for
calculating any property of interest.

Why do we need energy landscapes?

Once energy landscapes are better understood, particularly for more
realistic models of proteins, they should be able to serve several
purposes. First, they should provide a consistent and rigorous lan-
guage for interrelating macroscopics to microscopics. Simulators’
micropaths, when properly averaged, can teach us about experi-
mentalists’ macropaths, and experimentalists’ macropaths can test
simulators’ models. Second, landscapes provide a link between
thermodynamics and kinetics, described below. And third, land-
scapes may provide the bridge so that folding kinetics can be
brought to bear on speeding up conformational search strategies,
also described below.

Relating thermodynamics and kinetics: A fluctuation–
dissipation relationship for proteins?

A most remarkable result in statistical mechanics is the
fluctuation–dissipation theorem~Chandler, 1987!. This theorem
relates a kinetic property of systems~the rate of approach to equi-
librium!, to an equilibrium property~the nature of the equilibrium

fluctuations!. Energy landscapes provide the framework for relat-
ing the thermodynamics and kinetics of protein folding. Figure 10
shows two landscapes: one is a smooth funnel, the other is a
rugged funnel. For the smooth funnel, folding kinetics should be
fast and two state. For the rugged landscape, folding kinetics will
be slower and more complex.

The shape of the landscape also describes the fluctuations at
equilibrium. Fluctuations are interesting for two reasons. First,
these are the motions that are important for protein function, such
as when an enzyme enters a transition state for catalyzing a reac-
tion. Second, fluctuations can be measured by NMR or thermal
factors in X-ray crystallography. The fluctuations are those con-
formations having energies only one or twokT higher than the
native conformation and are therefore transiently populated due to
occasional Brownian bombardments. If a protein has a smooth
landscape, the motions of the protein are mostly small wiggles,
never deviating much from the native structure because to do so
would require a high energy. But for a bumpy landscape, very
non-native-like conformations can occasionally be populated un-
der native conditions because the energies of such conformations
are not much higher than those of the native molecule~Miller &
Dill, 1995; Tang & Dill, 1998!. During those fluctuations, protons
or ligands could exchange in or out, or the protein could have other
transiently different properties than the native molecule. If we
knew the shapes of energy landscapes, we could better understand
the relationship between folding kinetics and equilibrium fluctua-
tions around the native state.

Landscape-ology can help in developing
new conformational search strategies

Knowing the shapes of energy landscapes should also help to
create faster computer conformational search methods. In the Se-
quential Micropath view, on-pathway intermediates are held in
special regard because of how they might illuminate the folding

Fig. 10. Comparing fluctuations on smooth vs. rugged landscapes. The
state of lowest free energy is native~N!, indicated as the lower tick mark
on they-axis. Normal fluctuations increase the energy, as indicated by the
higher tick mark. Thermal fluctuations lead to only small conformational
deviations from the native structure on smooth landscapes, but can lead to
larger deviations on rough landscapes. The native lattice conformation has
six hydrophobic contacts, whereas a conformation having only one unit
higher energy~five hydrophobic contacts!, has a completely different con-
formation. Rugged landscapes mean that small excursions in energy~from
native! can lead to large excursions in structure.
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path. But, as noted above, computer folding algorithms have not
been able to use such macro-information. The landscape view is
more egalitarian. Every conformation, no matter how distant from
the native state, can give some useful informationabout the native
state, as described below. New and faster conformational search
strategies are emerging that are based on what rudimentary knowl-
edge is currently available of the shapes of energy landscapes.

Current search methods, such as Monte Carlo~MC!, Simulated
Annealing~SA!, and Molecular Dynamics~MD!, explore energy
surfaces and are slow because they get caught in kinetic traps. We
call theselocal search methods; they do not make use of global
information about the shape of the underlying energy landscape. In
a local search method, some very small change in a conformation
is considered. Such changes are highly localized on the energy
landscape. An energy is evaluated, and some decision is made
whether to take that step uphill or downhill. The move is accepted
or rejected, usually either based on Metropolis criteria or Newton’s
laws. Such strategies are very slow because they are unguided by
global information, they involve much randomness, and they usu-
ally terminate in kinetic traps.

Here is an analogy. One way to find the lowest point on the
Himalayan mountains is to always walk downhill until you can go
down no further. Then go uphill until you can go down again. This
is the Monte Carlo and SA approach. Such random walking is
much slower and more haphazard than if you used a contour map
to guide your journey. For example, if a protein folding algorithm
creates a structure that does not have a hydrophobic core, it should
not keep changing one bond angle at a time as many current
methods do; it should stop wasting its time and move to a very
different part of conformation space.

New methods are developing for speeding up conformational
searching, based on emerging knowledge of the shapes of energy
landscapes~Maranas et al., 1995; Phillips et al., 1995!. For exam-
ple, the idea behind the Convex Global Underestimator~CGU!
method~Phillips et al., 1995; Dill et al., 1997; K.W. Foreman, A.J.
Phillips, J.B. Rosen, & K.A. Dill, unpubl. comm.! is to sample a
few conformations chosen randomly from the conformational space,
find the nearest local energy minimum for each one, then construct
a multi-dimensional parabolic “underestimator” surfaceU~f! un-
derneath all the minima that are known so far~see Fig. 11!. U~f!
serves as a predictor for where the global minimum might be
found, if the energy landscape is funnel-like. Subsequent under-
estimator surfaces are constructed iteratively for increasingly nar-
rowed regions around the native state. In this way,every chain
conformation that is sampled—no matter how non-native—
contributes some information about the landscape shape, and con-
tributes to an estimate of where the native state will be found. In
contrast, local search methods make no such use of collective
information about all other conformations that have been sampled
before a given step.

The CGU and other underestimator methods look promising, on
the following bases.~1! Starting from different initial starting points
on the landscape, the CGU usually reaches the same final point,
indicating that it finds global minima and does not get stuck in
kinetic traps.~2! An advantage of the CGU over MC and SA is that
no problem-dependent adjustment is required, as when devising
temperature schedules or proper move sets.~3! Tests so far in a
simple protein folding model and on van der Waals clusters up to
21 atoms shows that CGU reaches much lower on energy land-
scapes in a given time than MC or SA~see Fig. 12!, and the ad-
vantage increases with chain length~K.W. Foreman, A.J. Phillips,

J.B. Rosen, & K.A. Dill, unpubl. comm.!. The only knowledge the
CGU currently uses is just that landscapes are funnel-like. As we
learn more about the shapes of protein energy landscapes, it should
be possible to create faster conformational search strategies.

Historical parallels with polymer science?

For the past 40 years, a defining paradigm of protein science has
been Structural Biology. Structural Biology has provided a frame-
work for deciding what questions are important and how to answer
them. Two key imperatives of Structural Biology are~1! high
resolution, the importance of atomic detail and~2! unique archi-
tectures, the importance of specific geometric interrelationships
among atoms. Protein structures have atomic resolution, and every

Fig. 11. Convex global underestimator~CGU! conformational search strat-
egy. Traditional methods, such as Monte Carlo~MC!, molecular dynamics
~MD!, and simulated annealing~SA!, search over the tops of energy land-
scapes and can get caught in kinetic traps. The CGU searches underneath
the landscape instead by using a few sampled local minima~indicated by
dots! to generate a series of underestimating parabolic surfaces to locate
the global minimum~Dill et al., 1997!.

Fig. 12. Relative search depth~energy! of simulated annealing compared
to the CGU, for different lengths of model proteins, up to 36 amino acids
~K.W. Foreman et al., in prep.!. For short chains, SA reaches the same
depth on energy landscapes as the CGU, but for longer chains, SA gets
stuck at increasingly higher altitudes on the energy landscape, where the
relative depth is indicated by the cartoon on the right.
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atom has its place. It has been considered important to know THE
native structure, THE transition state, or THE intermediate structure.

Of course, it is clear that proteins wiggle and move; they are not
perfectly static~Karplus, 1997!. But even so, such fluctuations are
often regarded as a sort of footnote to the main message, much like
error bars in experimental data. According to this logic, folding
pathways are less like a perfect train track, where no lateral vari-
ation is allowed, and more like a highway, where some small
degree of weaving and lateral meandering can take place.

But in the polymer view, statistics can play a fundamentally
different and deeper role. It is more like replacing a train track, not
with a highway, but with a ski bowl. Driving on a highway from
point A to point B can be described by average velocities, posi-
tions, and altitudes along the “reaction coordinate,” the highway.
But tracking an ensemble of skiers is quite a different business than
tracking the flow of cars on a highway. Skiers can take different
routes. The average position of skiers on a mountainside is a much
more heterogeneous property, with less apparent meaning. What is
THE structure, or even THE averaged structure, at any given time,
is not yet clear, or necessarily always meaningful.

The importance of one particular structure and the neglect of
statistics has a parallel in the history of polymer science. The
breakthrough that founded polymer science was the macromolec-
ular hypothesis, the idea that there were long chains covalently
linked together~Flory, 1953; Morawetz, 1985!. The huge resis-
tance to this idea prior to the 1920s was due to a faith in the
importance of specific structures and a reluctance to fully appre-
ciate the statistics. According to Flory~1953!:

“Organic chemists were motivated by the desire to devise con-
cise formulas and to isolate pure substances, the termpure . . .
invariably implying a formula of convenient size. Hence the
quest forthe cellulose molecule orthe rubber molecule contin-
ued. . . . By theturn of the century this objective had crystallized
to a discipline which dominated synthetic organic chemistry. To
be eligible for acceptance in the chemical kingdom, a newly
created substance . . . had to be separated in such a state that it
could be characterized by a molecular formula. The investigator
was obliged to adduce elementary analyses to confirm the com-
position, and to supplement these with molecular weight deter-
minations for the purpose of showing that the substance was
neither more nor less complex than the formula proposed. Other-
wise the fruits of his labors would not be elevated to an honored
place in the immortal pages of the chemical compendiums. The
successes of synthetic organic chemistry in creating the hun-
dreds of thousands of different combinations and permutations
of atoms must not be discounted. In magnitude of creative
achievement, they are scarcely surpassed in any other field of
science. While this discipline was strikingly successful, it also
tended to narrow the outlook of contemporary researchers. They
came to believe that every definable substance could be classi-
fied in terms of a single definite molecule capable of being
represented by a concise formula.”

With the macromolecular hypothesis came the recognition that
N polymer molecules in solution, even when they are called by the
same name, such as polyethylene, are not identical to each other.
Each molecule in solution can have a different conformation and
even, for synthetic polymers, a different chain length. Hence dif-
ferent experiments see different ensemble averages and give dif-
ferent perspectives on the same “molecule,” polyethylene. Within

only about a decade after the macromolecular hypothesis was ac-
cepted, quantitative statistical mechanical models began to suc-
cessfully explain rubber elasticity, the viscosities and viscoelasticities
of chain molecule liquids, the dependence of the physical proper-
ties of polymeric materials on molecular weight distributions, and
the unusual thermodynamics of polymer solutions. Such statistical
ideas now provide the foundation of modern polymer theory. For
many properties of proteins, too, it seems clear that statistics is not
just a caveat about small details but is at the very heart of the
problems that proteins must solve.

Conclusions

Statistical mechanical models can give useful insights about pro-
teins. While all-atom models sacrifice conformational sampling to
gain atomic detail, statistical mechanical models do the reverse.
Because simple models explore non-native states so effectively,
have few parameters, and cost little computer time, they have been
useful for exploring folding forces and principles. They have led to
the perspective that the folding code is primarily a solvation code,
rather than a local propensities code. Statistical mechanical models
are well suited to addressing combinatoric problems, such as the
Levinthal and Blind Watchmaker paradoxes. The conclusion is that
we should beware of needle in a haystack arguments, because
nature does not seem to work that way. Each step is not unguided.
Conformational and sequence spaces are more like landscapes.
Landscapes are funnel like, wide at the top and narrow at the
bottom, sometimes with hills and valleys. All conformations—not
just on-pathway intermediates for example—can give some guid-
ance toward the global minimum. New computational search meth-
ods are drawing on this information to make better folding and
docking algorithms. The energy landscape perspective may help
connect the currently disjoint areas of kinetics experiments and
conformational search strategies.
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