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Abstract

This paper surveys the emerging role of statistical mechanics and polymer theory in protein folding. In the polymer
perspective, the folding code is more a solvation code than a code ofdlgcpropensities. The polymer perspective

resolves two classic puzzlgd) the Blind Watchmaker’s Paradox that biological proteins could not have originated from
random sequences, a(®) Levinthal’'s Paradox that the folded state of a protein cannot be found by random search. Both
paradoxes are traditionally framed in terms of random unguided searches through vast spaces, and vastness is equated
with impossibility. But both processes are parglyided The searches are more akin to balls rolling down funnels than

balls rolling aimlessly on flat surfaces. In both cases, the vastness of the search is largely irrelevant to the search time
and success. These ideas are captured by energy and fitness landscapes. Energy landscapes give a language for bridging
between microscopics and macroscopics, for relating folding kinetics to equilibrium fluctuations, and for developing
new and faster computational search strategies.

Keywords: new view; polymer; protein folding; statistical mechanics

This paper describes a perspective on protein folding that derivegear time frame, from the 1930s to 1980s. It originated with Mir-
in part from simple statistical mechanical and polymer models. Assky and Pauling in 1936Mirsky & Pauling, 1936, who proposed
with any perspective, this one is a personal opinion, with all thethat backbone hydrogen bonding is a prominent folding force.
limitations that implies. The first part of this paper explores the During the next 15 years, Pauling’s group used the structures of
folding code.(1) Structure How is the native structure encoded in small molecule hydrogen-bonding compounds to predict that folded
the amino acid sequencé€? ThermodynamicaNhy is folding so  proteins would haver-helical andB-sheet structure€Pauling &
cooperative?3) Kinetics What determines the speed and the rate-Corey, 1951a, 1951b, 1951c, 1951d; Pauling et al., L981e first
limiting steps of folding? Polymer modeling suggests that the fold-X-ray crystal structures of globular proteins gave strong support to
ing code is more a solvation code and less a linear encoding dahis view by confirming the existence of the predictedelices
torsion angles along the peptide bond, even though the latter is n@ndB-sheetg Kendrew et al., 1958 Hydrogen bonding was seen
negligible. The second part explores the energy landscape perspdo-be an important structure-causing force in proteins.

tive on folding kinetics. Polymer modeling suggests that the fold- During the same period, a step was taken toward understanding
ing process more closely resembles balls rolling down bumpyfolding cooperativity through an understanding of the helix-coil
funnels than balls rolling aimlessly on flat surfaces or rolling sin- transition. For many years it had been known that protein folding

gle file along identical trajectories. is cooperative, i.e., that there is a dramatic transition from dena-
tured to native states upon only small changes in solvent, pH, or
DISCUSSION temperature. In the 1950s and 1960s, theoretical work particularly
of Schellman(1958, Zimm and Bragd1959, Poland and Scheraga
Side-chain interactions contribute to architecture, (1970, and experimentsDoty & Yang, 1956; Doty et al., 1956
just as backbone interactions do showed that long peptide chains can undergo a helix-coil transition

The backbone for f foldin that is cooperative. The helix-coil transition is driven by hydrogen
€ backbone lorces o. olding ) ] bonding andgpys propensities among near-neighbor groups along
Table 1 compares two different perspectives on the folding codene chain. For many years, this has been the main model for con-
A backbone-centric, helix-centric perspective arose over the 5@srmational cooperativity in biomolecules.
To complete the picture of structure, thermodynamics, and ki-
Reprint requests to: Ken A. Dill, University of California, San Francisco, Netics, experiments beginning in the 1970s showed that helices can
3333 California Street, Ste. 415, San Francisco, California 94118; e-mailform rapidly (Kim & Baldwin, 1982; Williams et al., 1996 One
dllll%:naxm;ﬁll.qcsf.ectiuf |0 Hans Neurath, the Protein SocietyPaot inference was that folding is hierarchical and can be explained by
€ author Is grateful to Hans Neuratn, the Frotein societyl n o 0. H
Sciencefor the opportunity to present this overview, which is largely taken a scheme 1— 2 _> 3 | the primary structur.e Ieads.to secondary
from a talk given on the occasion of the Hans Neurath Award lecture, at thetructure (fasy, which is then assembled into tertiary structure
Protein Society meeting, July 27, 1998. (slowep. Hierarchical assembly was seen as a solution to the prob-
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Table 1. The side-chain forces of folding
_ : _ A different perspective has developed from polymer modeling
Backbone-centric Side-chain over about the past 15 years. The polymer perspective is side-chain
view centric view

centric, rather than backbone centric. The idea is that folding is
dictated not so much by the propensities for nearest neighbor amino

Dominant force ®W¥, Hydrogen bonds Hydrophobicity, . ; ; i
hydrogen bonds acids to favor particulagy values(a-helix or B-sheet propensi-
Thermodynamic  Helix-coil transition Collapse transition ti€S), even though there is abundant evidence for such preferences
cooperativity (Honig & Cohen, 1996; Aurora et al., 1997Rather, in the side-
Kinetics Helix formation is fast Desolvation is fast chain-centric view the greater contribution to the free energy of
Role of Nonspecific Drives specific folding is encoded in a more delocalized “solvation” code: there
hydrophobicity architecture are very few conformations of the full chain that can bury nonpolar
Folding code d¥-centric(1° —» 2° — 3)  Solvation code amino acids to the greatest possible degi@ié, 1985; Dill et al.,

1995. Even short peptides, such as amphipathic helices, can be
driven by solvation. Hydrophobic interactions, however they are
defined, are among the strongest interactions among amino acids
lem of how the protein sorts through conformational space hayin water. And in large proteins, there are many of them. In this
stack quickly on its way to finding the native state needle. Theview, hydrophobic interactions are not nonspecific glue, but a cru-
same hierarchy has been widely explored as a computational strattal structure-determining driving force. In this view, folding co-
egy for predicting native states from amino acid sequences: useperativity more closely resembles a process of polymer collapse
local helix and sheet propensities to predict secondary structured) a poor solvent than a helix-coil transformation. In this view, fast
then assemble them into tertiary structures. secondary structure formation is less a consequence of strong helix
The upshot was a perspective in which the backbone interpropensities, and more an indirect consequence of a drive toward
actions—hydrogen bonding arés propensities—have been seen nonpolar desolvation.
as a large part of the explanation of the structures, thermodynam- The true balance between side-chain and backbone forces is not
ics, and kinetics of protein foldingHonig & Cohen, 1996; Aurora yet known. The side-chain-centric view has been based on the
et al., 1997; Baldwin & Rose, 1999a, 1999bhe ¢ propensities  following logic. Simplified models that include side-chain inter-
are not equivalent to hydrogen bonding, since hydrogen bonds amctions, but have theéys preferences “turned off,” predict many
involved in nonlocal interactions, whereag interactions, by def-  properties of globular proteins. In contrast, models that kégp
inition, are not. Nevertheless, from the perspective oséguence-  propensities and turn off side-chain interactions predict only heli-
dependentinteractions, and sequence-structure relationships, a&es or strands and no compact folded st@teomas & Dill, 1993.
backbone-centric view is largelydaj-centric view, since there has Indeed, helix-coil experiments show tha# propensities control
been little basis for believing one amide-carbonyl backbone hystructures for sequences that are unable to collapse. For example
drogen bond has a substantially different strength than another ihighly charged poly-benzyl-glutamate is the classical helix-
a sequence-dependent way. On the other hand, hydrophobic inteiermer.
actions, which were first identified as important for protein folding It follows that aminimal modebf globular protein behavior can
by Kauzmann(1959, were seen as a nonspecific glue that aidedbe constructed from a side-chain-centric perspective but not from
collapse but otherwise played little role in dictating the specifica backbone-centric perspective. This means that it may be possible
architectures of native proteittdnfinsen & Scheraga, 19F75Hy- to design polymers that could fold and perform protein-like func-
drophobic interactions are mainly expressed by the side chaingions, even without peptide backbones. RNA molecules already
They are “through-space” and solvent-mediated contact interprovide some proof of this principle. Minimal models are guides
actions, rather than “through-nearest-neighbor-bonds,” agére for such general principles.
interactions. This distinction between torsion-based nearest-neighbor But minimal models do not tell us the actual balance of forces
“through-chain” interactions that involvgys angles, and contact- in real proteins. If our goal is an accurate model of proteins, we
based “through-space” interactions, that involve displacement oundoubtedly cannot ignore backbone interactidtisnig & Cohen,
exchange of solvent, seems less ambiguous than distinctions b&996 or details of steric packing, or the differegi interactions
tween secondary vs. tertiary forces, or local vs. nonlocal forcesamong the amino acids. In the end, since protein stability is a small
The ¢y interactions are mainly steric torsional constraints cap-difference of large interactions, all interactions can contribute to
tured in Ramachandran plots. Contact interactions, such as sidstructure, thermodynamics, and kinetics.
chain contacts, include hydrogen bonding and hydrophobic What is the evidence for the side-chain-centric vie@? A
interactions and van der Waals interactions among non-neighborinigackbone centric view does not predict collapse. A coordination of
monomers. ¢y choices to cause collapse would be extraordinarily fortuitous.
The ¢y perspective does not address a key issue. As with mos2) Helix and strand propensities tend to be weak. Excepting poly-
other polymers, a large conformational space is a consequence afanine-based sequend&tholtz & Baldwin, 1992 peptides that
weak preferences of each monomer unit for one region of torsionare found to be in helices or strands in globular proteins are un-
angle space relative to another region. But if they are to account fostable when isolated in solution. Moreover, most helices and strands
the folding codegys propensities must be different in the native are amphipathi€Eisenberg et al., 1984; Bowie et al., 1990; Branden
state than in the denatured state. In particybgrinteractions must & Tooze, 1999, implicating solvation forces. The-helical and
change when folding conditions are turned on. But there is littleB-strand propensities are context dependétdbsch & Sander,
evidence that tri- and tetra-peptides adopt native-like conformad984; Minor & Kim, 1994, and the nonlocal interactionsfiasheets
tions and overcome the chain entropy, when the solvent or temare large(Smith & Regan, 1996and numerous3) In a globular
perature are changed. protein, the number of local interactions is proportional to the
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number of amino acidsl, but the number of nonlocal interactions problem, not the solution. This is a key message from the successes
is proportional to aboutlg, so the latter should dominate in larger of the two-dimensional lattice Ising model in the revolution that
proteins.(4) Helices and strands often take their conformationaltook place in understanding critical phenoméd&anley, 1971
instructions from their context or from the solveituroda et al.,  The inability of earlier models of phase transitions to capture sub-
1996; Predki et al., 1996(5) To a first approximation, a fold is tle critical behavior was attributable, not to the lack of realism and
determined by the binary sequence of hydrophgitar mono-  atomic detail, but to a lack of rigor in the mathematics of the
mers, even wherbys propensities are largely chosen randomly models.
(Reidhaar-Olson & Sauer, 1988; Bowie et al., 1990; Lim & Sauer, Mathematician Mark Kac once said that the purpose of models
1991; Gassner et al., 1992; Lim et al., 1992; Kamtekar et al., 1993is “to polarize our thinking,” to help us formulate questions. A
Matthews, 1993; Munson et al., 1994, 1996; Lazar et al., 1997model manifests a point of view; it regards certain components of
Roy et al., 1997; Schafmeister et al., 1997; Wu & Kim, 1997 a problem as relevant, important, or dominant, and other compo-
(6) Protein folds are less affected by mutations on their surfacesents as irrelevant, unimportant, or negligible, and then devises a
than in their hydrophobic coredim & Sauer, 1991; Matthews, chain of logic leading to predictions from those premises. Most
1993. (7) Some experiments show that protein folding is not broadly, the point of a model is to make decisive and testable
hierarchical, implying that secondary structures are not pre{predictions, regardless of whether its fine structure looks realistic.
assembled and used as building blocks in tertiary assembly. Fok key advantage of simplified models is that their parameters are
example, aB-sheet protein can fold via a helical intermediate physical and minimal in number. The chain of logic from premises
(Shiraki et al., 1995; Hamada et al., 199@) Hydrophobic clus-  to conclusions is direct. Simplified models serve to generate hy-
tering, like secondary structure formation, can be very f@stan  potheses that often cannot be generated in any other way, but that
et al., 1997; Ramachandra Shastry & Roder, 1998; Ramachandran then be tested by experiments or refined simulations.
Shastry et al., 1998and it can drive helix and sheet formation. Simplified models have been useful for exploring entropies and
combinatoric principles of conformational and sequence spaces.
Two problematic paradoxes of protein science have been shown
by polymer modeling to be neither problematic nor paradoxical.
The predictions described above come, in part, from models thatl) The Blind Watchmaker ParadpXhe probability that natural
involve considerable simplification. An example is the HP model, proteins could be found in a random search of sequence space was
in which each amino acid is represented as a bead, each bond issaen to be impossibly smalR) The Levinthal ParadaxThe prob-
straight line, bond angles are a few discrete options rather than ability that a protein could find its native state by random search
continuum, different conformations conform to lattices in two or was seen to be impossibly small. Both paradoxes have been framed
three dimensions, and the 20 amino acids are condensed intoia terms of random unguided processes that search for a single
two-letter alphabet: Hhydrophobig or P (polan (Dill, 1985; Dill point, theendstatein a vast space. Biological evolution searches
et al., 1995. through sequence space; the endstate is a single protein having a
While statistical mechanical models aienplifiedin their rep-  particular function. Protein folding searches through conforma-
resentation of energies and atomic details, theynaoee refined tional space; the endstate is the single native structure of a given
in other respect§Camacho & Thirumalai, 1993; Bryngelson protein. In both cases, the vastness of the se@reh the size of
etal., 1995; Dill et al., 1995; Karplus, 1997; Onuchic et al., 997 the search spagés taken, according to the paradox, to be the key
(1) their full conformational space can be explored extensively,to the impossibility of reaching the endstate.
sometimes without sampling or approximation, &@dsometimes
the full sequence space can be explored. For some questions, it is
more important to get right the representation of conformational otCreationists, evolutionists, and blind watchmakers:
sequence spaces than it is to get right the atomic details. Man@an proteins arise from random sequences?

questions of structure, stability, and kinetics are not about theSequence space is a large place. For protein chains of 100 amino

Iocathns of the hydrogen bonds in native lysozyme. They are r'o}acids, the number of possible sequences of the 20 different amino

questions that are answeraple t_)y_ p_rystallography_. They are abo':ﬂ:ids is 2090 = 10'%0 (see Fig. 1 Creationists have used such

distributions and ensembles, flexibilities and entropies, energy land- . e : :
. o : ) numbers to argue the impossibility that proteins, and life, could

scapes, folding kinetics, big conformational changes, or sequence

space. They are low-resolution questions that have low-resolution

answers. Apart from X-ray crystallography and NMR, the work-

horses of biomolecule science for many years have been low-

resolution experiments—CD, fluorescence, small-angle scattering ~ The Sequence Question The Structure Question

some NMR experiments, calorimetry, chromatography, ANS bind-

ing, melting curves, etc.

For questions involving conformational ensembles, conforma-
tional entropies, sequence space, long time and large spatial scale
ensemble averaging, or non-native states like transition states, mol
ten globules, intermediates or denatured states, there is currentl 20" = 1030 1019 sequences
little alternative to some degree of simplification in models. It is 1 sequence
sometimes helpfu_hc_ntto have atomic details, picc_)se_cond by pico- 0. 1. Sequence space is large. There ard®®alifferent 100-mer se-
second, beca_luse itis hard to se_e the forest F’f principles through t énées. The probability of findin§ one particular sequence i$%0but
trees of detail. It would be a mistake to believe that any model ishe probability of finding any sequence that folds to a particular structure
“improvable” by adding structural detail. Sometimes details are thés predicted to be more than 100 orders of magnitude larger.

Simplified models are hypothesis generators
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have arisen from the random sequences that were plausibly on tlemino acid spheres together to make a protein; 67 of them will be
prebiotic earth. Creationists solve the large numbers problem bpn the surface and 33 will be in the cor&herefore, the real
invoking divine intervention. Evolutionists solve the large num- search for protein structure takes place, not in a space bflag
bers problem instead by the accretion of advantage that happeis a space nearer in size t6V2 = 232 = 10'° for N = 100. The
through natural selectiofDawkins, 1996. But both evolutionists  other 120 orders of magnitude in sequence space are highly de-
and creationists start from the same premise, the large numbegenerate; the folded states of those sequences will look much like
problem. Evolutionists too assume that natural proteins are infinones already found in the search of the smaller space.
itesimal specks in an impossibly vast and meaningless sequence Sequence space is therefore not likely to be vast darkness with
space, as indicated by the following quotes: “Only a very smallinfinitesimal specks of protein-like light spots. It is not perfectly
fraction of this unimaginably large number of polypeptide chainslight either. On a logarithmic scale, sequence space is predicted to
would adopt a single stable three-dimensional conformatig’ be more like a beige sea in which virtually all molecules are
berts et al., 1998 and “It is certain that we need a hefty measure “nearly folded.” A typical random chain of 100 amino acids is
of cumulative selection in our explanations of liféDawkins, predicted to be highly compact in water, have considerable sec-
1996. It is this numbers problem that | refer to, with the help of ondary structure, and be structured much like a molten globule
the wonderful metaphor of Richard Dawkins, as the Blind Watch-(Lau & Dill, 1990; Chan & Dill, 1992. This is a far better starting
maker’s paradox. point for natural selection than are specks in astronomically large

But statistical mechanical modelirigau & Dill, 1990; Chan &  sequence spaces.
Dill, 1991; Lipman & Wilbur, 199 shows that there is very little But whatever the starting point, there remains the need for a
numbers problem in the first place. Reach into a soup of randonprocess of improvement. Evolution can improve proteins by nat-
amino acid sequences. The chance of pulling out a biologicallyural selection. Richard Dawkins has explained natural selection
important molecule depends on what is meant by “biologicallyusing the metaphor of a Blind Watchmaker. By invoking “Watch-
important.” The following two questions are vastly differédaee  maker,” he means the endstate has the appearance of having been
Fig. 1): (1) What is the probability of pulling from that soum  designed. The traditional inference is that an object that appears
specific sequen@g2) What is the probability of pulling from that designed was built by a systematic step by step procedure, as in
soupany sequence that folds to a specific structiféhe answer to  building a watch. But Dawkins’ term “Blind” means that, on the
question(1) is 10120 for a 100-mer. The chance of pulling out a contrary, the natural selection process is not so systematic and does
polypeptide having, say, the lysozyme sequence, is essentially zernot involve a specific pre-ordained sequence of events. Natural
But to achieve biological function, we care only about finding a selection is a Blind Watchmaker that improves proteins through
particularfold, not a particulasequenceAnd modeling shows that incremental steps, each of which involves some bias, however
the probability of finding a structure is likely to be more than 100 small, at the same time it also involves considerable random choice
orders of magnitude larger than the probability of finding a se-among alternatives.
quence(Lau & Dill, 1990; Chan & Dill, 1991. The chance of The Blind Watchmaker is also a useful metaphor for protein
pulling outany sequencthat folds to roughly lysozyme’s structure folding kinetics, the systematic accretion of native structure over
is closer to 10%° to 102°. While this number too may seem the time course of a folding experimef@wanzig et al., 1992 A
impossibly small, nature works with these sorts of numbers all thenative protein has the appearance of design. For example, the steric
time. These numbers would imply about one such sequence in fit of side chains in a protein core is as precise as that of a
liter of random sequences at nanomolar concentrations! And thggsaw puzzle. But tight packing of irregular objects can also be
probability of findingany chain fold, not just lysozyme, is even achieved by shaking up nuts and bolts in a jar, with no design
higher. involved (Bromberg & Dill, 1999. The appearance of design does

Why does the numbers problem disappear when we sgek- not mean that folding happens in serial step by step fashion. Even
turesrather tharsequencesThere is an enormous “degeneracy” in a jigsaw puzzle can be constructed through different parallel se-
sequence space: many different sequences can fold to the sameences of eventdarrison & Durbin, 1985 The native structure
native structure. A protein can be mutated substantially withouttan be reached, over the time course of folding, by a process that
changing its fold. The explanation for this is simple. If, as noted(1) starts from different initial conformations ari@l) proceeds by
above, a fold is primarily determined by the binary sequence oincremental improvements, each of which has some bias but also
hydrophobi¢gpolar monomers, then the essential features of tha@nvolves considerable random choice among alternatives. Even a
full 201 sequence space are found by searching a space of onlery small bias(deviation from randomnesn choosing among
about the 2°° = 10°° sequences that are written in a binary al- alternatives can speed up the search tiomenpared to a random
phabet(H = hydrophobic, P= polan, a reduction of 100 orders of search by tens to hundreds of orders of magnitudee below.
magnitude. Degeneracy means that hydrophobic monomers ai&hen perfect randomness is not the driver, the vastness of the
largely interchangeable with each other, and polar monomers argearch becomes irrelevant to the search tib#l, 1993). These
interchangeable with each other, for determining a fgfdinction  ideas are captured ilandscapesfitness landscapes in sequence
may have additional requirements, but estimates indicate that thesgpace or energy landscapes in conformational space. We now focus
do not change the numbers mu@dtau & Dill, 1990).) on the latter.

Moreover, modelindgLau & Dill, 1990; Chan & Dill, 1992 and
experlment$Reldhaar-O!son & Sauer, 1988; Matthews, 1988w The old and new views of folding kinetics:
that the relevant space is even smaller, because only &bjGubf Different questions
the residues are crucial for folding—those that define the hydro-
phobic core. To first approximation, most surface sites can beProtein folding kinetics has been described in terms of so-called
mutated without changing structure or functi¢fhe factor ofN/3 Old and New ViewgBaldwin, 1994, 1995; Dill & Chan, 1997To
comes from the geometry of surfae®lume ratios. Pack 100 define these views, we first distinguisiodels old and new, from
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views of microscopic folding processegd and new. For models, residue chain is ¥° ~ 10%° chain conformations. Only one of
the terms old and new is too stark a contrast. It leads to thehese is the native structure. Levinthal’s proposed solution for find-
perception that we should be asking: Why do we need new moding the needle in the haystack was that all chains must follow the
els? What was wrong with the old ones? Which models are better8ame microscopic pathway, like ants single file on a {talinthal,
But these questions miss the mark. Old and new models do ndt968. By “same pathway,” he specified that every chain follows
address the same questions. The old models are mass action makde same sequence of bond angle changes, in the same order, to
els used to fit experimental data on folding relaxation times andeach the native state. In the Sequential Micropath view, kinetic
amplitudes. The new view is not a denial of these models. Masintermediatesif they were on-pathwaywere seen as helpful mile-
action models remain valid for representing such data. While masposts because they would show what route was taken, and there-
action modeling gives anacroscopialescription of experimental fore what routes were avoided, and therefore how the haystack was
data, the new statistical mechanical models giveiaroscopic  searched efficiently. Two-state kinetics was seen as uninformative
frameworkto explain that data. about the mileposts of folding.

Where old and new views differ, however, is in their interpre-
tation of the microscopic processes of folding. In the hope that Ensemble perspective
changing terminology can help untangle some confusion, | will In the Ensemble view, the vastness of the search is largely
replace “old view” with “Sequential Micropath view” and “New irrelevant. The more important problem is kinetic trg@han &
view” with “Ensemble view.” Dill, 1994, 1998. Chains can sort very quickly through vast stretches

Table 2 summarizes the differences between the two views obf conformational space. In this view, chains fall energetically
folding kinetics(Dill & Chan, 1997). The language of the Sequen- downhill, as when balls roll down bumpy funnels. Chains do not
tial Micropath view—pathways, transition states, reaction coordi-fold by random searches on level energy landscapes. In this view,
nates, on-path and off-path intermediates—is intended to explaitwo-state kinetics often means the chain is folding at nearly its

what exponentials d@.e., what you see in experiment&xperi- maximum possible diffusion-limited speed, without kinetic traps.
mental relaxation data are interpreted in terms of mass-action din this view, stable intermediates are mainly seen as kinetic traps
agrams having arrows that connect symbols [ikédenatured | that slow down the folding process.

(intermediatg andN (native).. Nothing in this language says what = Here’s why the vastness of the search is irrelevant. Even a very
any one molecule is doing at any given time, or how the kineticssmall bias, in the form of the forces of protein folding, can be the
of folding is related to the monomer sequence, or how to assigulifference between folding times measured in “lifetimes of the
microscopic chain conformations to labdlsor D or transition  universe” vs. millisecond$Bryngelson & Wolynes, 1987; Dill,
state, etc. But the language of the Ensemble view—landscape&987; Zwanzig et al., 1992(0On a large flat golf course, a golf
folding funnels—is intended to descrilvéhat molecules ddi.e., ball will “never” find the hole by random processes, but if the
how individual molecules progress toward the folded $teaad  golf course has even a small tilt that funnels toward the hole, no
how different monomer sequences lead to different kinetics. problem)

What causes the funnel-like tilt on a folding landscape? The first
estimates of the shapes of folding energy landscapes were based on
mean-field theoriegsee Fig. 2(Dill, 1985; Bryngelson & Wolynes,

. . '1987). Hydrophobic collapse leads to compact chain conforma-
was thesearch problemwhich has been called thevinthal par- tions. The funnel arises because the drive to collapse is also a drive

ado; As Levm:}halfposefd |(Lety|nthal, 1338; \liVetIauferi 1_9‘Jf3a toward a reduced ensemble of conformations. There are many
rLé:en ',?trr?afegrc fof;.ncog o;mae:)rr::sh \tl\;]?g haae ; tpcrgnef'c?rm;.egsggon-native stateshigh energy, but only one native statdow
Vi saw Ing as as ug vas : nergy. The fraction of conformations that are compact is infin-

fhp:i?),n‘;g?mh;iy;rtlz(l:g z)cretri]se r:atr';'seesnttrggtgref’otl:'f rrueafe dIe.;]uppo&gsimal compared to the total conformational space. If there are
p P y prefapedn- 4100 conformations of a chain, Flory—Huggins-like theories predict

gles for each peptide bond:helical, 8-strand, and two others. In Og_lat only about4/e)1% ~ 10%7 of those conformations are com-

terms of those discrete options, the size of the space for a 1 pact(Dill, 1985). More accurate recent estimates predict a number
that is even smallefYue & Dill, 1995): the number of compact
conformations having a hydrophobic core may even be as small as
1 for some sequences. This estimate is supported by experiments

Sequential micropath perspective
The main problem, according to the Sequential Micropath view,

Table 2. on reduced alphabets based on hydrophobicity codes; a small frac-
_ tion of sequences appear to fold relatively uniquétyddle et al.,
‘Sequential ] 1997; Roy et al., 1997; Schafmeister et al., 1997
micropath view Ensemble view

In short, the Ensemble view is a reversal of the sequential
micropath view. What was seen as the slow step—the search through

Language Paths, intermediates, Landscapes, funnels ; . . .
transition states, the huge haystack of non-native chain conformations—is now
reaction coordinates seen as happening at near diffusion-limited speed. Collapse can be

Explains What exponentials do ~ What molecules do  fast. Sifting through most of the haystack is fast; the slow part is
(what you sep (how it works the endgame of reconfiguring a very small set of near-native con-

Main problem Search problem Trap problem formations. In the past few years, new fast experimental methods

Proposed solution Sequential pathways Funnels (Burton et al., 1997; Callendar et al., 199%ave shown that pro-

Intermediates Mileposts Traps ~ teins can fold at nearly diffusion-limited rates, on submillisecond

Two-state kinetics No information Implies fast folding time scales(Huang & Oas, 1995; Ballew et al., 1996a, 1996b;

Pascher et al., 1996; Burton et al., 1997; Chan C-K et al., 1997;
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Fig. 3. Simple mass-action schemes describe observed relaxation rates
and amplitudes, using symbols suchMgnative, D (denatureg, and|
(intermediate

interpret them. When a single exponential decay is observed in
both folding and unfolding directions, it is described as “two-state”
kinetics, because two mass action symbols, sudk @stive and
D (denaturegi and an arrow interconnecting them, provide the
simplest scheme that can model the data. But when multiple ex-
ponentials are observed, at least one additional symbol must be
invoked in a mass-action law. When there are three such symbols,
say N, D, and| (intermediatg, there are two main ways those
symbols have been interconnected by arromis:called an “On-
pathway” intermediate ok is an “Off-pathway” intermediate.
N But even when experiments provide a perfectly accurate mass
Fig. 2. Smooth funnel landscagi®ottom. Denatured conformations fol- ~ ction model for the folding and unfolding kinetics of a particular
low different folding routes to the native state. The top figure shows theprotein, it does not give enough information to make a microscopic
Flory-Huggins excluded volume estimate for the landscape sttapeed  model of how folding takes place. Experimental data are too av-
sideways: @ ~ (N/p)!/[(N/p)"(N/p — N)!J, where( is the number of  graqa4 to inform the local decisions that must be made in confor-
chain conformations\ is chain length, and & p < 1 is the compactness - . . . . . .
of the chain, an approximate measure of the depth on the landédilpe mational searching. Aicrostateis a single chaln confprmatlon. A
1985, macrostate—such as the unfolded state an intermediate state
a molten globuleM, or a transition staté—is some collection of
individual conformations. The native stdtids often appropriately

) ) regarded as both a microstate and a macrostate. To construct a
Gilmanshin et al., 1997a, 1997b, 1998; Ramachandra Shastry §|qing algorithm requires a computational recipe that will begin
Roder, 1998; Ramachandra Shastry et al., 1988ergy land- \yith a microstate—some particular chain conformation—then eval-
scapes provide the language that can help describe folding evenf$ its energy, then choose which specific bonds to change and by
at any level, from the microscopic to the macroscopic. how much, in order to take a computational step to make it a more
native conformation.

But experimentally obtained mass action models give only rec-
ipes for dealing wittmacrostatessuch ad (intermediatg, D (de-
natured stafe T (transition statg etc., and not for dealing with
One long-term goal of protein folding experiments has been tamicrostates. Here are macrorecipes for how to move a chain con-
help understand the microscopic basis for the folding code. Buformation toward the native structure. From an on-pathway inter-
this remains a promise, not a reality. Why? Prior to energy landmediate state, move uphill alorthe reaction coordinatén the
scapes, there has been no way to connect the macroscopics tHatward direction From a transition state conformation, move down-
experiments measure to the microscopics that are needed in corhill. From an off-pathway intermediate, go back to the denatured
putational folding algorithms. Here is the problem. state and try again to go forward along the reaction coordinate.

Figure 3 illustrates the kind of folding kinetics data that is tra- But these macrorecipes do not answer the following questions.
ditionally measured, and the mass-action models that are used {@) What is the macrostate to which a particular chain conforma-

Energy landscapes connect single-chain microscopics
to experimental macroscopics
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tion should be assigned? Or choose a macrostate: what micravhich, in turn, is a distinction between microscopics and macro-
scopic conformations are in it? What is the ensemble calledscopics(see Fig. 5. The Sequential Micropath view postulates a
“intermediate state,” or “denatured state,” or “transition state”?simple relationship between these two types of diagrams. In the
Currently, such assignments must be made arbitrarily. Macrostatdsnsemble view, the relationship can be complex, but, in general, is
are averages over many microscopic conformations; they are netot known. A microstate is a single point on an energy landscape
descriptions of single chain conformatiof®). What series of chain  and has free enerdycro = F(¢), which is also called thiternal
conformations defines the reaction coordinate? A reaction coordifree energy(Dill & Chan, 1997. A macrostate has free energy
nate is a macrovariable, not a microvariatdee below. For pro- Facro= F(£), whereé is just a scalar quantity, such as a reaction
tein folding, the reaction coordinate is not known in microscopiccoordinate or a progress variable. A given value¢afepresents
terms.(3) Even if we knew the reaction coordinate, how do we some particular ensemble of microscopic conformations.

know which way is forward? Which specific bond angles should Figure 6 illustrates the difference betweERic,o and Fracro iN

we change to progress toward the native state? Every protein folda simple model. Suppose we choose as a progress variable the
ing algorithm must make these kinds of microdecisions at everynumber of hydrophobic contact,= 0, 1, 2,...,m, to reflect the
step. But no experiment yet gives such microinformation. Energyextent of folding. This is just one of many possible progress vari-
landscapes can provide the common language to bridge betweebles; it is just chosen here for illustration because it simplifies the

micro- and macrodescriptions. math. Thedensity of states (§) is a count of the number of
different microstateg that define a particular macrostageFig-
What is an energy landscape? ure 6 shows one of thg(0) ~ 500,000 conformations that have

According to the principles of thermodynamics, if a system hast = 0 hydrophobic contacts, one of tigé4) = 67 conformations
n degrees of freedor = [y, ¢, ..., bn], the stable state of the that haveé = 4 hydrophobic contacts, and tigg6) = 1 confor-
system can be found by determining the set of vaiigs= [¢, mation thgt hgf = 6 hydrophobic contacts; this is the native
¢5,...,¢] that gives the minimum value of the free energy func- Stucture in this model. _ _
tion F(#) = F(y, ¢ar..., dy), when explored over all possible 10 determinéniero, focus on a particular conformation. For that
values ofé (see Fig. 4 Such functionsF(¢) are calledenergy conformation, sum all the_ energies due to bond angles, torsions,
landscapesEnergy landscapeger se are neither new, nor con- §tretche§, van der Waalsllnteractlons, hydrogen bonds., electrostat-
troversial, nor limited to proteins. “Energy landscape” is nothing €S an_d include the solvation free energy due to the relatlve_ amounts
more than a name for this function. For protein foldiggmay be ~ Of buried and exposed hydrophobic and polar surféggyois a
the backbone and sidechain bond angles, for example. freeenergy, rather than just an energy, because it includes solvation

and desolvation entropies and the hydrophobic effggt,, is not

the total free energy, however, because it doest include the

Distinguishing between microscopics and macroscopics . : ) . .
The distinction b he old and . is the distincti chain conformational entropy: it treats only a single conformation.
€ distinction between the old and new views Is the IStInCtlonIn the HP model, in which hydrophobicity dominates, a given

between an energy landscape and a reaction coordinate diagra[,:(hain conformation hag hydrophobic contacts, SByeo = &,

wheree < 0 is the free energy of desolvating two nonpolar groups
and bringing them into contact.
The relationship between energy landscapes and reaction dia-
F (@, D)) grams is a relationship betweBgacroaNdFmicro. Fmacodoesinclude
the chain conformational entropy,

Fmacro(§) = —kTInQ = *kT|n[g(§)e_F"ﬂlcr0/kT]

= Fmicro(é) —kTIng(), D

where Q is the partition functionFico(é) is the internal free
energy for each conformation that hiakydrophobic contacts, and
g(¢) is the number of conformations havigghydrophobic con-
tacts. Other progress variables can be more complex, but this sim-
ple model is sufficient for present purposes. If we express the
conformational entropy of the macrostateas S.onformationalé) =

kIn g(¢), then Equation 1 becomes

(D* Fmacro(g) = Fmicro(g) - TS:onformationa(g): (2)

,,

Do The main point is thaFcro iS the free energy of a single chain
conformation whereaBa¢ro0 IS the free energy of some ensemble
of conformations that collectively have some macroscopic mean-

Fig. 4. Energy landscapes are free energRigeo(ds, ¢2....), as a func- ing, such as an intermediate, transition state, molten globule, or the

tion of the degrees of freedompy, ¢, ..., such as backbone and side-chain denatured stat&macroincludes a conformational entroplyin g(£)),
bond angles. due to the number of microscopic conformations in the particular
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N

Degree of Freedom (®;)

Reaction Coordinate (£)

Fig. 5. (A) Energy landscape v$B) reaction diagram. A landscape is a free endfgy;, of each individual chain conformation vs.

the many microscopic degrees of freedom. A reaction diagram is a free drgrgyof an ensemble of molecules, and includes the

chain conformational entropy. HeFg,acro IS @ function of a single variabl&, such as a reaction coordinate. The reaction coordinate

is usually not known for protein folding. The red arrow on the landscape indicates a possible micropath, an individual folding trajectory.
In this case, the micropath never involves an uphill step, and yet the reaction diagram has a free energy barrier. The barrier is due to
the slow entropic search of many different chains seeking the entry to the central steep funnel.

macrostate Fnacrd€) is a function of a single variablg, and

traditional reaction coordinate diagraisee Fig. 5B. In contrast,

therefore it corresponds to just an ordinary two-dimensional plotFico(@) is the energy landscape; it is a function of many degrees

of the folding free energy vs. reaction coordingteThis is the

Energy

Fifth Excited State

pt

Second-Excited State

5

First Excited State

ki

Ground State

s

Fig. 6. The density of stateg(¢) is a count of the number of chain con-
formations, in this case having hydrophobic contacts. On the energy

g (£) (x 105)

ladder, more hydrophobic contacts corresponds to lower energy.

of freedom. Landscapes are usually plotted in three dimensions, as
a simplification, since it is impossible to draw high-dimensional
surfaces. Traditional terms such as intermediate state, pathway,
transition state, and free energy barrier refeF{Qc(£€). In con-
trast, computer simulations usually expldtgicro(¢).

What are “folding pathways”? Micropaths and
microbarriers vs. macropaths and macrobarriers

The distinction between micro and macro also applies to folding
kinetics. A micropath is one trajectory that one protein follows as
it folds. At timet, the degrees of freedom have the vah(¢). That
is, (0) = [¢1(0), $»(0),..., p,(0)] at timet = 0O, theng(ty) =
[P1(t1), da(t1),..., dn(ty)] at timet = t;, etc. §(t) describes the
path a fly might take in a multidimensional space. Most computer
simulations have explored one or a few micropaths, although a few
modeling efforts have been able to explore more complete ensem-
ble averagefChan & Dill, 1994, 1998 Because proteins are
subject to Brownian motion, a micropath involves much motion
that would seem pointless to an observer. For example, a chain can
pass back and forth through a given configuration many times. In
contrast, a macropath describes some progress vaéigblevhich
involves different ensembles at different times during the folding
or unfolding process. Experiments have given information only
about macropaths, whereas simulations usually give only informa-
tion about micropaths.

The key to the Sequential Micropath view is an implicit assump-
tion of equivalence betweenacropathsandmicropaths The prem-
ise of the Sequential Micropath view is that there is a simple and
direct relationship betweefi(t) and£(t), just as there is in tradi-
tional chemical kineticgsee Fig. 7. If an energy landscape has an
energy well corresponding to reactars another energy well
corresponding to producB and a lowest-energy “superhighway,”
which defines the route that most molecules take ffota B, then
a one-dimensional reaction pathwgygan be obtained by painting
a stripe along the centerline of the superhighway through the multi-



1174 K.A. Dill

(reaction coordinate diagrarand microlevelgenergy landscape
Peaks and valleys along the reaction profile represent microscopic
milestones along the energy landscape. But Figure 8B illustrates
that sometimes there may be no such correspondence for some
folding processes. For folding, a given experimental observation
(as manifested in the reaction coordinate profgéan arise from
many different landscape shapes. A landscape uniquely specifies a
reaction diagram, but a reaction diagram does not uniquely specify
a landscape. Figure 8B illustrates that folding becomes increas-
ingly pathway-like at late stages, because the molecules become
localized near the native state in conformational space. When chem-
ical reactions have a single exponential time dependence, it implies
an identifiable energy barrier. But for a single exponential, or any
other particular time dependence in folding processes, no direct
inference about microscopic bottlenecks is possible, as shown below.
Sometimes micropaths can be very different from macropaths.
Figures 5 and 9 show two landscape features in which micropaths
do not coincide with macropathé&l) A downhill micropath con-
tributes to an uphill macropattA downhill micropath means that
the chain does not break favorable contacts, say hydrophobic con-
tacts. But this can involve a barrier on a reaction diagram because
the microscopic meandering on flat plains on an energy diagram
can be slow(Fig. 5). This will be manifested as a conformational
entropy barriefuphill) on the reaction diagram but only as a slight
downhill slope on the energy landscaf®. A downhill macropath
can include some uphill micropath&n uphill micropath can arise
when one chain breaks favorable contacts, while most other chains
find lower energy routes that avoid breaking cont&€ig. 9). It is
Fig. 7. Classical energy landscape for chemical reactions. Reactants, prog)-ecause we do not yet know the relatlonshlps between micropaths
ucts, and intermediate states are low-energy depressions. The reaction paff!d macropaths that we cannot use experimental data and mass-

way is a lowest energy highway from reactants to products. Transitioraction modelgmacropathk to help us forge folding algorithms,

states are peaks along the pathway. For simple chemical reactions, moghich require knowledge of microscopic details.
molecules follow essentially the same reaction path.

Energy Reactants

Transition «SX3 ('/‘/
\‘:‘2?‘ 2

Energy landscapes are funnels:

di . " fromA to B. | dcularl The bottom is smaller than the top
imensionakp space fromA to B. In some cases, particularly near . .
the end of the folding process, this way of defining reaction path-. While the shapes of folding energy landscapes are not yet known

way may be useful and adequate. But this direct relationship be|_n detail, it is uncontestable that they are funnel like, in the sense

. . . . of the term that we use hef(®ill & Chan, 1997. Here, “funnel”
tweeng and¢ is valid only when molecules, like ants along a single i .
. ; . S means that many conformations have high energy and few have
file trail, all follow essentially the same route. That is, if one mol-

) . . . low energy. More specifically, conformations having high;

ecule folds by first forming a helix at the N-terminal end, then form- 9y peciiicatly, ) 9 highicro
) ! ; . denatured stateshave high conformational entropy and states
ing a contact between residues 1 and 27, then undoing the helix, then = . : )
. -having low Fn,¢ro (Native state and other deep mininteve low
forming a contact between monomers 3 and 18, etc., then the equiv- . o . h
: conformational entropy(By some definitions, “funnel” also car-
alence of micropaths and macropaths would mean that all the other

X fles the connotation admoothlandscapes, so it also has implica-
molecules will undergo exactly the same sequence of events too,. ) . .
) . ) . . L tions about dynamics and time dependence, namely that barriers
But while micropaths in chemical reaction kinetics overwhelm-

ingly overlap with each other, the micropaths in protein folding are small so the process happens quickly. Here, the term funnel

. . S . carries no such implication about kinetics or barrier heights or
can be very different. Chemical bonding involves energies much .
smoothness or any landscape shape feature other than: there are

greater thakT, whereas each interaction in a folding process is notman conformations of high free ener@mes) and few confor-
much larger tharkT, so thermal motions can cause much larger y 9 micro

o . . . . ; mations of low free energy.
variations in folding than in chemical reactions. One molecule may .
Energy landscapes also have funnel-like shapes for processes of

form its N-terminal helix first, while another molecule in solution, . - . - -
. . : : -’ ligand binding to biomolecules: there are few tightly bound con-
bombarded differently by Brownian motion, may form its C-terminal . .
contacts first. In the end, both molecules will fold, but each foIIowsformatlonS’ and many unbound or weakly bound conformations
) ! ’ %Frauenfelder et al., 1991; Miller & Dill, 1997; Tsai et al., 1999

a different micropath. Simulations usually show some degree o

preference among microroutes, particularly in late stages of fold-

ing, but there cannot be perfect registry in the early stages of the The chicken—egg problem: Collapse first or

micropaths because the starting poifttee denatured conforma- ~ secondary structure first?

tions) are so different. Which comes first in the folding process, collapse or secondary
Figure 8A illustrates that for traditional chemical reactions structure? Just as the answer to where chickens come from is more

(Fig. 7), there is a direct correspondence between the macrolevelsomplex than “chicken” or “egg,” so also folding is undoubtedly
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A Classical Reaction Trajectories B Folding via Multiple Routes

T Time T

Energy Energy

Fig. 8. A: For chemical reaction@nergies> kT), the macrostates on reaction coordinate diagrams correspond to the time series of
microstates on the energy landscaBe.For folding processegenergies per interactioss kT), the observed macrostates may not
uniquely specify the time series of microstates on the energy landscape.

more complex than “collapse first” or “secondary structure first.”
“Collapse,” “secondary structure,” and “hierarchical” assembly
(Baldwin & Rose, 1999a, 1999kare macroterms, like “reaction
coordinate,” since each describes an ensemble property. Hierarch
folding has been recently defined “as a process in which folding
begins with structures that are local in sequence and marginal ir
stability; these local structures interact to produce intermediates o
ever-increasing complexity and grow, ultimately, into the native P
conformation” (Baldwin & Rose, 1999a, 1999blt is proposed E &
that hierarchical folding involves multiple folding routes, rather
than a unique sequential pathway. By these criteria, there is little tc
distinguish hierarchical folding from the Ensemble view. Growing
stability corresponds to a downhill flow on a landscape, and the
early preference for local contacts is similar to that found in energy-
based microscopic models, such as the following. The diffusion-
collision model is based on assuming th@ap preferences are
established early, then secondary structures assemble into tertia
structuregKarplus & Weaver, 1976; Lee et al., 1987; Yapa et al.,
1992. A zippers model also proposes that local contacts form
earlier, on average, than the nonlocal contacts. But the zippers
model supposes that structure development is driven by solvatiopig. 9. An uphill micropath(red ling is surrounded by more favorable
forces(Dill et al., 1993; Fiebig & Dill, 1993. routes that do not involve uphill steps to reach the native state.
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Alternatives to the sequential micropath fluctuations. Energy landscapes provide the framework for relat-
and ensemble views? ing the thermodynamics and kinetics of protein folding. Figure 10

There have been efforts to marry old and new vigRande Shows two landscapes: one is a smooth funnel, the other is a
et al., 1998; Pande & Rokhsar, 199%hose efforts aim to recon- rugged funnel. For the smooth funnel, folding kinetics should be
cile how there can be preferred folding routes at the same time th4@st and two state. For the rugged landscape, folding kinetics will
individual chains follow different micropaths. But no marriage is be slower and more complex.
needed. Preferred routes and states are part and parcel of the En-The shape of the landscape also describes the fluctuations at
semble perspective. In my opinion, the Ensemble perspective igquilibrium. Fluctuations are interesting for two reasons. First,
not one model, one result, or one energy landscape shape. It is nitese are the motions that are important for protein function, such
a denial of patterns, pathways, uniqueness, or structure. It is just@S when an enzyme enters a transition state for catalyzing a reac-
perspective based on recognizing the general funnel-like nature d¢fon. Second, fluctuations can be measured by NMR or thermal
the energy functioffmicro(@) With bumps and wiggles and shapes factors in X-ray crystallography. The fluctuations are those con-
that have yet to be determined. The funnel perspective is univeformations having energies only one or tw@ higher than the
sally captured in many different models, monomer sequences, pdative conformation and are therefore transiently populated due to
tential functions, move sets, and definitions of transition statesoccasional Brownian bombardments. If a protein has a smooth
While particular results can depend on model details, the funnelandscape, the motions of the protein are mostly small wiggles,
concept is a broad brush picture of how a large ensemble leads ®£Ver deviating much from the native structure because to do so
a small ensemble, how an unstructured population changes throug¥Puld require a high energy. But for a bumpy landscape, very
time to become a single structure, and how the degrees of freedofiPh-native-like conformations can occasionally be populated un-
diminish from being many and uncoupled and unsynchronized téler native conditions because the energies of such conformations
being few and coupled and synchronized. This process is bound @€ not much higher than those of the native mole¢Méler &
involve preferences. Dill, 1995; Tang & Dill, 1998. During those fluctuations, protons

Indeed, at the end of the folding process, it would be remarkable—0r ligands could exchange in or out, or the protein could have other
and maybe impossible—to have large diversity in conformationgransiently different properties than the native molecule. If we
or trajectories. Most of the simulations that have led to the Enknew the shapes of energy landscapes, we could better understand
semble perspective have found preferred folding routes in the latthe relationship between folding kinetics and equilibrium fluctua-
stages of folding Miller et al., 1992; Lazaridis & Karplus, 1997  tions around the native state.

What is new in the new view, and what was the essence of

Levinthal’s problem, was what happens in tearly stagesof Landscape-ology can help in developing

folding, not the late stages. Levinthal’s concern was how to search new conformational search strategies

the huge space of denatured conformations. The Ensemble view knowing the shapes of energy landscapes should also help to
merely asserts that molecules cannot be synchronized at the bgreate faster computer conformational search methods. In the Se-
ginning of folding because different chains have such differentyyential Micropath view, on-pathway intermediates are held in

unfolded conformations. Although the denatured state is a singl@pecial regard because of how they might illuminate the folding
macrostate, it is a very heterogeneous collection of microstates.

It will surely remain a matter of opinion for any given simula-
tion whether what is interesting is the pathway or the variance
from it. In either case, energy landscapes provide the basis for
calculating any property of interest.

Why do we need energy landscapes? Smooth Rugged

Once energy landscapes are better understood, particularly for mor
realistic models of proteins, they should be able to serve severa
purposes. First, they should provide a consistent and rigorous lan
guage for interrelating macroscopics to microscopics. Simulators’
micropaths, when properly averaged, can teach us about experi
mentalists’ macropaths, and experimentalists’ macropaths can te
simulators’ models. Second, landscapes provide a link betwee
thermodynamics and kinetics, described below. And third, land- N N
scapes may provide the bridge so that folding kinetics can be
brought to bear on speeding up conformational search strategies,

also described below. Fig. 10. Comparing fluctuations on smooth vs. rugged landscapes. The
state of lowest free energy is nativN ), indicated as the lower tick mark

. . L . on they-axis. Normal fluctuations increase the energy, as indicated by the
Relating thermodynamics and kinetics: A fluctuation— higher tick mark. Thermal fluctuations lead to only small conformational
dissipation relationship for proteins? deviations from the native structure on smooth landscapes, but can lead to

A most remarkable result in statistical mechanics is thelarger deviations on rough landscapes. The native lattice conformation has

o ecinati : six _hydrophobic contacts, whereas a conformation having only one unit
fluctuatlon_ d|§5|pat|0n theorertChandler, 198) This theorem_ higher energyfive hydrophobic contacishas a completely different con-
relates a kinetic property of systertthe rate of approach to equi-  formation. Rugged landscapes mean that small excursions in efiesgy

librium), to an equilibrium propertythe nature of the equilibrium  native can lead to large excursions in structure.

Conformational Coordinate (®;)
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path. But, as noted above, computer folding algorithms have not
been able to use such macro-information. The landscape view is
more egalitarian. Every conformation, no matter how distant from
the native state, can give some useful informatibout the native
state as described below. New and faster conformational search
strategies are emerging that are based on what rudimentary knowl-
edge is currently available of the shapes of energy landscapes.
Current search methods, such as Monte CaM€), Simulated
Annealing(SA), and Molecular DynamicéMD), explore energy
surfaces and are slow because they get caught in kinetic traps. We
call theselocal search methods; they do not make use of global
information about the shape of the underlying energy landscape. In
a local search method, some very small change in a conformation
is considered. Such changes are highly localized on the energy
landscape. An energy is evaluated, and some decision is made

Traditional Search
(MC, MD, SA)

.""’ /
/7 Step 1:
,‘:/ 1st parabola

Landscape Search

CGU
( ) -~ Step 2:

2nd parabola

1177

whether to take that step uphill or downhill. The move is accepted
or rejected, usually either based on Metropolis criteria or Newton'sFig. 11. Convex global underestimat€GU) conformational search strat-
laws. Such strategies are very slow because they are unguided §&y Traditional methods, such as Monte C&MC), molecular dynamics

. . . D), and simulated annealif@A), search over the tops of energy land-
global Imforma'.[lonf th?‘y involve much randomness, and they usuécapes and can get caught in kinetic traps. The CGU searches underneath
ally terminate in kinetic traps.

the landscape instead by using a few sampled local mirintkcated by
Here is an analogy. One way to find the lowest point on thedots to generate a series of underestimating parabolic surfaces to locate

Himalayan mountains is to always walk downhill until you can go the global minimum(Dill et al., 1997.
down no further. Then go uphill until you can go down again. This
is the Monte Carlo and SA approach. Such random walking is
much slower and more haphazard than if you used a contour map
to guide your journey. For example, if a protein folding algorithm JB. Rosen, & K.A. Dill, unpubl. comnh. The only knowledge the
creates a structure that does not have a hydrophobic core, it shouftiGU currently uses is just that landscapes are funnel-like. As we
not keep changing one bond angle at a time as many currengarn more about the shapes of protein energy landscapes, it should
methods do; it should stop wasting its time and move to a venpe possible to create faster conformational search strategies.
different part of conformation space.

New methods are developing for speeding up conformational
searching, based on emerging knowledge of the shapes of energistorical parallels with polymer science?
landscapegéMaranas et al., 1995; Phillips et al., 199Bor exam-

ple, the idea behind the Convex Global Underestimé@®u) For the past 40 years, a defining paradigm of protein science has

method(Phillips et al., 1995; Dill et al., 1997; K.W. Foreman, A.J. been S”“C“%”?" Biology. Stru_ctural Blplogy has provided a frame-
work for deciding what questions are important and how to answer

Phillips, J.B. Rosen, & K.A. Dill, unpubl. commis to sample a . . . .
few conformations chosen randomly from the conformational spacethem' Two key imperatives of Structural Biology af#) high

find the nearest local energy minimum for each one, then construc';fasfllrjtlo?hth?n;mpr?[rt:nce fOf atorirflilc dete;: i:ﬁiﬂ) iﬁ'["?rwle ?Cnh';ﬂ
a multi-dimensional parabolic “underestimator” surfat@p) un- ectures the importance of Specific geometric interrelationsnips

derneath all the minima that are known so (see Fig. 11 U(¢) among atoms. Protein structures have atomic resolution, and every

serves as a predictor for where the global minimum might be
found, if the energy landscape is funnel-like. Subsequent under-
estimator surfaces are constructed iteratively for increasingly nar-
rowed regions around the native state. In this wawery chain
. . . Energy 1.0

conformation that is sampled—no matter how non-native— sa-caw L
contributes some information about the landscape shape, and con- cgy
tributes to an estimate of where the native state will be found. In
contrast, local search methods make no such use of collective
information about all other conformations that have been sampled
before a given step.

The CGU and other underestimator methods look promising, on
the following basedq1) Starting from different initial starting points
on the landscape, the CGU usually reaches the same final point,
indicating that it finds global minima and does not get stuck in ’ 0 10 20 30
kinetic traps(2) An advantage of the CGU over MC and SAis that Chain Length
no problem-dependent adjustment is required, as when devising
temperature schedules or proper move s@sTests so far in a  Fig. 12. Relative search deptfenergy of simulated annealing compared
simple protein folding model and on van der Waals clusters up td® tC\/e Eﬁgaffﬁ ‘éif‘;e’}tn'e’:g;hf:g: g‘hoo‘i‘f'crr’]gfsinséxeégcﬁ ?rﬂigosiﬁis
21 atom_s ShO_WS th_at CGU reaches much .Iower on energy lan 'ebtﬁ on energy Iand’scap?es és the CGU, but f’or longer chains, SA gets
scapes in a given time than MC or Sgee Fig. 12 and the ad-

stuck at increasingly higher altitudes on the energy landscape, where the
vantage increases with chain leng#W. Foreman, A.J. Phillips, relative depth is indicated by the cartoon on the right.

Landscape




1178 K.A. Dill

atom has its place. It has been considered important to know THENly about a decade after the macromolecular hypothesis was ac-

native structure, THE transition state, or THE intermediate structurecepted, quantitative statistical mechanical models began to suc-
Of course, it is clear that proteins wiggle and move; they are notessfully explain rubber elasticity, the viscosities and viscoelasticities

perfectly statiq Karplus, 1997. But even so, such fluctuations are of chain molecule liquids, the dependence of the physical proper-

often regarded as a sort of footnote to the main message, much likees of polymeric materials on molecular weight distributions, and

error bars in experimental data. According to this logic, folding the unusual thermodynamics of polymer solutions. Such statistical

pathways are less like a perfect train track, where no lateral variideas now provide the foundation of modern polymer theory. For

ation is allowed, and more like a highway, where some smallmany properties of proteins, too, it seems clear that statistics is not

degree of weaving and lateral meandering can take place. just a caveat about small details but is at the very heart of the
But in the polymer view, statistics can play a fundamentally problems that proteins must solve.

different and deeper role. It is more like replacing a train track, not

with a highway, but with a ski bowl. Driving on a highway from

point A to point B can be described by average velocities, posi-Conclusions

tions, and altitudes along the “reaction coordinate,” the highway.

. T . . . Statistical mechanical models can give useful insights about pro-
But tracking an ensemble of skiers is quite a different business thap . . o . .

. : . . eins. While all-atom models sacrifice conformational sampling to
tracking the flow of cars on a highway. Skiers can take different

- . S ain atomic detail, statistical mechanical models do the reverse.
routes. The average position of skiers on a mountainside is a mu . . )
ecause simple models explore non-native states so effectively,

more heterogeneous property, with less apparent meaning. What js

THE structure, or even THE averaged structure, at any given timet)ave few parameters, and cost little computer time, they have been

. . . useful for exploring folding forces and principles. They have led to

Is not yet clear, or necessarily always meaningful he perspective that the folding code is primarily a solvation code

The importance of one particular structure and the neglect oF persp ding primartly . '
rather than a local propensities code. Statistical mechanical models

statistics has a parallel in the history of polymer science. The

breakthrough that founded polymer science was the macromole are well suited to addressing combinatoric problems, such as the

ular hypothesis, the idea that there were long chains covalentl evinthal and Blind Watchmaker paradoxes. The conclusion is that

linked together(Flory, 1953; Morawetz, 1985 The huge resis- e should beware of needle in a haystack arguments, because

tance to this idea prior to the 1920s was due to a faith in thenature does not seem to work that way. Each step is not unguided.

. e Conformational and sequence spaces are more like landscapes.
importance of specific structures and a reluctance to fully appre- - .

. - . i Landscapes are funnel like, wide at the top and narrow at the
ciate the statistics. According to Flof§953: . - .

bottom, sometimes with hills and valleys. All conformations—not

“Organic chemists were motivated by the desire to devise conj-USt on-pathway |ntermeQ|§tes for example can give some guid

. - ance toward the global minimum. New computational search meth-
cise formulas and to isolate pure substances, the pem. . .

invariably implying a formula of convenient size. Hence the ods are draw!ng on this information to make better_foldlng and

. docking algorithms. The energy landscape perspective may help
quest forthe cellulose molecule othe rubber molecule contin- connect the currently disjoint areas of kinetics experiments and
ued. . . . By theaurn of the century this objective had crystallized y ais) P

to a discipline which dominated synthetic organic chemistry. Toconformatlonal search strategies.

be eligible for acceptance in the chemical kingdom, a newly

created substance . .. had to be separated in such a state thaj\gknowledgments
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