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Physiology of a nerve cell

Figure: Quelle:

I Cells that can receive and transmit information
I Cell body: Soma
I Receives information via Dendrites
I Transmits information via the Axon.
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Cell types
Cells can be divided in excitable and non-excitable cells:

Non-excitable cells:

I No ability to conduct information

I Example: Skin cells, wall of
intestines

Excitable cells:

I Able to conduct electrical signals

I Example: Muscle or nerve cells

Figure: Action Potential: All or nothing principle [4].
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Threshold behaviour of excitable cells

Figure: Experiment: V(t) for various stimulus intensities [1]. 6 / 33
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Nernst equilibrium potential

Equilibrium between osmosis and electric field creates potential
difference:

VNernst =
kT

zq
ln(

[S ]e
[S ]i

)
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Components of the membrane

Figure: Visualisation of membrane components: Ionic gates,
Sodium-Potassium-Pump, leakage.
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Electric circuit

Figure: Electric circuit for cell membrane [1].

Cm
dV

dt
+ IIon(V , t) = Iapp

IIon(V , t) = INa + IK + Il
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Linear relation between IIon and V ?

Suggested linear relation (I ∝ V ):
The Hodgkin & Huxley equation

Cm
dV

dt
= −gNa(V − VNa)− gK(V − VK)− gl(V − Vl) + Iapp

Rewritten:

Cm
dV

dt
= −geff(V − Veff) + Iapp

with

geff = gNa + gK + gl, Veff =
gNaVNa + gKVK + glVl

geff

Constants for orientation:

Rm = 1/geff ≈ 103Ωcm2, τm = CmRm ≈ 1ms
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Linear relation between IIon and V ?

For a constant applied current the voltage should also be time
independent:

dV

dt
= 0 → V = Veff + RmIapp

Experiment shows: True for small currents but not for large ones!
Ohm’s law does not hold here!

Solution: Voltage dependent conductances gK,Na(V , t)

Accomplishment of Hodgkin & Huxley: Measurement of IIon for
determination of g(V , t)!

→ 1963 Nobel Prize in medicine and physiology
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The Hodgkin & Huxley Model 1952

Unique in history of biophysics:

I First successful model of propagation of electrical signals in
nerves

I No knowledge about molecular composition of membrane!

I Brilliant conduction of both: Experiment and theory

I Surprising: Very unphysiological experiments yield good
description of events in living organisms.

→ Experiments on the squid’s giant axon
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Measuring techniques

Two difficulties to overcome in measuring of g(V,t):

I Voltage needed to be spatially uniform

I Voltage had to be held constant in time

Solutions by Marmont & Cole: Space Clamp and Voltage Clamp

Space Clamp technique [3] →

Voltage Clamp technique [4] →

V̇ = 0 −→ g(t) =
Iapp(t)
V−Veq

15 / 33



Measuring techniques

Two difficulties to overcome in measuring of g(V,t):

I Voltage needed to be spatially uniform

I Voltage had to be held constant in time

Solutions by Marmont & Cole: Space Clamp and Voltage Clamp

Space Clamp technique [3] →

Voltage Clamp technique [4] →

V̇ = 0 −→ g(t) =
Iapp(t)
V−Veq

15 / 33



Measuring techniques

Two difficulties to overcome in measuring of g(V,t):

I Voltage needed to be spatially uniform

I Voltage had to be held constant in time

Solutions by Marmont & Cole: Space Clamp and Voltage Clamp

Space Clamp technique [3] →

Voltage Clamp technique [4] →

V̇ = 0 −→ g(t) =
Iapp(t)
V−Veq

15 / 33



Sodium and Potassium conductances

Figure: Sodium(l) and Potassium(r) conductances over time for various
depolarisations
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Modelling

By looking at the curves Hodgkin & Huxley suggested:

Potassium Sodium

dn

dt
= αn(1− n)− βnn

dm

dt
= αm(1−m)− βmm

dh

dt
= αh(1− h)− βhh

→ gK = ḡKn
4 → gNa = ḡNam

3h

Where:

I V dependent variables: α(V ) and β(V )

I Gating variables between 0 and 1: n,m,h

I Constants: ḡNa,K
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Boundary conditions:

Example potassium:

I Resting value: n(t = 0) = n0
I Stationary value: n(t →∞) = n∞
I Time constant: τn

→ with n0, n∞ and τn functions of α and β.

→ simple DEQ:
τnṅ = n∞ − n

→ solution:

n(t) = n∞ − (n∞ − n0)e−t/τn

The same can be done for Sodium particles: Just replace n by m,h
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Studies of the solution

Potassium: gK ∝ n4

I During depolarisation V = (0→ Vdep):

n0 = 0 n∞ = ndep

−→ gK ∝ (1− e−t/τn)4 sigmodial increase!

I During repolarisation:

n0 = ndep n∞ = 0

−→ gK ∝ (e−t/τn)4 Simple exponential!
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Studies of the solution

Sodium: gNa ∝ m3h

I During depolarisation V = (0→ Vdep):

m0 = 0 m∞ = mdep

h0 = hrest h∞ = 0

−→ gNa ∝ (1− e−t/τm)3(e−t/τh)1

I Sigmodial increase for small t

I Exponential decrease for large t
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Interpretation of the model

Hodgkin & Huxley give meaning to their model:

Potassium gK ∝ n4

I n =̂ probability of particle to be
in position (i.e. inside)

I (1-n) =̂ not in position (i.e.
outside)

I αn(V )=̂ Transfer rate from
outside to inside

I βn(V )=̂ Transfer rate from
inside to outside

I gK ∝ probability that four
particles are in position

Sodium gNa ∝ m3h

I m =̂ probability of particle to be
in position

I h =̂ probability of another
particle not to be in position

I Activating (m) and inactivating
(h) particles

I αm,h(V ), βm,h(V )=̂ Transfer
rates

I gNa ∝ probability of three
particles in position and another
particle not in position
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Interpretation of the model

”[...] we [...] must emphasize that the interpretation given is
unlikely to provide a correct picture of the membrane.” [1, p.506]

But: They hit the nail on the head.

Figure: Proteinstructure of the sodium ion channel.
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Fitting procedure
Fitting of the experimental data points for fixed depolarisations gives (here for
potassium):

I τn and n∞ that gave the best fit for each Voltage step

I Thereafter: V-dependent transfer rates: αn(V ), βn(V )
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Rate constants

Equations gained by fitting of data points:

αn =
0.01(V + 10)

e(V+10)/10 − 1
βn = 0.125eV /80

αm =
0.1(V + 25)

e(V+25)/10 − 1
βm = 4eV /18

αh = 0.07eV /20 βh =
1

e(V+30)/10 + 1

Partially computed by hand!!
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Testing the equations

Values for n∞,m∞, h∞:
Experimental vs. calculated

(a) n∞(V ) →

(b) m∞(V ) (c) h∞(V )

25 / 33



Time constants

Figure: Time constants [2].
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Membrane Action Potential

Figure: Membrane potential for various depolarisations. Top: Theory,
Bottom: Experiment. [1]
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Refractory Period
Membrane is not able to respond to another stimulus within the
Refractory Period for two reasons:

I Sodium inactivation particle
I Delay in rise of potassium conductance
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Absolute vs. relative Refractory Period

Application of 90mV shocks at various stages of Refractory Period
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Propagation of the Action Potential

I So far: Space-Clamp → V(x,t) = V(t)

I Therefore: Current along Axon I = 0

I How do propagated Action Potentials look like?

Adjustment of H&H-Equation by

I =
a

2R

∂2V

∂x2

and assuming that wave travels linearly in time with velocity c

V (x , t) = V (x − ct) −→ ∂2V

∂x2
=

1

c2
∂2V

∂t2

This leads to the H&H-equation:

a

2Rc2
d2V

dt2
= Cm

dV

dt
+ḡKn

4(V−VK)+ḡNam
3h(V−VNa)+ḡl(V−Vl)
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Propagated Action Potential

Graphs C and D: Experimental data
Conduction velocities:

ctheo = 18, 8m/s

cexp = 21, 2m/s
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Summary

About nerve cells:

I Ionic concentrations build up equilibrium potential across
membrane

I Action potential after stimulus: All or nothing principle

How come?? → Answer given by Hodgkin & Huxley in 1952.

Divide & conquer method

I Conduction of experiments on tiny sub-elements of the
nervous system

I Measuring techniques: Space and Voltage Clamp (not
physiological!)

I Forming a model which predicts successfully nerve behaviour
in living organisms

I Awarded with 1963 Nobel Prize in medicine and physiology
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Excitation

Threshold
Note:

I Threshold (T = 6◦C ):
Theory ≈ 6mV,
Experiment ≈ 8mV

I Difference reasonable since
threshold depends on leak
conductance

I Refractory period never the
less!

I Interesting:
Accommodation takes place
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Propagated Action Potential
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Membrane Action Potential at high Temperature
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Propagated Action Potential
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Ionic movements

Ionic Current is composed of:

IIon = −Cm
dV

dt
+

a

2Rc2
d2V

dt2

The net flux can be obtained by
integration over the whole im-
pulse.
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Ionic fluxes

Ionic movements during an propagated Action Potential [Quelle].
All units in [µµmole/cm2].

Ion Na+ Na+ Na+ K+ K+ K+

Influx Outflux Net entry Influx Outflux Net entry

Theo. 5,42 1,09 4,33 1,72 5,98 -4,26

Exp. 10,3 6,6 3,7 0,39 4,7 -4,3

Experiments conducted by Keynes [Quelle]!!
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Voltage-Clamp technique

Iapp is adjusted that V = constant → V̇ = 0

−→ g(t)(V − Veq) = Iapp(t)

−→ g(t) =
Iapp(t)
V−Veq

Conductance only varies with time!
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Boundary conditions:

I Resting value: n(t = 0) = n0 and n(t →∞) = n∞
I Stationary value: n(t →∞) = n∞
I Time constant: τn

with

n0 =
αn,0

αn,0 + βn,0
, n∞ =

αn

αn + βn
, τn =

1

αn + βn

gives simple DGL:
τnṅ = n∞ − n

With solution:

n(t) = n∞ − (n∞ − n0)e−t/τn

The same can be done for Sodium particles: Just replace n by m,h
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Fitting procedure

Fitting of the experimental data points for fixed depolarisations
gives:

I τw and w∞ that gave the best fit for each Voltage step (for
w = n,m, h)

I Thereafter: V-dependent rate constants: αw (V ), βw (V )

αn =
0.01(V + 10)

e(V+10)/10 − 1
βn = 0.125eV /80

αm =
0.1(V + 25)

e(V+25)/10 − 1
βn = 4eV /18

αh = 0.07eV /20 βn =
1

e(V+30)/10 + 1

Computed by hand!!
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Rate Constants

(a)
K+ activating particle (n) →

(b) Na+ activating particle (m) (c) Na+ inactivating particle (h)
45 / 33
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