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The calculation of free-energy differences is one of the main challenges in com-
putational biology and biochemistry. Umbrella sampling, biased molecular dy-
namics (MD), is one of the methods that provide free energy along a reaction
coordinate. Here, the method is derived in a historic overview and is compared
with related methods like thermodynamic integration, slow growth, steered MD,
or the Jarzynski-based fast-growth technique. In umbrella sampling, bias po-
tentials along a (one- or more-dimensional) reaction coordinate drive a system
from one thermodynamic state to another (e.g., reactant and product). The in-
termediate steps are covered by a series of windows, at each of which an MD
simulation is performed. The bias potentials can have any functional form. Often,
harmonic potentials are used for their simplicity. From the sampled distribution
of the system along the reaction coordinate, the change in free energy in each
window can be calculated. The windows are then combined by methods like the
weighted histogram analysis method or umbrella integration. If the bias potential
is adapted to result in an even distribution between the end states, then this whole
range can be spanned by one window (adaptive-bias umbrella sampling). In this
case, the free-energy change is directly obtained from the bias. The sampling in
each window can be improved by replica exchange methods; either by exchange
between successive windows or by running additional simulations at higher
temperatures. C© 2011 John Wiley & Sons, Ltd. WIREs Comput Mol Sci 2011 1 932–942 DOI:
10.1002/wcms.66

INTRODUCTION

T he calculation of free-energy differences is a cen-
tral task in computational science. The free-

energy difference is the driving force of any pro-
cess, such as a chemical reaction. Transition state
theory1–3 can be used to calculate reaction rates from
energy barriers, more exactly free-energy barriers.4

The free energy contains the entropy, a measure for
the available space. To map the available space in a
system bigger than a few atoms, extensive sampling is
required.5,6 Techniques are regularly being reviewed
in the literature, with a few recent ones given in
J Comput Chem7 and in a themed issue of J Comput
Chem in 2009.8,9 Applications range from the solid
state, catalytic reactions, biochemical processes to ra-
tional drug design.

The canonical partition function Q of a sys-
tem can be calculated via an integral over the whole
phase space, i.e., configuration space and momentum
space. If the potential energy E is independent of the
momentum, the integral over the latter is a multiplica-
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tive constant to Q, which can be ignored. Then, Q is
obtained as

Q =
∫

exp[−β E(r )]dNr (1)

with β = 1/(kBT), kB being the Boltzmann’s constant,
T being the absolute temperature, and N being the
number of degrees of freedom of the system.

The free (Helmholtz) energy A is related to Q
via A = −1/β ln Q. The canonical partition func-
tion involves a constant number of particles, constant
volume, and a constant temperature. If the pressure,
rather than the volume, is kept constant, the Gibbs
free energy (usually denoted as G) is obtained. Apart
from the change in the ensemble, the following for-
malisms and derivations are equivalent for A and G.
In the condensed phase, which is relevant for most
applications, the systems are hardly compressible; so
�A and �G are numerically very similar.

In chemical reactions, one is generally interested
in free-energy differences between two states. If the
two states differ by geometry (like a reactant and
product of a reaction) then the integration in Eq. (1)
is done over a part of the coordinate space for each
state.

In many cases, a reaction coordinate (ξ ), a
continuous parameter which provides a distinction
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between two thermodynamic states, can be defined.
Any order-parameter is possible, even a change in the
energy expression (the Hamiltonian). The reaction
coordinate can be one or more dimensional. Often,
ξ is defined on geometric grounds, such as distance,
torsion, or the difference between root mean square
deviations from two reference states.

With ξ defined, the probability distribution of
the system along ξ can be calculated by integrating
out all degrees of freedom but ξ :

Q(ξ ) =
∫

δ[ξ (r ) − ξ ] exp[(−βE)dNr ]∫
exp[(−βE)dNr ]

. (2)

Q(ξ ) dξ can be interpreted as the probability of find-
ing the system in a small interval dξ around ξ . Conse-
quently, this allows the calculation of the free energy
along the reaction coordinate; A(ξ ) = −1/β ln Q(ξ ).
A(ξ ) is also called potential of mean force (PMF). If
ξ is a general, i.e., non-Cartesian, coordinate, or a
set of those, a Jacobian term enters Eq. (2). As long
as the integration is performed in Cartesian coordi-
nates, Q(ξ ) = ∫

δ[ξ (r) − ξ ] exp(−βE) dNr/Q. If the
integration is done in a different set of coordinates,
q, ξ being one of those, an explicit Jacobian determi-
nant |J(q)|, with Jij = dqi/drj, has to be taken into
account: Q(ξ ) = ∫

exp(−βE)|J(q)|dN−1q/Q, where
the integration is performed over all coordinates
except ξ .

In computer simulations, the direct phase-space
integrals used in Eqs. (1) and (2) are impossible to cal-
culate. However, if the system is ergodic, i.e., if every
point in phase space is visited during the simulation,
Q(ξ ) is equal to

P(ξ ) = lim
t→∞

1
t

t∫
0

ρ[ξ (t′)]dt′ (3)

that is, the ensemble average Q(ξ ) becomes equal to
the time average P(ξ ) for infinite sampling in an er-
godic system. In Eq. (3), t denotes the time and ρ

simply counts the occurrence of ξ in a given inter-
val (of infinitesimal width in the exact equation and
of finite width when calculating a histogram). So, in
principle, A(ξ ) can be directly obtained from molec-
ular dynamics (MD) simulations by monitoring P(ξ ),
the distribution of the system along the reaction co-
ordinate.

Note that the terms distribution, distribution
function, frequency, probability density, and possi-
bly a few more are sometimes used in the literature of
chemistry and physics in different contexts. Through-

FIGURE 1 | Separation of the reaction coordinate (dashed line)
between two states (here represented by two minima on the potential
energy surface) into distinct windows. The system is mainly sampled
perpendicular to the reaction coordinate in each window.

out this article, the term distribution P(ξ ) refers to
the normalized frequency of finding the system in the
vicinity of a given value of ξ . If P(ξ ) was obtained
from an exact ensemble average rather than a sampled
quantity, P(ξ ) would refer to a probability density.

However, simulations are only run for finite
time. Regions in configuration space around a min-
imum in E(r) are typically sampled well, whereas
regions of higher energy are sampled rarely. For
rare events, those with an energy barrier significantly
larger than kBT, direct sampling is infeasible. To ob-
tain a profile A(ξ ), however, also those high-energy
regions, those rare events, are required.

Different techniques have been developed to
sample such rare events. One can broadly distinguish
three different families of methods: (1) methods that
sample the system in equilibrium, (2) nonequilibrium
sampling techniques, and (3) methods that introduce
additional degrees of freedom, along which the free
energy is calculated. The third family includes λ-
dynamics9–12 and metadynamics.13 The latter is cov-
ered in a different contribution in this series and will
not be discussed here.

In the remaining two families of methods, global
sampling can be approximated by two techniques,
schematically illustrated in Figure 1. On the one hand,
the path is split into windows. Each window covers
only a small part of the range of ξ . The windows are
sampled individually. In postprocessing, the results
of the different windows are combined to result in a
global free-energy profile A(ξ ). On the other hand,
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one can run multiple simulations. In each of those,
the system is driven from one state of interest (A) to
the other state (B), taking a different path each time.
The postprocessing in this case includes averaging
over the different simulations.

This review is organized as follows. In Accel-
erated Sampling Techniques, the context of umbrella
sampling is described by briefly introducing differ-
ent techniques to sample free-energy profiles in MD
simulations. In Umbrella Sampling: Method, the me-
thodical details of umbrella sampling are derived and
described. Bias Potentials deals with different bias po-
tentials, whereas Sampling Techniques mentions tech-
niques to accelerate the MD sampling itself. Methods
to Analyze Umbrella Sampling Simulations discusses
the most common methods to analyze umbrella sam-
pling simulations, i.e., to extract a free-energy profile
from the sampled data. Conclusion finally summa-
rizes the topic.

ACCELERATED SAMPLING
TECHNIQUES

Accelerated Sampling Techniques Based
on Equilibrium Properties
All of the acceleration techniques discussed in this re-
view have the goal of calculating the free-energy dif-
ference, an equilibrium property. However, in each
simulation, the system can either be in equilibrium,
or one can measure the response to some pertur-
bation and derive the free-energy change from that.
The former case will be discussed here, the latter in
Free-Energy Differences from Nonequilibrium Simu-
lations.

To drive a system over an energy barrier, one
can either (1) modify the energy expression in order
to reduce the barrier, or (2) restrict the sampling space
to all degrees of freedom, but the reaction coordinate
describing the transition over the barrier. The former
is known as biased MD or umbrella sampling.14,15

Because this is the main focus of the present review,
it will be discussed in detail in Umbrella Sampling:
Method.

In thermodynamic integration,16–21 a tech-
nique sometimes also referred to as blue moon
sampling,18,22 the transition over a barrier is simu-
lated by freezing the reaction coordinate at differ-
ent values in a number of windows and sampling
the system perpendicular to ξ . The constraint freez-
ing the reaction coordinate has to be implemented in
an energy-conserving manner. Generally, the method
of Lagrange multipliers (Shake algorithm23) is used.

The force on the frozen reaction coordinates is sam-
pled. The resulting mean force is the derivative of the
free energy with respect to the reaction coordinate.
Integration of the mean force results in the PMF.

It should be noted that there is some confusion
in the older literature over the term PMF.24 Especially
in the field of thermodynamic integration, one often
referred to PMF as a quantity directly obtained by
integrating the mean force, which differs from the free
energy by neglect of a correction of the metric tensor.
If the reaction coordinate is a spatial coordinate or a
combination of those, constraining it to a fixed value
also changes the momentum sampling. There is one
component of the momentum canonically conjugated
to each component of the spatial coordinates. If ξ is
frozen, the associated momentum is frozen (zero) as
well. This can lead to a change in the metric tensor of
the system. For simple reaction coordinates, metric-
tensor corrections have been derived.21,25–31

Rather than keeping the reaction coordinate
fixed in a number of windows, one can also vary
a constraint slowly from one state to another in an
approach termed slow growth.32–34 Average and in-
tegration of the force on the constraint results in the
free energy.

In umbrella sampling,14,15 the reaction coor-
dinate is not constrained, but only restrained and
pulled to a target value by a bias potential. There-
fore, the full momentum space is sampled. Usually,
umbrella sampling is done in a series of windows,
which are finally combined either with the weighted
histogram analysis method (WHAM)35,36 or using
umbrella integration.37

The bias potential can be varied to pull the sys-
tem from one state to another rather than keeping
it fixed. If that variation is slow as compared with
the relaxation time of the system, the analysis can
be performed by assuming an equilibrium state of the
system, i.e., the mean force on the reaction coordinate
can be sampled and integrated. This approach gained
popularity under the name of steered MD (SMD).38–41

SMD directly simulates the influence of an atomic-
force microscope cantilever acting, e.g., on a protein.

Free-Energy Differences from
Nonequilibrium Simulations
Jarzynski42 demonstrated the equivalence of the free-
energy change and an exponential average over the
work W along nonreversible paths originating from a
canonic ensemble:

exp(−β�A) = 〈exp(−βW)〉. (4)
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This can be exploited in practical simulations by
moving a constraint on the reaction coordinate rel-
atively fast from an equilibrated system to the tar-
get system.43,44 This method became known as
fast growth. It is related to Bennett’s acceptance
ratio method.45 The changes in the energy along
these paths are averaged according to Eq. (4). The
computational tradeoff is that the faster the constraint
is varied, the larger is the statistical spread, and thus,
more trajectories have to be calculated.

Free-energy perturbation46 (FEP) can be re-
garded as a limiting case of methods based on
Jarzynski’s equation:

exp(−β�A) = 〈exp(−β�E)〉a (5)

with �E being the difference of the initial state and
the final state, and the ensemble averaged over the
initial state a. It should be noted, of course, that FEP
was proposed and used many decades before the more
general Eq. (4). In FEP, the instantaneous change from
one state to another is sampled over a canonical en-
semble. Thus, it corresponds to fast growth with the
constraint immediately moved to the target value. The
exponential average of the change results in the free-
energy difference. The term ‘perturbation’ is mislead-
ing because the method is exact and does not corre-
spond to a perturbation theory in the usual sense.

A special challenge for free-energy simula-
tions are quantum mechanics/molecular mechanics
(QM/MM) setups, in which a small part of the system
is described by comparatively expensive QM calcula-
tions, whereas most of the system is handled by classi-
cal force fields (MM).47 A variant of FEP48–50 can be
used to restrict the sampling to the computationally
cheaper force field part.

UMBRELLA SAMPLING: METHOD

Umbrella sampling was developed by Torrie and
Valleau14,15 based on related previous work.51,52 A
bias, an additional energy term, is applied to the sys-
tem to ensure efficient sampling along the whole re-
action coordinate. This can either be aimed at in one
simulation or in different simulations (windows), the
distributions of which overlap. The effect of the bias
potential to connect energetically separated regions in
phase space gave rise to the name umbrella sampling.

In this section, the formalism of recovering unbi-
ased free-energy differences from biased simulations
will be discussed. The next section describes different
forms of bias potentials used in the literature.

The bias potential wi of window i is an addi-
tional energy term, which depends only on the reac-

tion coordinate:

Eb(r ) = Eu(r ) + wi (ξ ). (6)

The superscript ‘b’ denotes biased quantities, whereas
the superscript ‘u’ denotes unbiased quantities. Quan-
tities without superscripts are always unbiased.

In order to obtain the unbiased free energy Ai(ξ ),
we need the unbiased distribution, which is, according
to Eq. (2):

Pu
i (ξ ) =

∫
exp[−βE(r )] δ[ξ ′(r ) − ξ ] dNr∫

exp[−βE(r )] dNr
. (7)

MD simulation of the biased system provides the bi-
ased distribution along the reaction coordinate Pb

i .
Assuming an ergodic system,

Pb
i (ξ ) =

∫
exp{−β[E(r ) + ωi (ξ ′(r ))]}δ[ξ ′(r ) − ξ ]dNr∫

exp{−β[E(r ) + ωi (ξ ′(r ))]}dNr
.

(8)

Because the bias depends only on ξ and the in-
tegration in the enumerator is performed over all de-
grees of freedom but ξ ,

Pb
i (ξ ) = exp[−βωi (ξ )]

×
∫

exp[−βE(r )]δ[ξ ′(r ) − ξ ]dNr∫
exp{−β[E(r ) + ωi (ξ ′(r ))]}dNr

. (9)

Using Eq. (7) results in

Pu
i (ξ ) = Pb

i (ξ ) exp[βωi (ξ )]

×
∫

exp {−β [E(r ) + ωi (ξ (r ))]} dNr∫
exp [−βE(r )] dNr

= Pb
i (ξ ) exp[βωi (ξ )]

×
∫

exp[−βE(r )] exp{−β ωi [ξ (	r)]}dNr∫
exp[−βE(r )]dNr

= Pb
i (ξ ) exp[βωi (ξ )] 〈exp[−βωi (ξ )]〉. (10)

From Eq. (10), Ai(ξ ) can be readily evaluated. Pb
i (ξ )

is obtained from an MD simulation of the bi-
ased system, wi(ξ ) is given analytically, and Fi =
−(1/β) ln〈exp[−β ωi (ξ )]〉 is independent of ξ :

Ai (ξ ) = −(1/β) ln Pb
i (ξ ) − wi (ξ ) + Fi . (11)

This derivation is exact. No approximation enters
apart from the assumption that the sampling in each
window is sufficient. This is facilitated by an appro-
priate choice of umbrella potentials wi(ξ ).
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FIGURE 2 | Global free energy (thick solid curve) and the
contributions Ai of some of the windows (thin dashed curves). For
clarity, only every third window is shown. At the bottom, the biased
distributions Pb

i as obtained from the simulation are shown (thin solid
curves). Relatively few bins (100) have been used to generate this
figure.

As long as one window spans the whole range
of ξ to be studied, Eq. (11) is sufficient to unbias the
simulation. A(ξ ) is in any case only defined up to an
additive constant; so in this case, Fi can be chosen
arbitrarily.

If the free-energy curves Ai(ξ ) of more windows
are to be combined to one global A(ξ ), see Figure 2,
the Fi have to be calculated. They are associated
with introducing the bias potential and connect the
free-energy curves Ai(ξ ) obtained in the different
windows:

exp(−βFi ) = 〈exp[−β ωi (ξ )]〉

=
∫

Pu(ξ ) exp[−β ωi (ξ )]dξ

=
∫

exp{−β[A(ξ ) + ωi (ξ )]}dξ (12)

with Pu(ξ ) being the global unbiased distribution. The
Fi cannot directly be obtained from sampling. Meth-
ods to Analyze Umbrella Sampling Simulations will
deal with methods to calculate them, i.e., to com-
bine the results of different windows in umbrella
sampling.

BIAS POTENTIALS

Ideally, the bias potential is chosen such that sampling
along the whole range of the reaction coordinate ξ

is uniform. Therefore, the optimal bias potential is
wopt = −A(ξ ). This would lead to a truly uniform
distribution Pb

i (ξ ). However, A(ξ ) is obviously not

known; it is what we aim to calculate with umbrella
sampling. Therefore, two main families of bias po-
tentials have emerged: harmonic biases in a series of
windows along ξ , and an adaptive bias, which is ad-
justed to match −A(ξ ) in only one window spanning
the whole range of ξ .

Harmonic Bias Potentials
To ensure sampling in all regions of ξ , the range of
interest of ξ is split into a number of windows. In each
window, a bias function is applied to keep the system
close to the reference point ξ ref

i of the respective win-
dow i. Often, a simple harmonic bias of strength K is
used:

ωi (ξ ) = K/2
(
ξ − ξ ref

i

)2
. (13)

After the simulations, the free-energy curves are
combined with techniques discussed in Methods to
Analyze Umbrella Sampling Simulations (typically
WHAM or umbrella integration). The form of the
bias given in Eq. (13) is appealing because it contains
only few parameters: K (which in principle can be
window dependent), the number of images, and ξ ref

i .
The latter are usually chosen uniformly distributed
along ξ . The higher the number of images, the smaller
is generally the statistical error relative to CPU time.53

However, the CPU time needed for equilibration, on
the contrary, increases with the number of images.
The MD simulations of the images are completely in-
dependent and thus, can run in parallel.

The choice of K, the strength of the bias, is the
only critical decision. It has to be made before simula-
tions are run. By contrast, additional windows could
always be inserted if the first series of windows results
in too large gaps between the distributions. Overall,
K has to be large enough to drive the system over the
barrier. Too large K, however, will cause very nar-
row distributions Pb

i (ξ ). Sufficient overlap between
the distributions is required for WHAM, whereas it
is not required, but still advantageous in umbrella
integration.54 Increasing K at constant time step also
leads to increasing errors in the numerical integra-
tion of the equations of motions. If the time step is
too large (or K is too large), configurations with high
energies will be overrepresented.20

For umbrella integration analysis, analytic ex-
pressions for the statistical error can be derived, which
allow an estimate of an ideal K based on quantities,
which can often be estimated prior to sampling.54

It has also been suggested that the location of the
next window to be sampled (ξ i+1

ref) can be chosen
from the location and the widths of the previous
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window to match their estimated half maxima.55 An
alternative is to use data from the experiment to define
the most promising bias parameters.56

Adaptive Bias Umbrella Sampling
The aim of adaptive bias umbrella sampling13,57–60 is
to cover the whole range of interest of the reaction
coordinate ξ in one simulation. In principle, this can
be achieved by choosing a bias w(ξ ) = −A(ξ ). This
exactly flattens the energy surface and leads to a uni-
form sampling along ξ . Because A(ξ ) is, of course, not
known a priori, one typically starts out with an initial
guess of w(ξ ) and iteratively improves it to achieve a
uniform distribution.

Specialized Umbrella Potentials
The local elevation method61 adds, similar to meta-
dynamics, a history-dependent (and thus, time-
dependent) bias to the potential energy. This has
recently62,63 been combined with umbrella sampling
by building up a local elevation bias in a compara-
tively short simulation and then sampling the distribu-
tion in that bias to reconstruct the free energy. Other
special forms of umbrella potentials were used.64

SAMPLING TECHNIQUES

In each window of an umbrella sampling run, the
phase space has to be sampled as good as possible.
Overlap between windows is required for WHAM
analysis (see below) and is desirable for umbrella inte-
gration. The quality of the sampling can be enhanced
by Hamiltonian replica exchange.65–67 In specified in-
tervals, the geometry of window i is used to calculate
the total biased energy of a neighboring window j (i.e.,
the bias wj of window j is used), and additionally, the
energy of geometry j with the bias wi is calculated.
If the sum of these energies is smaller than the sum
of the original energies, the two sets of coordinates
are exchanged. If the sum is larger, exchange is still
possible based on the Metropolis criterion. Then the
simulations continue. This is done at regular intervals
with all pairs of images. Replica exchange between
umbrella sampling windows enhances the quality of
the sampling without additional computational cost.

The better the sampling, the more important is
a proper choice of the reaction coordinate. If the reac-
tion coordinate misses important structural changes,
it can lead to artificial lowering or raising of the result
obtained by umbrella sampling.8 A too high barrier
may be the result of an unfavorable path being taken.

A too low barrier may be the result of discontinuities
in the path: the change from one window i to the next
window i + 1 may be reflected by only a small change
in ξ , but a larger change in other degrees of freedom
which are not included in ξ . Such artificial behavior
results in jumps in the root mean square difference be-
tween the average structures of subsequent umbrella
sampling windows.8

METHODS TO ANALYZE UMBRELLA
SAMPLING SIMULATIONS

Weighted Histogram Analysis Method
(WHAM)
Numerous methods have been proposed for an es-
timation of Fi,68,69 a promising one being70 the
WHAM.35,36 It aims to minimize the statistical er-
ror of Pu(ξ ). The global distribution is calculated by a
weighted average of the distributions of the individual
windows:

Pu(ξ ) =
windows∑

i

pi (ξ )Pu
i (ξ ). (14)

The weights pi are chosen in order to minimize the
statistical error of Pu:

∂σ 2(Pu)
∂pi

= 0 (15)

under the condition
∑

pi = 1. This leads to35,36:

pi = ai∑
j a j

, ai (ξ ) = Ni exp[−β ωi (ξ ) + βFi ] (16)

with Ni being the total number of steps sampled for
window i. The Fi are calculated by Eq. (12):

exp(−βFi ) =
∫

Pu(ξ ) exp[−βwi (ξ )] dξ. (17)

Because Pu enters Eq. (17) and Fi enters Eq. (14) via
Eq. (16), these have to be iterated until convergence.
For many bins, this convergence can be slow.

Umbrella Integration
An alternative to WHAM for combining the windows
in umbrella sampling simulations with harmonic bi-
ases is umbrella integration.37 The problem of calcu-
lating Fi is avoided by averaging the mean force rather
than the distribution P. The unbiased mean force is
independent of the Fi:

∂ Au
i

∂ξ
= − 1

β

∂ ln Pb
i (ξ )

∂ξ
− dwi

dξ
. (18)
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The distribution Pb
i is expanded into a cumulant ex-

pansion, which is truncated after the second term (i.e.,
approximating Pb

i by a normal distribution). This is
equivalent to truncating a power series of Au

i (ξ ) after
the quadratic term. Because A(ξ ) can be assumed to
be smooth and because each window is only supposed
to cover a small part of ξ , truncating such a power
expansion is well justified:

Pb
i (ξ ) = 1

σ b
i

√
2π

exp

⎡
⎣−1

2

(
ξ − ξb

i

σ b
i

)2
⎤
⎦ . (19)

Thus, and with a bias in the form of Eq. (13), Eq. (18)
now reads

∂ Au
i

∂ξ
= 1

β

ξ − ξb
i(

σ b
i

)2 − K
(
ξ − ξ ref

i

)
(20)

which only depends on the mean value ξb
i and the vari-

ance (σ b
i )2 of ξ in each window. These two quantities

can easily be sampled. For one window, before com-
bining the different windows, its integration yields:

Au
i (ξ ) =

(
ξ − ξb

i

)2

2

(
1

β
(
σ b

i

)2 − K

)

+
(
ξ − ξb

i

)
K

(
ξ ref

i − ξb
i

)
+ Ci . (21)

ξb
i shifts Au

i (ξ ) along the ξ axis and determines its
slope, whereas (σ b

i )2 determines the curvature of Au
i ,

and Ci is just the integration constant.
The curves of the mean forces of the different

windows can directly be averaged to result in a global
mean force:

∂ A
∂ξ

=
windows∑

i

pi (ξ )
∂ Au

i

∂ξ
. (22)

This is conveniently done with (normalized) weights
proportional to Pb

i :

pi (ξ ) = ai∑
j a j

, ai (ξ ) = Ni Pb
i (ξ ). (23)

The resulting global mean force can be numerically
integrated.

The difference between WHAM and umbrella
integration is threefold: (1) The unbiased distribu-
tions of the images are averaged in WHAM, whereas
the mean force is averaged in umbrella integration.
(2) The biased distributions are approximated by nor-
mal distributions in umbrella integration, but not in

FIGURE 3 | Weights of weighted histogram analysis method
(WHAM) and umbrella integration of three windows in a real
simulation of the enzyme para-hydroxybenzoate hydroxylase (PHBH).49

A maximum in the free energy is found between the second and third
windows.

WHAM. (3) The (non-normalized) weights for com-
bining the windows are different: ai(ξ ) = Ni exp(−β

wi(ξ ) + βFi) = NiPb
i /Pu

i in WHAM and ai(ξ ) = NiPb
i

in umbrella integration.
The first point is the main difference between

the methods. The second difference can be changed
in either of the methods. If umbrella integration is
applied on the whole distribution, its noise level in-
creases generally above the one obtained by WHAM.
The additional differentiation adds to the noise. Also,
its convergence properties with the bin width (num-
ber of bins) are lost. On the contrary, WHAM was
meanwhile used with Pb

i approximated by normal
distributions.37,71 This leads to free-energy profiles as
smooth as those obtained from umbrella integration.

The weights used by the different methods are
somewhat difficult to transform between the methods
because they weight different quantities. However,
weights used in real simulations can be compared as
depicted in Figure 3. In both cases, analytic quanti-
ties, not directly dependent on histograms, are used
in ai. Thus, the weights are smooth curves even if
the distributions are noisy. It is clear from Figure 3
that the weights used in WHAM are broader than the
ones used in umbrella integration. Using the weights
of umbrella integration ai(ξ ) = NiPb

i in WHAM is
possible, but it results in noisier curves because Pb

i is
directly obtained from histograms in WHAM. It also
leads to slightly deteriorated free-energy profiles as
the windows effectively overlap less. Strong overlap
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between the windows is more important in WHAM
than in umbrella integration.

As a special case of umbrella integration, one
can truncate the power series of A(ξ ) already after
the linear term19,37,72–75:

∂ Au
i

∂ξ
= −K

(
ξb

i − ξ ref
i

)
. (24)

Comparison with Eq. (20) shows that this is accurate

for ξ = ξb
i . However, it has also been used for ξ =

ξ ref
i .

The expressions of umbrella integration allow
for an estimate of the statistical error in �A from
MD simulation data.54 This, in turn, can be used to
chose the parameters of the simulation, such as the
strength of the bias K and the number of windows, in
order to minimize the statistical error while keeping
the requirement for CPU time at bay.

Umbrella integration can also be performed
in multidimensional reaction coordinates.76,77 How-
ever, the necessary integration step becomes more dif-
ficult (and prone to statistical error) in higher dimen-
sions, whereas the alternative WHAM analysis can
more straight forwardly be extended to more dimen-
sions.

The main advantages of umbrella integration
over WHAM are the independence of the number of
grid points (bins) and the availability of an error es-
timate. The fact that only ξ and σ 2 enter the analysis
of umbrella integration can be used to test the MD
runs for equilibration78 of these two quantities. This
cannot directly be done for WHAM, where the whole
distribution enters the analysis. However, in princi-
ple, one could test for equilibration of ξ and σ 2, and
when these are equilibrated, assume that the whole
distribution is equilibrated. Additionally, umbrella in-
tegration is noniterative, which speeds up the analysis.
However, the CPU time required for the analysis is, in
general, negligible as compared with the time needed
to acquire the MD sampling data. The reduction of
Ai(ξ ) to second order in ξ reduces noise significantly.
For cases with very few windows, however, this can
become a source of inaccuracies.

Estimation of the Sampling Error Bar
The error bar from finite sampling can be estimated
using umbrella integration analysis.54 This, in turn,
allows to set up guidelines as to how the necessary
simulation parameters should be set. The most im-
portant parameter is K, the strength of the bias. In
general, K should be chosen as small as possible to
allow for much overlap between the images. Let us
introduce κ as the negative second derivative of the
free energy with respect to ξ at the main barrier. Then,
K > κ is necessary to ensure a unimodular distribu-
tion in all images. This is necessary in umbrella inte-
gration because these distributions are approximated
by normal distributions. In WHAM, sampling over
the barrier is necessary, resulting in K > κ − kBT. Of
course, κ is not known a priori, but sometimes it can
be estimated.54

In general, it is preferable to sample many
windows for shorter times than fewer windows for
longer.79 This leads to a smaller statistical error be-
cause of the better overlap between the windows and
is better parallelizable.

CONCLUSION

The question whether umbrella sampling or one of its
related methods discussed in Accelerated Sampling
Techniques is to be used cannot be answered in gen-
eral. It may depend on the particular system. Some
authors have compared the applicability of some of
these methods.44,80–82 Although umbrella sampling
might be preferred over thermodynamic integration
because of errors in the integration80 (which reduce
with more windows), the additional free parameter
K, which has to be chosen in umbrella sampling, was
used as an argument against the latter.82 Additionally,
the availability of a correction of the metric tensor for
the particular choice of the reaction coordinate might
be an argument in favor of umbrella sampling, where
such a correction is unnecessary.

Overall, umbrella sampling is meanwhile a ma-
ture and broadly accepted method for calculating
free-energy differences.
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