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fraction of transcription network of E. coli
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introduction motivation

transcription network - autoregulation
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introduction motivation

transcription network - outstanding nodes
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introduction motivation

transcription network - loops
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introduction motivation

Is there a statistically significant aggregation
of local patterns or ”motifs” in the network?

Compare to a randomized network
→ YES!

Which are the motifs that evolution prefers?

What are their functions in the network?
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introduction methods

fraction of transcription network of E. coli
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introduction methods

random network
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introduction methods

histogram of E.coli transcription network
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Randomization: Choose two random edges, swap target nodes
→ the histogram is preserved
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genetics transcription

gene expression - transcription
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genetics transcription

gene expression - transcription

gene
DNA

transcription start site reading direction
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genetics transcription

gene expression - transcription

gene
DNA

transcription start site reading direction

messenger RNA

RNA polymerase

- RNAp transcribes DNA to mRNA
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genetics transcription

gene expression - transcription

gene

transcription start site reading direction

DNA

messenger RNA

RNA polymerase
activator/repressor

promoter region

- RNAp transcribes DNA to mRNA
- Activator/repressor interacts with transcription start site
→ Enhances/inhibits attachment of RNAp
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genetics translation

gene expression - translation of mRNA to protein

en.wikipedia.org/wiki/Translation (biology)
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genetics translation

regulation of gene expression

DNA RNA A protein A
transcription translation
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regulation of gene expression

DNA RNA A protein A
transcription translation
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genetics translation

regulation of gene expression

DNA RNA A protein A
transcription translation

DNA RNA B protein B

activator
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genetics translation

regulation of gene expression

DNA RNA A protein A
transcription translation

DNA RNA B protein B

activator

DNA RNA C protein C

repre
ssor

DNA

DNA

nodes: genes
edge: transcription 

factor
RNA A protein A

transcription translation

activator
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genetics dynamics

dynamics of simple gene regulation

Transcription factor X regulates expression of protein Y: X → Y
Simple assumptions:
- If X is in active form X∗, Y is produced at a constant rate β

- Degradation rate of Y is α

⇒ dY
dt = β −αY

Stable state: dY
dt

!= 0 ⇒ Yst = β

α
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genetics dynamics

dynamics of simple gene regulation
dY
dt = β −αY

Yst = β

α

0

Yst

time t / a.u.
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genetics dynamics

Hill-function

More realistic model: Rate of production of Y is a function of X∗

f[X∗] has three parameters → each edge carries three numbers
- K : Level of X∗ to significantly activate expression
- β : Maximal expression level
- n: Cooperativity: Number of molecules needed for activation

Rate of production of Y: f [X ∗] = β
X ∗n

Kn +X ∗n
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genetics dynamics

Hill-function
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genetics dynamics

Hill-function

Parameters can be tuned during evolution:
K : Mutations of binding site in the promoter area
β : Mutations in the RNAp binding site

Rate of production of Y: f [X ∗] = β
X ∗n

Kn +X ∗n
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motifs autoregulation

autoregulation
Probability of a self-edge in random network with N nodes:

pself = 1
N

Probability of k self-edges in a random network with N nodes and E edges:

P(k) =
(

E
k

)
·pk

self · (1−pself)E−k

The expectation value for the number of self-edges is

< Nself >= E ·pself = E
N

For the E.coli network this yields E
N = 519

424 = 1.2 self-edges

The real network has 40 self-edges → high statistical significance
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motifs autoregulation

negative autoregulation
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- System with simple regulation: Yst = β

α

→ unstable, many factors influence β and α

- System with negative autoregulation: Yst ≈ K
→ stable, K is specified by strength of chemical bonds
⇒ Noise suppression
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motifs autoregulation

negative autoregulation

X

- High production rate β can cause strong initial rise
- High autorepression leads to saturation at stable level K
⇒ response acceleration
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motifs autoregulation

positive autoregulation

X

⇒ higher response time
⇒ noise amplifying
Why is noise good for a cell?
→ diversity
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motifs feed forward loop

feed forward loops
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motifs feed forward loop

coherent type 1 feed forward loop

AND connection for Z
→ only respond to persistent stimulation, elevator door effect
OR connection for Z
→ no delay after stimulation, but delay after stimulation stops
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motifs feed forward loop

incoherent type 1 feed forward loop

- Response acceleration
- Pulse generator
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motifs single-input module

single-input module

→ timed expression of different genes

23 / 33



motifs dense overlapping regulon

dense overlapping regulon

- Not yet very well understood
- Detailed information about connection strength is needed
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motifs occurrence of motifs in various networks

motifs in the transcription network of E. coli
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Nreal = 40 Nrand = 7±3 Nreal = 203 Nrand = 47±12
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motifs occurrence of motifs in various networks

motifs in the neural network of C. elegans
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Nrand = 90±10
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motifs occurrence of motifs in various networks

motifs in the food web of little rock
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Nreal = 3219 Nrand = 3120±50 Nreal = 7295 Nrand = 2220±210
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motifs occurrence of motifs in various networks

motifs in the world wide web
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Nreal = 110000
Nrand = 2000±100
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Nreal = 1200000
Nrand = 10000±200
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motifs occurrence of motifs in various networks

motifs developmental networks

X

Y Z

X

Y Z
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motifs occurrence of motifs in various networks

a careful look at the statistical methods

What has been done?

- Real network randomization−→ random network
- Posing of null hypothesis:

“The occurrence of motifs is the same in both networks“
- The null hypothesis is rejected by a statistical test

→ Conclusion:
Evolution prefers motifs that are overrepresented and disfavours others
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motifs occurrence of motifs in various networks

a careful look at the statistical methods

- Create a random toy model
- Probability of connection between two nodes

reduces with distance

- Test model against random network with same # of nodes and edges
- There is a significant occurrence of motifs in the toy model!
→ It is clearly not evolution which prefers those motifs

→ Spatial clustering can create motifs
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résumé

résumé

- We can identify repeated small patterns in real networks

- Comparison to randomized networks shows a significant accumulation of
motifs in real networks

- We have to be careful which random network to use as null hypothesis

- We can describe the behaviour of the isolated motif
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