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fraction of transcription network of E. coli
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fraction of transcription network of E. coli




introduction motivation

transcription network - autoregulation




introduction motivation

transcription network - outstanding nodes




introduction tivation

transcription network - loops




introduction motivation

Is there a statistically significant aggregation
of local patterns or "motifs” in the network?

Compare to a randomized network

— YES!

Which are the motifs that evolution prefers?

What are their functions in the network?



ntroduction methods

fraction of transcription network of E. coli
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random network
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introduction methods

histogram of E.coli transcription network
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Randomization: Choose two random edges, swap target nodes
— the histogram is preserved
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genetics transcription

gene expression - transcription



genetics transcription

gene expression - transcription

DNA

reading direction

transcription start site



genetics transcription

gene expression - transcription

messenger RNA

RNA polymerase

transcription start site reading direction

- RNAp transcribes DNA to mRNA



genetics transcription

gene expression - transcription

messenger RNA

activator/repressor
\ RNA polymerase

. L. . reading direction
promoter region  transcription start site eading directio

- RNAp transcribes DNA to mRNA

- Activator/repressor interacts with transcription start site
— Enhances/inhibits attachment of RNAp



genetics translation

gene expression - translation of mRNA to protein

newly born proteil

amino acids

large subunit

en.wikipedia.org/wiki/Translation_(biology)
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genetics translation

regulation of gene expression

transcription translation

DNA —» RNAA ——> protein A
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genetics translation

regulation of gene expression

transcription translation

DNA —3» RNAA ——> protein A
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genetics translation

regulation of gene expression

DNA —>» RNAB ——» protein B

ICtivator

transcription translation

DNA ——3» RNAA ——> protein A
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genetics translation

regulation of gene expression

DNA —>» RNAB ——» protein B

translation

DN ——> protein A

DNA ———3» RNAC ——>» protein C
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genetics translation

regulation of gene expression

DNA ———>» RNAB ——» protein B

nodes: genes

edge: transcription
factor

DNA ———3» RNAC ——>» protein C
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genetics  dynamics

dynamics of simple gene regulation

Transcription factor X regulates expression of protein Y: X — Y
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genetics dynamics

dynamics of simple gene regulation

Transcription factor X regulates expression of protein Y: X — Y
Simple assumptions:
- If X is in active form X*, Y is produced at a constant rate 3

- Degradation rate of Y is «
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genetics dynamics

dynamics of simple gene regulation

Transcription factor X regulates expression of protein Y: X — Y
Simple assumptions:
- If X is in active form X*, Y is produced at a constant rate 3

- Degradation rate of Y is «

dY
_—B-aY
= 1 B—a

Y | B
o

Stable state: (ciTt =0 = Yo =
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dynamics of simple gene regulation
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X* active X inactive

time t / a.u.
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genetics dynamics

Hill-function

More realistic model: Rate of production of Y is a function of X*

f[X*] has three parameters — each edge carries three numbers

Rate of production of Y: f[X*] = 8= +X*n



genetics dynamics

Hill-function

More realistic model: Rate of production of Y is a function of X*
f[X*] has three parameters — each edge carries three numbers
- K: Level of X* to significantly activate expression

- B: Maximal expression level
- n: Cooperativity: Number of molecules needed for activation

Rate of production of Y: f[X*] = 8= +X*n



genetics dynamics

Hill-function
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genetics dynamics

Hill-function

Parameters can be tuned during evolution:
K: Mutations of binding site in the promoter area
B: Mutations in the RNAp binding site

Rate of production of Y: f[X*] = ﬁﬁ;n
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single-input module
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occurrence of motifs in various networks



motifs autoregulation

autoregulation
4
Probability of a self-edge in random network with N nodes: SQ A
»
) i’é
Pself = N %)

Probability of k self-edges in a random network with N/ nodes and E edges:

Pk = () Pl (1= o) *

The expectation value for the number of self-edges is

E

Naett >= E - poetf = —
< Ngelf > Pself N

__ 519

For the E.coli network this yields % = o1

= 1.2 self-edges

The real network has 40 self-edges — high statistical significance
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motifs autoregulation

negative autoregulation
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05 1.0 15 20
repressor concentration X / K

- System with simple regulation: Y = g

— unstable, many factors influence B and o

- System with negative autoregulation: Y &= K
— stable, K is specified by strength of chemical bonds

= Noise suppression
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motifs autoregulation

negative autoregulation
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Cell generations
= Negative —— Simple
autoregulation regulation

- High production rate B can

cause strong initial rise

- High autorepression leads to saturation at stable level K

= response acceleration
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motifs autoregulation

positive autoregulation
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Cell generations
= Negative —— Simple —— Positive

autoregulation regulation autoregulation

= higher response time
= noise amplifying

Why is noise good for a cell?
— diversity
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motifs feed forward loop

feed forward loops

Coherent FFL
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motifs feed forward loop

coherent type 1 feed forward loop

Input 5,

s, X
054 H
Coherent FFL 0

Coherent
typel

N — < €— X

AND connection for Z
— only respond to persistent stimulation, elevator door effect

OR connection for Z
— no delay after stimulation, but delay after stimulation stops
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motifs feed forward loop

incoherent type 1 feed forward loop

Incoherent FFL 154 M-FFL _—
Incoherent -
type 1 —
5 | o ———as
. N
i Simple regulation
05 4 = -
Y ; |
L |
1 |
| |
z 0 S r T . ‘ , : .
0 : 05 : 1 15 2 25 3 35 4
i T Time

| II-IF“FL [Slir;nple regulation)

- Response acceleration
- Pulse generator
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motifs  single-input module

single-input module
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— timed expression of different genes
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motifs dense overlapping regulon

dense overlapping regulon

Z Z Z . .z

- Not yet very well understood
- Detailed information about connection strength is needed
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motifs  occurrence of motifs in various networks

motifs in the transcription network of E. coli
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motifs  occurrence of motifs in various networks

motifs in the neural network of C. elegans
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feed-forward loop bi-fan bi-parallel
Nyeal = 125 Nyear = 127 Nyeal = 227

Niang =90+10 Niang =55+13 Nrand = 35+10
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motifs  occurrence of motifs in various networks

motifs in the food web of little rock
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motifs  occurrence of motifs in various networks

motifs in the world wide web

—>)I( X

feedback with two  fully connected triad uplinked mutual dyad
mutual dyads

Nreal = 110000 Nireal = 6800000 Nreal = 1200000
Nrand = 2000+ 100 Nyand = 50000 £ 400 Nyand = 10000 £ 200
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motifs  occurrence of motifs in various networks

motifs developmental networks
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motifs  occurrence of motifs in various networks

a careful look at the statistical methods

What has been done?

randomization

- Real network ™ —=""" random network

- Posing of null hypothesis:
“The occurrence of motifs is the same in both networks"

- The null hypothesis is rejected by a statistical test

— Conclusion:
Evolution prefers motifs that are overrepresented and disfavours others
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motifs occurrence of motifs in various networks

a careful look at the statistical methods

T
- Create a random toy model .
- Probability of connection between two nodes

reduces with distance I'

il

-
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motifs  occurrence of motifs in various networks

a careful look at the statistical methods

-

- Create a random toy model

- Probability of connection between two nodes
reduces with distance

-

- Test model against random network with same # of nodes and edges
- There is a significant occurrence of motifs in the toy model!

— It is clearly not evolution which prefers those motifs
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motifs  occurrence of motifs in various networks

a careful look at the statistical methods

- Create a random toy model

- Probability of connection between two nodes
reduces with distance k

B il

- Test model against random network with same # of nodes and edges
- There is a significant occurrence of motifs in the toy model!

— It is clearly not evolution which prefers those motifs

— Spatial clustering can create motifs
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résumé

résumé

- We can identify repeated small patterns in real networks

- Comparison to randomized networks shows a significant accumulation of
motifs in real networks

- We have to be careful which random network to use as null hypothesis

- We can describe the behaviour of the isolated motif
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