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ABSTRACT In this note I present a simple model for the
idiotypic network among antibodies and study its relevance for
the maintenance of immunological memory; in particular, the
memory capacity of such a model is studied. Some of the
similarities with the spin glass model and with neural networks
are discussed.

Comparison of the brain and the immune system has been
quite fruitful in the past (1, 2). Stimulated by the analogy with
the brain and by the discovery of the idiotypy (3), Jerne has
proposed a network theory for the immune system. Roughly
speaking, the production of a given antibody elicits (or
suppresses) the production of other antibodies that elicit (or
suppress) the production of other antibodies and so on. This
is reminiscent of the way in which a firing neuron may induce
(or inhibit) the firing of other neurons.

In this note I study a specific model that demonstrates that
a functional network of antibodies may be possible. I con-
centrate on modeling the behavior of the immune system in
absence of any driving force of external antigens in order to
study the maintenance of the immunologic memory. The aim
is not to produce a detailed model of the system, which could
be used for quantitative comparison with the experimental
data, but rather to provide a simple theoretical framework in
which different questions may be discussed. For this reason
the construction of the model is simplified as much as
possible, in the same spirit as the construction of formal
neurons (4) and of a symmetric neural network (5). If the
model is sufficiently simple, as the one presented here, some
results may be derived analytically, without recourse to
simulations, and many results obtained in statistical mechan-
ics become available. The use of statistical techniques is
inescapable, if we want to understand the behavior of a
system in which >106 different kinds of molecules interact.

It is well established that antiidiotypic antibodies (i.e.,
antibodies against antibodies) are normally generated in the
process of the response to an external antigen [especially by
repeated vaccination (6)]. Such antiidiotypic antibodies also
exist in unprimed animals (7). Although one of the main
assumptions of the network theory is satisfied, the functional
role of the network is not fully understood and a spectrum of
different conclusions can be found in the literature. More-
over, if we accept that the network is not a pure accident (8)
and that it has a precise functional role, its properties are not
clear. There are some crucial points on which there is no
general agreement and various options are available.

(i) It is not established whether the autoantibodies, which
arise in response to a given antibody and have a functional
role, are produced by a small set of high responder clones or
by a large set of low responder clones.

(ii) A related question concerns the effect of a new antigen
on the behavior of the network: Does it modify the whole
network of antibodies or does the perturbation remain local-
ized within a given set? Does the network remain a whole

indivisible unit, or can it be decomposed into a large number
of nearly independent regulatory subnetworks (each subnet-
work being composed by a small set of antibodies) (9, 10)?
Sometimes these two options are summarized by saying that
the network is open or closed. In the second case the network
would be the union of many independent circuits of low
complexity; in the first case the network would look more like
a real brain.

(iii) If we assume that the available states of the network
are determined by the properties of internal dynamics (11),
how then does the network learn, as it does upon vaccina-
tion? In other words if the immune system is an "organism
centered, self referential" (11) system, how is it possible that
its behavior may be easily modified in the desired direction
as it happens by vaccination?

(iv) How large is the memory of the immune system-i.e.,
against how many antigens can a mammal be vaccinated (or
be actively tolerant)? Does this number coincide with the
number of different clones, or is it smaller?

In this note I try to construct a model for the immune
network based on the most extreme hypothesis: I assume that
autoantibodies to a given antibody are a very large set of low
responder clones, the connectivity of the network is very
high [i.e., 0(106)], and consequently the network cannot be
decomposed into independent networks. I further assume
that the network is fully functional and the immunological
memory is a property of the network. Some of these assump-
tions are not fully realistic. However it is interesting to
consider the features of this extreme case. Indeed, I will
prove that it is possible to construct such a network, which
can memorize a very high [0(106)] number of external anti-
gens.

Before entering into the discussion of the model let me
sketch some well-established results on the immune system.

Some Known Facts

The precise number of different antibodies that an organism
(e.g., a mouse) is able to produce at a given moment (i.e., the
available repertoire) is of the order of 106-107 and the number
of antibodies that are actually produced (the actual reper-
toire) is likely to be smaller by a factor of 10 (12, 13). The very
high number of different antibodies in the available repertoire
is usually referred to by saying that the repertoire is complete
(if we neglect holes)-i.e., the immune system can react
against any possible protein (14).
When the immune system is stimulated by an external

antigen two pathways are open: tolerance or immunity; the
choice of the pathway is crucial and depends on many
factors, most notably the amount of antigen and the way it
enters the organism (15). (It is quite likely that the time
dependence of the antigen concentration plays a crucial role:
unfortunately practically no data are available on this point.)
Low doses of antigen normally induce tolerance, whereas
medium doses induce immunity (high doses too induce tol-
erance, but the mechanism is not the same as for low doses).
The low dose tolerance and the immunity are related to the
proliferation of T cells, which act as suppressors in the first
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case and helpers in the second case and have a negative or a
positive effect on the proliferation of antigen-producing B
cells.

Summarizing, when the antigen is presented to the orga-
nism, the immune system decides which pathway should be
taken (suppression or immunity) and it remembers the choice
for a very long time, even after the disappearance of the
antigen. It is crucial that the organism does not react (at least
not too much) against some of its own proteins. Some cells
of the immune system are able to produce antibodies directed
against the organism (i.e., the self); these antibodies are not
produced (neglecting pathologies) in sizable amount. There-
fore during ontogenesis the immune system learns which
antibodies it should not produce and it remembers this
decision for its entire life. These two kinds of phenomena are
what we call immunological memory.
Another effect, idiotypy (3), is at the basis of network

theories (1) of the immune system. The antibodies (called
Abi) elicited directly by the antigen are a new protein for all
practical purposes; they elicit the production ofnew antigens
(Ab2), which induce Ab3, which induce Ab4, which induce
Ab5, and so on ....

This phenomenon, the idiotypic cascade, can be studied
experimentally in the following way. The different waves
(Abi, Ab2, Ab3 .. .) are separated in time by a delay of 1
week (or less). The first antibodies, produced by the mouse
after stimulation, are Abl. These antibodies may be injected
in a genetically identical mouse and in this way one obtains
Ab2. Ab3, Ab4, etc., are obtained in a similar way. Some-
times Ab3 is like Abl and it binds to the same antigen of Abl
(16, 17).

It is natural to assume that a similar idiotypic cascade takes
place inside the same organism and it plays a crucial role in
the regulatory phenomena. However, one must be very
careful with these identifications for many reasons:

(i) The concentration of antibodies produced by the same
organism increases relatively slowly, whereas the concen-
tration jumps instantaneously when the antibody is injected
into another organism: the differences in the protocol may be
responsible for the transition from tolerance to immunity.

(ii) It is possible to transfer the antibodies that have been
produced (Ab2), but it is not possible to study those anti-
bodies that are no longer produced as a consequence of the
increase in the Abl concentration.

(iii) Genetically identical mice may have a different idio-
typic environment and this may account for different behav-
ior to the same antigen in genetically identical, but different
mice.

The Model

My main interest in this note is the study of a network that
may be functionally useful as far as memory is concerned
(obviously the network may be relevant in other contexts).

I formulate a model for the immune system, in the absence
of an antigen, and try to keep it as simple as possible.
Although it is clear from the previous discussions that the
numbers of B and T lymphocytes of a given specificity play
a crucial role, the actors of this model will be the antibody
concentrations, it being understood that their interactions are
mediated by lymphocytes. This choice is made in order to
simplify the model to the maximum. It would be definitely
interesting to include B cells, T cells (helpers and suppres-
sors), and the elusive T-cell suppressor factors in more
refined versions of the model.
The concentration ci(t) of a given antibody (i) is assumed,

in absence of external antigen, to have only two values that
conventionally we take 0 or 1 (t is the time). (In the presence
of antigen it is natural to assume that the concentration c,
becomes much greater than 1.) The status of the immune

system at a given time is determined by the values of all ci for
all possible antibodies (i.e., i = 1, . . . N, where N is of order
107).
We assume a simple dynamical process where the time is

discretized (the time step r is the time needed to mount the
immune response-i.e., about 1 week). In the absence of
external antigen the following equations are satisfied:

hi(t) = S + E Ji kCk(t) (Ji, = 0)
k=1,N

ci(t + r) = 0[hi(t)], Ill

where the function @(x) is zero for negative x and 1 for
positive x; Ji,k represents the influence of antibody k on
antibody i. If Jik is positive, antibody k elicits the production
of antibody i, whereas if Ji, is negative, antibody k sup-
presses the production of antibody i. The absolute value of
Jik represents the efficiency of the control of antibody k on
antibody i.
The variable hi represents the total stimulatory (or inhib-

itory) effect of the network on the ith antibody. It is positive
when the excitatory effect of the other antibodies is greater
than the suppressive effect and then c; is one. Otherwise hi is
negative and ci is zero. The quantity S regulates the dynamics
when the J terms are very small. Here, for simplicity we take
S equal to zero.

If the concentrations of antibodies are time independent,
Eq. 1 simplifies and we get

hi= S + E JikCk
k=1,N

Ci= 0(hi),

Qij = 0)

[2]

which is just Eq. 1, where we have erased the time depen-
dence of the antibodies concentrations (S is still zero).
Many other models of the idiotypic network have already

appeared in the literature (18-20). The model presented here
has the advantage of being simpler and easier to analyze.
The phenomenon of low-dose tolerance (and more gener-

ally the dependence of the pathway, tolerance or immunity,
on the amount of antigen) may suggest that the concentration
of a given antibody is crucial in determining the sign of its
effects on the other antibodies. The simplification to two
levels of concentration (0 or 1) bypasses the problem of the
choice of the pathway (immunity or tolerance). I implicitly
assume that the protocol in which antibodies are produced by
the organism is such as to induce a given pathway. Although
in a realistic model the concentrations must eventually be-
come continuous variables, I propose to investigate first
whether a simplified functional idiotypic network with only
two levels of concentration can be set up. If this hypothesis
fails, the precise values of the antibody concentrations will
have to be relevant variables and more complex nonlinear
differential equations for the time evolutions will have to be
written (the c terms should be continuous variables) and the
analytic study of the system would become more difficult.

In the current model the antibodies with positive c, are
actually produced by the system and the others are sup-
pressed. The suppression due to clonal abortion is neglected
and I consider only the active suppression that selects which
cells of the available repertoire are transferred into the actual
repertoire. I am not interested here in the physiological level
at which the interactions between the different antibodies
take place. The aim is to obtain a global functional description
of the immune network.
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More Details of the Model

The whole memory of the system (immune states and sup-
pressed states) is encoded in the network in the sense that the
knowledge of the concentrations of all antibodies different
from a given one completely determines the concentration of
that given antibody.
Now we must make some hypotheses on the J terms,

assuming that:
(a) the diagonal terms JiHj are zero-i.e.,

Ju,= 0 Vi, [3]

(b) there are J terms of both sign,
(c) the J terms are symmetric-i.e.,

Jik = JkJ, [4]

(d) the J terms are random and they are equidistributed in
the interval -1, 1.
The assumption of setting J1,i to zero is the most extreme

one. It implies that a given antibody is produced only because
of the excitatory effects of the other antibodies. The other
extreme situation is when off diagonal terms (i.e., Ji.k for i 4
k) are equal to zero and positive diagonal terms. In this case,
Eqs. 1 and 2 would have a trivial implication: the antibody
concentrations would be always time independent. In other
words Eq. 3 implies that memory (i.e., vaccination) can only
be realized by modifying the state of the whole network.
The last assumption (d) is clearly an oversimplification. It

would be more reasonable that InIJiil (which should be
related to the chemical affinities) is equidistributed. More-
over the antibodies are not random proteins. If the connec-
tivity of the ith antibody is defined to be the number of
antibodies for which Ji,k is significantly different from zero,
assumption d implies that the connectivity of every antibody
is equal to the total number of antibodies. The concentration
of any given antibody depends on the concentration of all
other antibodies. Hence, the network is open and cannot be
broken into smaller independent subnetworks.

Despite the fact that different antibodies have quite differ-
ent connectivity, it is interesting however to study how the
network may work in this limiting case of assumption d. The
probability distribution of the J terms can be modified in later
refinement of the model, without changing the qualitative
predictions of the models as long as one remains with very
large connectivity. I will proceed with assumption d for
simplicity.
Next I discuss the physiological feasibility of assumptions

b and c.
Assumption b implies that there should be antibodies that

suppress the production of other antibodies. This effect is
well known (21-23). It is also possible that some antibodies
elicit the production of other antibodies at low dose and they
suppress the production of other antibodies at medium dose
(24-26); however a more careful discussion of this point is
needed (27).
Moreover, if all J terms are positive, the only solution of

Eq. 1 is that the concentrations of all antibodies are equal to
1. Hence in this model inhibition plays a crucial role in
regulating the immune network.
The most crucial and most controversial point is assump-

tion c. If both J terms are positive, there is some experimental
evidence to the effect that symmetry holds (18, 28, 29). Ifone
of the J terms is negative, the situation is less clear; however
I shall assume for simplicity that assumption c is strictly
satisfied. I will later discuss the consequences of the removal
of this assumption.

Different sets of hypotheses can also be entertained. For
example, one could keep assumptions a, c, and b, assume

that all J terms are negative, and assume that S is different
from zero and positive. This model would become a simpli-
fied version of the one of ref. 30.
The discussion presented here is very short and does not

take into account many of the features ofthe immune system.
For example, I have overlooked the fact that Ab2 antibodies
may be functionally classified into four major categories (26,
31-33).

The Memory Capacity

Having defined the model, one can now analyze it. The
intuitive way in which the model should explain immunolog-
ical memory is rather simple. After the production of Abl
starts as an effect of the antigen, the environment of B and T
cells is modified by the presence of Ab2 in such a way that
the life-span of Abl-producing B cells is increased and also
the population of helper T cells, specific for Abl, is in-
creased. Ab3 must have a strong component that coincides
with Abl or is functionally equivalent to Abl. In other words,
we suppose that the internal image of the antigen (Ab2)
remains after the antigen has disappeared and its presence
induces the survival of memory B cells directed against the
antigen.
Moreover, the symmetry of the J terms implies that Ab3

should be rather similar to Abl. However this should not be
true in a transfer experiment where monoclonal Ab2 is used.
Indeed, different effects of monoclonal and polyclonal Ab2
have been observed. For example, it has been shown that
sometimes monoclonal Ab2 does not elicit Abl-like mole-
cules, but rather a heterogeneous response similar to the
heterogeneous response to monoclonal Abl (6, 34).

If the J terms are symmetric, this model coincides with a
very familiar and widely investigated model for spin glasses
(35).

It is well known (36) that the behavior of the solution of Eq.
1, after a long time, would be a stable situation satisfying Eq.
2 or a limit cycle of period 2r. It is quite possible that the
oscillating behavior for a symmetric model is an artifact ofthe
choice that we have made for the dynamics. Some other
choices lead only to the stable solutions described by Eq. 2.
For simplicity, let us consider only the time-independent
solutions, keeping in mind that a periodic behavior is also
possible.
We now face a difficulty: the possible equilibrium config-

urations of the network (i.e., solutions of Eq. 2) are geneti-
cally fixed, while we would like the network to learn which
antibodies should be produced. How can this take place?

It is natural to assume that only a tiny fraction of all of the
antibodies have a physiological relevance: there are M = aN
antibodies that should have a preassigned concentration,
some of them should have a zero concentration, others a
non-zero concentration. Therefore, the value ofM is likely to
be much less than N-i.e., a < 1.

In other words, ifone considers a healthy mouse, one could
write two lists. The first contains the antibodies that should
not be produced (to avoid autoimmune illnesses); the second
contains the antibodies that must be produced. In the net-
work theory, the state of the system cannot be preassigned
completely, because the production of the antibodies is
controlled by the other antibodies-i.e., the state of the
network must satisfy Eq. 2. The total number of antibodies
(M) in the two lists cannot be equal to N (the size of the
repertoire) but must be much smaller.
The natural question is the following: For a given N, which

is the value of M such that there exists one (or more)
equilibrium state of the network with preassigned values of
the M concentrations? Equivalently, which is the maximum
size of the two lists ofantibodies that must (or those that must
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not) be produced? This value ofM is what I call the memory
capacity of the model.

It is not known what is the value for the storage capacity
of a mammal-i.e., maximum number of the number of
antibodies that have been actually learned by the immune
system (antibodies that are produced in sizable amount, or
antibodies whose production is suppressed). This number is
certainly high. A storage capacity independent ofN (e.g., the
maximum size of the list is seven) would put the model at
serious variance with experimental data. After all we are
vaccinated against an extremely large set of antigens.
We now proceed to compute the storage capacity of the

model network. Eq. 2 is well known in the theory of spin
glasses and it has been proved that the number of its solutions
is very high: it increases exponentially with N (35, 37, 38). In
fact, it is proportional to 2AN with A 0.3.
The existence ofa stable state with M preassigned antibody

concentrations depends on M. When N is very large, such a
state exists for a < a, (i.e., M < a,.N), where

a,=A. [51
The proof of Eq. 5 is rather simple. The number of possible

states of the network with M preassigned antibody concen-
trations is 2N-M. The probability that a given random state is
a solution of Eq. 2 is 2-(1-A)N. Therefore, the average number
of solutions of Eq. 2 with aN preassigned antibodies is
2(A-a)N, which is greater than one when a < A.
A detailed computation, which parallels the original eval-

uation of A (35, 37, 38), shows that the above argument is
sound. (Technically speaking we have to prove that 2(A-a)N,
which is the average number of solutions, is also the most
likely number.)

Eq. 5 can be easily understood from an information-
theoretical viewpoint. Indeed, we need M bits of information
in order to specify M antibodies (on or off) and we need AN
bits to identify one of the 2AN equilibrium states of the
network. No equilibrium state can be found when M > AN.
Summarizing, the storage capacity (M, = awN) is the total

number of antibodies whose concentration may be assigned
in a way compatible with Eq. 2. The simplicity of the model
allows an analytic computation of the storage capacity.

If one compares this idiotypic model with neural models (5,
35), one sees that the J terms play the same role of the
synaptic strengths of the neural network. However, in the
immune system they cannot be modified. This point is similar
to the one expressed by Toulouse et al. (39) in a different
context. The randomness of the antibody-antibody interac-
tions implies the existence of a large number of equilibrium
states and the pressure from the antigen selects the needed
equilibrium state. The Darwinian selectionist (as opposed to
the instructionist) point of view is satisfied not only at the
level of the single antibody but also at the level of the immune
system as a whole entity.

If the J terms are not symmetric the situation is more
complex. This is a most interesting case for neural networks
and the behavior of such a system has been investigated
(40-42). Although some of the phenomena present in the
symmetric case persist, new features appear.
The main results are summarized here. If the J terms are

completely asymmetric-i.e., Ji,k is not correlated to Jk,
the time behavior of the system is chaotic. This cannot be a
good description of the immune system because the produc-
tion of antibodies of a given specificity would start and stop
at random.
The intermediate situation, in which the J terms have both

a symmetric and an asymmetric component, is more realistic
but cannot be studied in a simple way. If one sticks to Eq. 1,
the concentrations of some antibodies will remain time in-
dependent, whereas concentrations of other antibodies may

show an irregular behavior. The clearest results are obtained
if we restrict ourselves to the time-independent solutions of
Eq. 1 (i.e., to the solutions ofEq. 2). In this case one still finds
(40-42) that there is an exponentially large number of solu-
tions of Eq. 2 (proportional to 2AN, and consequently the
memory capacity increases linearly with N). This interme-
diate solution seems to be a quite promising case and its
behavior should be investigated in greater detail.

Conclusions

In this paper I have constructed a simple model of the
immune network and have used it to study immunological
memory. I have found that the maximum memory capacity of
the system-i.e., the number of antibodies that may be
selected (expressed or suppressed)-is very high-i.e., pro-
portional to the number of antibodies in the repertoire.
However, in this note I have not studied the very inter-

esting phenomenon of learning-i.e., how the network moves
from one equilibrium state to another equilibrium state. One
should also make a distinction between the learning of the
self, during the early ontogenesis, and the learning ofantigens
later in life. In the first case learning is a massive parallel
phenomenon. An extremely large number of different anti-
bodies are suppressed at the same time by an immature
immune system. It is also likely that the network receives a
strong maternal influence. In the second case learning may be
sequential (or parallel)-i.e., few new antigens are memo-
rized at a given time by a mature immune system.

I have neglected the role that somatic hypermutation plays
in producing new antibodies and consequently modifying the
J terms. It is usually believed that somatic hypermutation is
crucial in producing antibodies with higher affinities with the
antigen, and it is not relevant from the point of view of the
network. Somatic hypermutation may be a crucial (unfortu-
nately neglected) element of the immune network (it could be
quite useful during learning), because it may generate new
antibodies with a higher value of hi, as defined in Eq. 2. The
renewal of the repertoire due to the expression of new clones
of B cells in the bone marrow may play a similar role as
reservoir of diversity, as stressed in ref. 20.

In this case somatic hypermutation would play an analo-
gous role to synaptic plasticity in the neural network (where
learning is produced by a small change in many synapses). At
the present stage I do not have solid support for this hypoth-
esis.
The way in which learning happens should be investigated

more carefully. As already stated, the values of the concen-
trations are 0 or 1, only in the absence of the antigen. It is
reasonable that in the presence of the antigen the concentra-
tions become much higher. Then the idiotypic cascade starts
and the concentrations of many antibodies are changed.
When the external pressure is removed we find ourselves in
a new equilibrium state.
A more detailed model with some continuously changing

concentrations is needed to investigate properly the way in
which learning may happen; however there are two main
features that should be model independent:

(i) Each time the immune system learns something, we
modify the concentration of some of the antibodies and
therefore we forget something else (30, 32). The antibodies,
which are most easily forgotten, are those having a small hi
in Eq. 1. The total memory capacity ofantibodies that will not
be forgotten easily depends on the details of the learning
process but it will be certainly much smaller than the maximal
one.

(ii) Repeated exposure to the antigen is quite likely to
increase the value of hi and therefore to strengthen the
memory. It is satisfactory that one apparent characteristic of
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autoantiidiotypic antibodies is that they are produced most
effectively by means of repeated immunization (6).
At present it would be a wild speculation to answer why

this kind of network is used by the immune system. A
possible answer is that the immunological memory is much
more robust, if it is distributed in many clones, and the
decrease in the total storage capacity is a reasonable price to
pay for this increased robustness.
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for interesting discussions and useful suggestions. I am also grateful
to M. Mezard for help in computing the storage capacity of the
network and to D. Amit for a careful reading of the manuscript.

1. Jerne, N. K. (1967) in The Neurosciences: A Study Program,
eds. Quarton, G., Melnechuk, T. & Schimitt, F. 0. (Rock-
efeller Univ. Press, New York), pp. 200-208.

2. Jerne, N. K. (1974) Ann. Immunol. (Paris) 125C, 1127-1137.
3. Oudin, J. & Michel, M. (1963) C.R. Hebd. Seances Acad. Sci.

257, 605-610.
4. McCulloch, W. S. & Pitts, W. (1943) Bull. Math. Biophys. 5,

115-133.
5. Hopfield, J. J. (1982) Proc. Nati. Acad. Sci. USA 79, 2554-

2558.
6. Bottomly, K. (1984) Immunol. Rev. 79, 45-62.
7. Holberg, D., Freitas, A., Portnoi, D., Jacquemart, F.,

Avrameas, S. & Coutinho, A. (1986) Immunol. Rev. 93, 147-
178.

8. Cohn, M. (1986) Ann. Immunol. (Paris) 137C, 64-76.
9. Bona, C. A., Victor-Kobrin, C., Manheimer, A. J., Bellon, B.

& Rubistein, L. J. (1984) Immunol. Rev. 79, 25-45.
10. Grossman, Z. (1984) Immunol. Rev. 79, 119-138.
11. Coutinho, A., Forni, L., Holberg, D., Ivars, F. & Vaz, N.

(1984) Immunol. Rev. 79, 151-170.
12. Jerne, N. K. (1984) Immunol. Rev. 79, 5-24.
13. Freitas, A., Rocha, B. & Coutinho, A. (1986) Immunol. Rev.

91, 5-28.
14. Coutinho, A. (1980) Ann. Immunol. (Paris) 132C, 131-142.
15. Monroe, J. G., Lowy, A., Granstein, R. D. & Greene, M. 1.

(1984} Immunol. Rev. 80, 103-136.
16. Cazenave, P.-A. (1977) Proc. Natl. Acad. Sci. USA 74, 5122-

5125.
17. Urbain, J., Wikler, M., Franssen, J.-d. & Collignon, C. (1977)

Proc. Natl. Acad. Sci. USA 74, 5126-5130.
18. Hoffmann, G. W. (1980) Contemp. Top. Immunobiol. 11, 185-

226.

19. Farmer, J. D., Packard, N. & Perelson, A. (1986) Physica D
(Amsterdam) 22, 512-522.

20. Varela, J. F., Coutinho, A., Dupire, B. & Vaz, N. N. (1988) in
Theoretical Immunology, ed. Perelson, A. (Addison-Wesley,
Reading, MA).

21. Cosenza, H. & Kohler, H. (1972) Science 176, 1027-1030.
22. Hart, D. A., Wang, A., Pawlak, L. L. & Nisonoff, A. (1972) J.

Exp. Med. 135, 1293-1297.
23. Rajewsky, K. & Takemori, T. (1983) Annu. Rev. Immunol. 1,

569-611.
24. Hiernaux, J., Bona, C. & Baker, P. J. (1981) J. Exp. Med. 142,

106-111.
25. Rubistein, L. J., Goldberg, B., Hiernaux, J., Stein, K. E. &

Bona, C. A. (1983) J. Exp. Med. 158, 1129-1132.
26. Bona, C. A. & Kohler, H. (1984) Anti-Idiotype Antibodies and

the Internal Image in Monoclonal and Anti-Idiotype Antibod-
ies: Probes for Receptor Structure and Function (Liss, New
York).

27. Finberg, R. W. & Ertl, H. C. J. (1986) Immunol. Rev. 90,
129-153.

28. Cooper-Willis, A. & Hoffmann, G. W. (1983) Mol. Immunol.
20, 865-871.

29. Rajewsky, K. (1983) Ann. Immunol. (Paris) 134D, 133-147.
30. Hoffmann, G. W., Kion, T. A., Forsyth, R. B., Soga, K. G. &

Cooper-Willis, A. (1988) in Theoretical Immunology, ed. Per-
elson, A. (Addison-Wesley, Reading, MA).

31. Bernabe, R., Coutinho, A., Cazenave, P.-A. & Forni, L. (1981)
Proc. Natl. Acad. Sci. USA 78, 6416-6420.

32. Cazenave, P.-A. & Roland, J. (1984) Immunol. Rev. 79, 139-
150.

33. Slaoui, M., Urbain-Vansanten, G., Demeur, C., Leo, O.,
Marvel, J., Moser, M., Tassignon, J., Green, M. I. & Urbain,
J. (1986) Immunol. Rev. 90, 73-92.

34. Sack, D. L., Easer, K. M. & Shen, A. (1982) J. Exp. Med. 155,
1108-1112.

35. Mezard, M., Parisi, G. & Virasoro, M. (1987) Spin Glass
Theory and Beyond (World Sci., Singapore).

36. Perretto, P. (1984) Biol. Cybern. 50, 51-56.
37. Bray, A. J. & Moore, M. A. (1980) J. Phys. C 13, L469-L476.
38. De Dominicis, C., Gabay, M., Garel, T. & Orland, H. (1980) J.

Phys. 41, 923-930.
39. Toulouse, G., Dehaene, S. & Changeux, J.-P. (1986) Proc.

Natl. Acad. Sci. USA 83, 1695-1698.
40. Crisanti, A. & Sompolinky, H. (1987) Phys. Rev. A 36, 4922-

4929.
41. Gutfreund, H., Reger, J. D. & Young, A. P. (1988) J. Phys. A

21, 2775-2797.
42. Treves, A. & Amit, D. (1988) J. Phys. A 21, 3155-3165.

Immunology: Parisi


