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This article describes some aspects of the history and the
recent research in protein folding. After general consider-
ations about proteins, Levinthals paradox is described by a
simple mathematical model, based on the work of Zwanzig
in 1992. In the paper, energy landscapes are introduced and
several examples are discussed, mainly led by the work of
Dill in 1997. Finally, some of the problems that can occur
when producing energy landscapes are observed, following
Sittels paper from 2014.

1 Proteins and folding
Proteins are large biomolecules. In the human body, pro-

teins consist of 20 different amino acids and fulfill many
important functions. They work as antibodies, enzymes,
hemoglobin or many other highly specialised objects in the
organisms. If proteins are not in the right structure, they of-
ten cannot fulfill their function which can cause hereditary
diseases.
When proteins get synthesized by ribosoms, they are just a
sequence of amino acids. In this state, they don’t fulfill func-
tions. Until they reach their so called native structure, they
have to go through a complicated dynamic process of fold-
ing. Many proteins even have to bind to each other to finally
fulfill their function. This paper is about the process of fold-
ing.

2 Levinthals Paradox
Since protein folding is such a complex process with so

many degrees of freedom, Levinthal stated in 1968 [5] that
it should take an incredible long time for proteins to fold to
their native state.
Let’s consider an example of a protein with 101 amino acids
that are connected via 100 bonds. If each of these bonds
can be in 3 different states, there are 3100 ≈ 5 · 1047 config-
urations of the protein. For a protein that randomly changes
bonds to search for its native state, even with a sampling rate
of 1013 1

s , it would take 1027 years to take all possible config-
urations. This has been seen as a paradox, since biological
experiments show that proteins can fold on time scales of
seconds or milliseconds.

2.1 A simplified theoretical model
This section describes a highly simplified mathematical

model of a protein, presented by Zwanzig [5] to show that

Levinthals paradox is easy to solve if interactions between
amino acids are taken into account.
This model describes a protein as a sequence of N+1 amino
acids connected by N bonds. The states of the bonds can
either be correct c or incorrect i. Bonds can be incorrect for
various reasons which are summarized in one statuts group.
Starting with a random sequence (c, i, i, c, ...), the bonds can
change their state with rates of

k0 for c�i
k1 for i�c

Defining the number of incorrect bonds as S, the number
of correct bonds is N − S and the probability of having S
incorrect bonds at a time t, given an initial time t0 and
an initial number of incorrect bonds Si , can be written as
P(S, t|Si, t0)=: P(S, t). A master equation describes the prob-
ability of gains and losses of a state S. In this case, the master
equation can be written as

d
dt

P(S, t) =

rate(S−1→S)︷ ︸︸ ︷
(N−S+1)k0 P(S−1, t)+

rate(S+1→S)︷ ︸︸ ︷
(S+1)k1 P(S+1, t)

− (N−S)k0︸ ︷︷ ︸
rate(S→S+1)

P(S, t)− Sk1︸︷︷︸
rate(S→S−1)

P(S, t). (1)

Each term of equation 1 consists of the number of bonds
being in a neighbouring state, the rate of a single bond to
change from the neighbouring to the considered state S and
the probability for a bond to be in the neighbouring state.
Equation 1 can easily being put into matrix form by defining
the vector P(t) = (P(S = 0, t), ...,P(S = N, t))T which will
be useful for the following calculations. It is likewise helpful
to use absorbing boundary conditions at the final state S f .
This means that the probability for leaving the final state S f
is equal to zero.
Defining the survival probability s(t,S f |Si) by

s(t,S f ) = ∑
S 6=S f

P(S, t) = 1−
∫ t

0
F(t ′;S f )dt ′, (2)



the mean first-passage time τ(S f |Si) is given by the mean of
the probability distribution F(t;S f ).

τ(S f |Si) =
∫

∞

0
tF(t;S f )dt (3)

This describes the mean time for a protein to reach state S f
from starting state Si.
Equations 2 and 3 can be inserted into the matrix form of
equation 1 to obtain an expression for the mean first-passage
time. For large N and not too small k0, τ can be approximated
as

τ(S f = 0|Si)≈
1

Nk0

(
1+

k0

k1

)N

. (4)

This is actually similar to what Levinthal stated in his para-
dox. Nk0 can be associated with a sampling rate and(

1+ k0
k1

)N
with the number of possible states.

At this point, the ratio k0
k1

is interpreted as an equilibrium
constant by considering the kinetic scheme of a single bond

d
dt
[c] =−k0[c]+ k1[i], [c]+ [i] = 1

at equilibrium ( d
dt [c] = 0). Then k0

k1
=

[i]eq
[c]eq

=: K.
This equilibrium constant can be found using thermodynam-
ics. As described before, there is only one possibility for
a bond to be in the correct state c, but many possibilites to
be incorrect. It is additionally assumed, that incorrect bonds
have higher energy than correct bonds. The energy of a cor-
rect bond is defined as εc, the energy of an incorrect bond
εc+U and the degeneracy of the incorrect state ν. This leads
to the equilibrium constant

K =
k0

k1
=

νe−(εc+U)/kT

e−εc/kT = νe−U/kT

that depends on U , the energy penalty for incorrect bonds.
Here, k is the Boltzmann constant and T the temperature.
Using these considerations, equation 4 becomes dependent
on the energy penalty U .

τ(S f = 0,Si)≈
1

Nk0
(1+K)N

The dramatic effect is shown in figure 1, describing that an
energy penalty of a few kT changes the mean first-passage
time in several orders of magnitude. With this choice of pa-
rameters, τ(0,Si) becomes biologically significant (of the or-
der of 1 second) when U is about 2kT . Taking an energy
penalty into account is a physically reasonable approach as
seen in section 3 and shows what Levinthal missed when he
stated his paradox. The folding of a protein is not a random
search.

Fig. 1. Mean first-passage time τ in years. With N = 100, ν = 2,
Si = 66, k1 = 109s−1 and k0 = 2exp(−U/kT ) ·109s−1. [5]

3 Computational Modelling
A more realistic model of biological molecules and

processes is given by the so called force fields, used in
computational modelling. These force fields U are used in
solving Newtons equations of motion

mi
∂2~ri

∂t2 = ~Fi (5)

~Fi =−
∂U(~r1, ...,~rN)

∂~ri
(6)

where i = 1,2, ...,N denotes the i′th of N atoms (or clusters
of atoms) in the system.
A typical force field would be

U = ∑
bonds

Kr(r− req)
2 + ∑

angles
Kθ(θ−θeq)

2

+ ∑
dihedrals

Vn

2
(
1+ cos(nφ−δn)

)
+∑

i< j

(
Ai j

R12
i j
−

Bi j

R6
i j
+

qiq j

εRi j

)

containing bond and angle interactions quadratically, dihe-
dral and non-bonded interactions such as Lennad-Jones and
electrostatic interactions. All constants in this force field de-
pend on the associated atoms.
With computational modelling, it is possible to simulate the
folding of a protein step by step and to observe each single
atom at each time step. This is different from biological ex-
periments where only macrostates can be observed.
Since it is computationally costly, the modelling approach
is limited on smaller proteins and not too long time scales.



Nevertheless for those proteins that can be simulated, new
methods of analyzation become possible. One of these meth-
ods is described in the following.

4 Energy Landscapes
Energy landscapes are a tool to analyze protein folding.

They plot the free energy of a protein over its degrees of
freedom. For example, the cartesian r1-coordinates of two
atoms of the protein might be taken as the axes of the energy
landscape. The free energy of the coordinate x of a system is
given by

∆G(x) =−kT lnP(x).

where P(x) denotes the probability distribution of the coordi-
nate x. To get the free energy correctly, the potential of mean
force would have to be calculated, which is an integral over
all degrees of freedom. This is hard to manage, so usually a
histogram of the coordinate of interest is associated with a
probability distribution.

4.1 Levinthals Paradox in Energy Landscape terms
As a first example of an energy landscape, consider fig-

ure 2. This shows a random search of a protein for its na-

Fig. 2. Energy landscape of a random search of a protein as in
Levinthals paradox. [2]

tive state N described in Levinthals paradox. Since there is a
large flat space of configurations, the protein never ’knows’
whether a taken step was a step into the right direction. In
this flat area, the protein wanders around slowly and aim-
lessly.
Since Levinthal also noticed that his random search was un-
biological, he thought about solutions and suggested the con-
cept of pathways as presented in figure 3. This pathway solu-
tion is oriented at the process of chemical reactions. Simple
chemical reactions always follow the same path, so the steps
of the process has a defined order. Levinthal and others tried
to impute this to protein folding. In this view, the protein
starts at an initial state and changes its bonds, dihedrals and
atom positions in a fixed order of steps which finally leads

Fig. 3. Energy landscape of the pathway solution of the random
search problem [2]

to the native state. Every step out of the tunnel is seen as an
off-pathway step which is useless and has to be inverted to
come back onto the right pathway.
This model is not according to experience from experiments.
Proteins will barely fold in exactly the same way twice. One
reason for this is the low change of energy in a single step in
protein folding. In chemical reactions, each change of energy
is much larger than kT , so brownian motion doesn’t affect the
process very much. Since in protein folding, the changes of
energy are not much larger than kT , brownian motion has a
large influence on the variability of folding processes.

4.2 Energy landscapes are funnel-like
In reality, energy landscapes of protein folding can be

described as funnel-like. Concidering the simple mathemati-
cal model described in section 2.1, the corresponding energy
landscape looks like the one in figure 4. Each step towards
the native state (so changing a bond from incorrect to correct)
leads to a slightly smaller energy. Therefore, the native state
can be reached in biologically significant times. But as the

Fig. 4. A funnel-like energy landscape [2]

model in 2.1 is highly simplified, so is the energy landscape
in figure 4. A more realistic landscape is shown in figure
5. This energy landscape contains a global energy minimum
which is the native state. But is also consists of local min-
ima, energy barriers and flat areas. This complexity is due to
the complexity of the folding process with its many degrees
of freedom.



Fig. 5. A more realistic, bumpy funnel-like energy landscape [2]

4.3 Dimensionality reduction
An important step in producing energy landscapes is

the reduction of dimensions. For a protein of N atoms, there
are 3N cartesian coordinates, N− 1 bond stretch vibrations,
N − 2 bend vibrations or N − 3 dihedral angles. The data
obtained by computational modelling can be expressed in
these coordinates. It is difficult to interpret data in these
high-dimensional spaces which makes a reduction necessary.
One possibility is to define a single reaction coordinate such
as the number of native contacts, the radius of gyration or
the root mean square distance from the native structure. For
the model in section 2.1, the number of correct bonds would
be an obvious choice. Some of these natural coordinates can
also be obtained from experiments. Nevertheless, in using
just a single coordinate, a good part of information is not
used.
This is why it is usually tried to reduce the large number
of dimensions to just as many dimensions as necessary
to describe the main features of the folding. There are
many problems that can occur during the reduction process.
For example, connectivities between energy minima can
easily get lost. In the following, the focus is on a problem
described in [4], that occurs when cartesian coordinates are
used in large molecules.
Generally, there are many ways to chose the ’important’
dimensions to be kept. Here, the dimensions are reduced
via principal component analysis (PCA), where a basis
transformation via diagonalization of the covariance matrix
σi j is performed. This projects the data into the direction of
the greatest variance while the first principal components
carry the most variance.
In a cartesian coordinate PCA, first it is necessary to
separate overall and internal motion. Therefore, the center
of coordinate system is set to the proteins center of mass
∑i mi~ri = 0. The atomic velocities are decomposed via
~vi = ~ui +~ω×~ri into a vibrational and an angular part. This
leads to the kinetic energy

T =
1
2

N

∑
i=1

mi

(
~u2

i +(~ω×~ri)
2 +~ω(~ri×~ui)

)
= TV +TR +TRV .

To get rid of the rotational part of T , the overall motion gets
removed via ~r′i = R~ri, by minimizing ∑

N
i=1 mi(~r′i−~̄ri)

2 with
respect to a reference structure ~̄r, which can be any state of
the protein but is usually chosen as the native state obtained
by simulation or experiment.
This procedure works well if observing small rigid struc-
tures. For larger molecules as proteins, the overall motion
is barely seperated as shown later.
Alternatively, [4] suggests the use of internal coordinates
such as dihedral angles φn. Since these are circular coor-
dinates, they first get transformed into linear ones via

q2n−1 = cosφn

q2n = sinφn

which doubles the number of coordinates.
On the transformed cartesian or internal coordinates, a PCA
can now be performed. The result of both methods when
performed on the folding of the villin headpiece is shown in
figure 6. It can be seen that the PCA on internal coordinates
show much more minima and energy barriers that are not
resolved in the PCA on cartesian coordinates. This is due to
the fact, that the internal motion is not properly removed for
the cartesian coordinate PCA.

Fig. 6. Free Energy landscape of the folding of the villin headpiece
HP35 obtained from a PCA using a) internal coordinates and b)
cartesian coordinates [4]

5 Summary
Protein folding is a very complex process which plays an

important role in biology. It has been shown that the problem
of Levinthals paradox can be resolved by considering an en-
ergy penalty for incorrect bonds. This turns an unguided ran-
dom search into a directed search, which can be described by
an energy landscape. Energy landscapes describe the fold-
ing process in an illustrative way which allows interpretation.
Different kinds of energy landscapes have been discussed. It
has been shown that it is important not to lose information
during the production of energy landscapes.



References
[1] K. A. Dill. Polymer principles and protein folding. Pro-

tein Science, 8:1166–1180, 1999.
[2] K. A. Dill and H.S. Chan. From levinthal to pathways

to funnels: The ”new view” of protein folding kinetics.
Nature Structural Biology, 4:10–19, 1999.

[3] K. A. Dill and J. L. MacCallum. The protein folding
problem, 50 years on. Science, 338:1042–1046, 2012.

[4] A. Jain F. Sittel and G. Stock. Principal component anal-
ysis of molecular dynamics: On the use of cartesian vs.
internal coordinates. J. Chem. Phys., 141:014111, 2014.

[5] A. Szabo R. Zwanzig and B. Bagchi. Levinthal’s para-
dox. Proceedings of the National Academy of Sciences
of the United States of America, 89:20–22, 1992.


