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Abstract
In this overview, we discuss theoretical and experimental aspects of nonlinear
two-dimensional infrared (2D-IR) spectroscopy. With this technique both
peptide conformation and conformational flexibility can be probed. The
quantitative relation between the experimental 2D-IR spectrum and the peptide
conformation is discussed, and examples of how the conformation of a peptide
and the timescale of its fluctuations are derived from its (time-resolved) 2D
spectrum are presented.
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1. Introduction

Knowledge of the conformations and conformational dynamics of proteins and peptides is
essential for understanding their biological functionality. At present, the two most important
methods for determining biomolecular conformations are x-ray diffraction (XRD) and nuclear
magnetic resonance (NMR) spectroscopy. With x-ray diffraction, the molecular conformation
as it occurs in the crystalline phase can be determined with very high spatial resolution. Great
progress has been achieved in developing time-resolved x-ray diffraction techniques [1–5],
allowing one to directly follow structural changes during photochemical reactions in the
crystal environment. In principle, there is no limit to the time resolution of this approach,
but due to technical restraints the time resolution is currently limited to a few 100 ps in most
published works. In the solution phase, the most powerful technique for elucidating protein
and peptide conformations is NMR spectroscopy [6–8]. The most elementary techniques
measure the through-bond scalar couplings between proton spins, from which approximate
values for the φ dihedral angles of the peptide or protein under study can be obtained, and
the nuclear Overhauser effect (NOE), which is used to detect through-space dipolar couplings,
and from which distances between spins are estimated. The resulting information, together
with knowledge of the backbone composition, is generally sufficient to derive the molecular
conformation. The through-bond and through-space couplings are usually obtained from two-
dimensional NMR spectra, in which the coupling strengths can be read off as the intensity of
the off-diagonal peaks [9].

Dynamical changes in the conformation can also be studied with NMR spectroscopy.
If the dynamical process is sufficiently slow, the evolution can be followed by measuring
NMR spectra in real time [10]. The time resolution achievable in this way will be limited, and
although millisecond time resolution has been obtained by combining stopped-flow techniques
with NMR [11, 12], it is clear that in general the dynamics should take place on a timescale
slow compared to the NMR measurement in order to be observable in real time.

Faster conformational dynamics can be probed indirectly through the spin relaxation
processes to which they give rise. Fluctuations in the conformation cause fluctuations in
the spin–spin couplings, and hence give rise to different types (NOE cross relaxation, T1) of
relaxation phenomena. The relaxation parameters are related to the spectral density of the
conformational fluctuations of the degree of freedom modulating the spin–spin coupling. By
measuring the relaxation rates, one obtains the spectral density at the (difference and sum)
frequencies of the spin transitions [13]. By varying the external magnetic field strength, one
can vary these frequencies, and hence the spectral density of the fluctuations can, in principle,
be probed continuously in the accessible frequency range [14]. This range extends to about
1 GHz, corresponding to timescales of 1 ns and slower.

However, in many biomolecular systems a significant part of the dynamics takes place
on much faster timescales. An important case are small peptides in solution, which are very
flexible, and which strongly interact with the solvent. Such small peptides are considered good
model systems for investigating the elementary steps of protein folding (for instance, α-helix
formation). Part of the dynamics of these molecules occurs on a (sub)picosecond timescale,
which is difficult to access with NMR. It is still possible to derive picosecond time constants
from NMR relaxation measurements by fitting correlation functions to the observed spectral
densities, but since the experimentally accessible frequencies (<1 GHz) are so low compared
to the time constants obtained in this way, the values of the latter depend critically on the
functional form assumed for the correlation function [13, 14], and hence should be interpreted
with caution. Faster (subpicosecond) fluctuations can essentially not be observed at all with
NMR.
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Recent work [15–36] has shown that two-dimensional infrared (2D-IR) might be a valuable
experimental complement to 2D-NMR for studying fast conformational dynamics. The idea of
2D-IR spectroscopy is to apply the conceptual framework of 2D-NMR to nonlinear excitations
of infrared (vibrational) transitions instead of spin transitions. The nuclear spins are replaced by
the amide I vibrational modes (which consist mainly of C=O stretching of the peptide-linkage
groups); the RF pulses are replaced by (sub)picosecond IR pulses; the spin–spin couplings
by the couplings between the amide I modes, which are, to a large extent, electrostatic, and
depend strongly on the distance and orientation of the transition dipoles. The above-mentioned
NMR methods can more or less be mapped onto 2D-IR, but with two important differences.
First, the timescale of the experiment is less than a picosecond; hence, real-time measurements
(e.g. measuring 2D-IR spectra after optically triggering a change in the conformation) can be
performed with picosecond time resolution. Second, the frequency splittings between amide I
modes are of the order of 10–100 cm−1, so in relaxation (NOE-type) measurements, the spectral
density of the fluctuations will be sampled at timescales of 0.1–1 ps.

Another aspect, also related to the different timescale of both techniques, is the capability
of 2D-IR spectroscopy to observe conformational sub-states of a peptide. The major degrees
of freedom of the polypeptide chain are the (φ,ψ) dihedral angles of the two σ -bonds of
each amino acid, which can rotate almost freely. A complex balance of forces results in two
dominant free energy minima within the (φ,ψ) configuration space, corresponding to the
two most important secondary structure motifs, α-helices and β-sheets. The almost equal
depth of these free energy minima gives rise to the tremendous structural diversity we observe
in proteins. However, in the case of small peptides, one expects to obtain a distribution
of conformations owing to the shallow free energy potential surface, since intramolecular
hydrogen bonds, that stabilize secondary structures, are generally missing in these small
systems. Since conformational jumps between conformational sub-states occur many times
on the NMR timescale (1–100 ms), NMR techniques probe the time-averaged conformation,
which does not necessarily coincide with any of the conformational sub-states. This problem
is one reason for a lack of reliable information on the conformation of protein building blocks.
The IR timescale (1 ps), on the other hand, is sufficiently fast to freeze conformational states
and potentially separate them.

In this paper, we intend to give an overview of the potential of 2D-IR spectroscopy to
study conformation and conformational dynamics of small peptides in solution, focusing
mainly on our recent work in this direction. The paper is organized as follows. First
(section 2), the principles of the method are discussed: in particular, how the couplings between
amide I modes can be determined, and how these couplings are quantitatively related to the
secondary peptide structure. We end this section with a comparison between the different
experimental implementations of 2D-IR spectroscopy (time and frequency domain), showing
their equivalence. We then demonstrate how the conformation of a small peptide can be
derived from its 2D-IR spectrum (section 3.1), and how time-resolved 2D-IR spectroscopy can
be used to investigate conformational fluctuations (sections 3.2 and 3.3). We conclude with
a comparison between 2D-IR and other vibrational spectroscopic methods (section 4) and a
discussion of future prospects (section 5).

2. Principle of 2D-IR spectroscopy of peptides

To demonstrate the principle of 2D-IR spectroscopy, we show in figure 1 the 2D-IR spectrum
of a model system of two coupled vibrators, together with the linear (1D) IR spectrum (above
and on the left). For each resonance of the system, a signal consisting of a negative (depicted in
blue) and a positive (depicted in red) peak appears along the diagonal of the 2D-IR spectrum.
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The structure-related information is in the off-diagonal signals, which also consist of a positive
and a negative peak. Exactly as in 2D-NMR spectroscopy [9], these cross peaks appear only
when the corresponding resonances at the diagonal are coupled, and from the amplitude of
the cross peaks the strength of the coupling can be deduced. Since the coupling strengths are
determined by the geometry of the peptide chain, 2D-IR spectroscopy can be used to determine
the backbone conformation of small peptides in a similar way to 2D-NMR.

In the remainder of this section, we will first discuss the Hamiltonian used to describe the
2D-IR response, and we will show that 2D-IR spectroscopy directly measures the couplings
between the amide I modes in a peptide (section 2.1). A very important property of 2D-IR
spectroscopy is the intuitive picture it may provide in directly connecting the spectrum to certain
elements of the coupling Hamiltonian (see figure 1). In certain limits, this remains true even
when considering the time dependence of the coupling Hamiltonian caused by fluctuations of
the surrounding solvent and the molecule itself (section 2.2).

2.1. The static coupling Hamiltonian

The model Hamiltonian used to calculate figure 1 is based on the picture of vibrational excitonic
states (vibrons) to describe the nonlinear response of the amide I band. This model separates off
the amide I manifold of states from all other vibrational degrees of freedom of the molecule [37–
39] and describes the coupling between various amide I modes using the Frenkel-exciton
Hamiltonian [40]:

H =
∑

i

εi b
†
i bi +

∑
i< j

βi j(b
†
i b j + b†

j bi). (1)

Here, b†
i and bi are the creation and annihilation operators of individual peptide units (sites),

respectively, which in the harmonic case would obey the commutation relations

[b†
i , b j ] = δi j

[b†
i , b†

j ] = 0.
(2)

The εi are the intrinsic excitation energies of the individual sites, and the βi j are the couplings
between sites. Owing to its simple and physically very intuitive picture, the exciton model is
now commonly used to interpret 2D-IR experiments [15–33].

The traditional, and by far more common, picture, however, to describe molecular
vibrations is that of normal modes [41, 42]. It had initially been used by Tokmakoff and
co-workers to interpret 2D-IR experiments on a metal–carbonyl compound [34–36]. The
exciton picture and the normal-mode picture are identical (in certain limits), and merely use
different languages. Below, we shall review the connection between the two points of view.
In both cases, we describe the amide I band as coupled, weakly anharmonic oscillators. The
coupling is assumed to be bilinear (linear in the displacements of each of the two coupled
modes).

We start by noting that the anharmonicity of the amide I band is a weak effect: the
difference � between the v = 0 → 1 absorption frequency and the 1 → 2 absorption
frequency of the amide I mode is 16 cm−1 [15], and �/ω is only 1%. Nevertheless, since
the nonlinear response of a harmonic system vanishes exactly [43], the anharmonicity is an
essential condition for nonlinear vibrational spectroscopy (including 2D-IR) to be possible. It
may be pointed out that the two-level systems which are studied in 2D-NMR [9] and 2D-optical
spectroscopy [44–47] could be considered as systems with infinite anharmonicity (with the
‘v = 2’ state at infinite energy). An elegant way to continuously switch between both limits
has been given by Mukamel and co-workers using nonlinear exciton equations [28].
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Figure 1. Calculated 2D-IR spectrum of a system consisting of two coupled oscillators. Negative
signals (bleach and stimulated emission) are depicted in blue, while positive signals (excited state
absorption) are depicted in red. The linear IR spectrum is plotted above and on the left of the 2D
plot. The relation between the signals and the corresponding elements of the coupling Hamiltonian
equation (5) is depicted.

To illustrate the difference between coupled harmonic and anharmonic oscillators, we
discuss them separately.

2.1.1. Coupled harmonic oscillators. A system of coupled harmonic oscillators is described
by the Hamiltonian (1). It conserves the number of excitations and hence separates into blocks
of the ground state, the one-excitonic Hamiltonian H (0)

1 , the two-excitonic Hamiltonian H (0)

2 ,
etc. When ordering the site basis of a system of two peptide units as

{|0′, 0′〉, |1′, 0′〉, |0′, 1′〉, |2′, 0′〉, |0′, 2′〉, |1′, 1′〉}, (3)

where |m ′, n′〉 denotes the state in which the peptide units have m and n vibrational quanta,
respectively, and the prime denotes site-basis states, the harmonic Hamiltonian is

H (0) =




0
ε1 β12

β12 ε2

2ε1 0
√

2β12

0 2ε2

√
2β12√

2β12

√
2β12 ε1 + ε2




. (4)

Here, the zero-, one- and two-exciton manifolds have been separated by lines. In the
harmonic case, we know without explicit diagonalization of the harmonic two-excitonic
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Hamiltonian that its eigenstates (i.e. the two-excitonic states) are product states of the one-
excitonic states. In that sense, the one-exciton Hamiltonian:

H (0)

1 =
(

ε1 β12

β12 ε2

)
(5)

already contains all the physics of a harmonic system.
In the more traditional normal-mode picture, one would describe the nuclear potential

energy surface as a function of nuclear coordinates q1 and q2 (in the present case the amide I
displacements, which are assumed to be localized on the corresponding sites):

V (0)(q1, q2) = 1
2ε1q2

1 + 1
2ε2q2

2 + β12q1q2 (6)

with the bilinear coupling term β12q1q2. Diagonalization leads to delocalized normal modes.
Equations (1), (4) and (6) all describe the same physical situation, albeit in different languages.

2.1.2. Coupled anharmonic oscillators. As mentioned earlier, we have to include
anharmonicity in order to understand the nonlinear spectroscopic response of a system of
coupled oscillators. Anharmonicity is generally included in an ad hoc manner [15] by lowering
the site energies of the doubly excited site states by an energy � (see figure 2(b)):

H =




0
ε1 β12

β12 ε2

2ε1 − � 0
√

2β12

0 2ε2 − �
√

2β12√
2β12

√
2β12 ε1 + ε2




. (7)

The magnitude of the site anharmonicity � = 16 cm−1 has been determined from pump–probe
experiments on the amide I band of an isolated peptide unit (N-methyl acetamide) [15]. In the
weak-coupling limit β12 � |ε2 − ε1|, the two-excitonic states can still be identified as product
states of the one-excitonic states, lowered by diagonal and off-diagonal anharmonicity. The
latter can be calculated perturbatively [16, 18]:

x12 = 4�
β2

12

(ε2 − ε1)2
. (8)

This approach is equivalent to using a nuclear potential energy surface which includes higher
powers of the nuclear coordinates:

V (q1, q2) = 1
2ε1q2

1 + 1
2ε2q2

2 + +β12q1q2 + 1
6χ111q3

1 + 1
2χ222q3

2 + · · · . (9)

It is important to note that the anharmonic terms 1
6χiii q3

i are assumed to be localized on
individual sites, whereas terms such as 1

6 χii j q2
i q j with i �= j are neglected. This assumption

simply expresses that the C=O bond is a dissociative bond which is better described by a Morse
potential rather than by a harmonic potential. However, since the leading linear coupling term
βi j is already weak, we can safely neglect mixed anharmonic coupling terms such as χii j q2

i q j

with i �= j .
When the normal modes of the potential energy surface equation (9) are calculated by

diagonalization of the harmonic part V (0)(q1, q2) (equation (6)), the cubic (and higher-order)
terms lead to diagonal and off-diagonal anharmonicity xii and xi j , respectively. In this picture,
the vibrational energy of a molecule is expanded in powers of the excitation level ni of each
normal mode [41, 42]:

E =
∑

i

εi(ni + 1
2 ) −

∑
i� j

xi j(ni + 1
2 )(n j + 1

2 ) + · · · . (10)
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Figure 2. Level scheme of a system of two normal modes |1, 0〉 and |0, 1〉 in the normal mode
picture (a) and in the exciton picture (b). The double excited state, called overtones |2, 0〉 and |0, 2〉
and the combination mode |1, 1〉 in the normal mode picture (a) or the two-excitonic states in the
exciton picture (b), are lowered by the anharmonic constants xi j from the value one would obtain
in the harmonic limit. The arrows depict the harmonically allowed transitions with a colour coding
that is the same as in figure 1.

Perturbative equations to express the anharmonic constants xii and xi j in terms of a cubic and
quartic expansion of the nuclear potential surface have been worked out, e.g. in [48–51]. It is
easily seen that xi j = 0 when βi j = 0 (assuming χii j = 0 for all i �= j ). Furthermore, one can
show in a straightforward manner that the diagonal and off-diagonal anharmonicities obtained
from equation (9) are equal to the perturbative solution equation (8).

Figure 2 shows a level scheme for a system of two vibrational modes |1, 0〉 and |0, 1〉 in two
complementary representations, chosen to illustrate both points of view: (a) the normal mode
picture adapted from [34] and (b) the exciton picture adapted from [15]. The doubly excited
states are called overtones (|2, 0〉 and |0, 2〉) and combination mode (|1, 1〉) in the normal
mode picture, and two-exciton states in the excitonic picture, respectively. Their energies are
lowered by the anharmonic constants xi j from the value one would find in the harmonic limit.
The level scheme emphasizes that the shift between the negative bleach signal (depicted in
blue in figure 1) and the positive excited state absorption signal (depicted in red in figure 1)
directly represents the anharmonic constants xi j . Consider, for example, a pump frequency
resonant with the absorption line at ω1. In that case, the state |1, 0〉 will be populated and the
common ground state |0, 0〉 will be depleted. Consequently, a decrease in absorption (negative
signal) will be observed not only at frequency ω1, but also at frequency ω2 (corresponding
to the transition |0, 0〉 → |0, 1〉). In addition, an excited-state absorption signal will emerge
with frequency ω2 − x21, corresponding to the transition |1, 0〉 → |1, 1〉. The two signals
together result in the lower-right cross peak in figure 1. When the coupling β12 vanishes, the
off-diagonal anharmonicity x12 also vanishes. In that case, both signals contributing to the
cross peak appear at the same frequency and cancel exactly. Hence, the intensity of the cross
peak is a direct measure of the coupling β between two peptide units (see figure 1).

To summarize this paragraph, one would in principle need to know all the mixed cubic
and quartic derivatives of the molecular potential surface in order to exactly calculate the
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diagonal and off-diagonal anharmonicities [49–51], and hence the 2D-IR response. This is
an unfeasible task for a molecule as large as a peptide [52]. Nevertheless, the simplifying
assumption concerning the nuclear potential surface equation (9), namely the assumption of
only bilinear coupling and χii j = 0 for i �= j , allows one to use the exciton model as a much
simpler approach. The anharmonic one-exciton Hamiltonian is the same as in the harmonic
case (equation (5)), and the only additional parameter is the diagonal anharmonicity �, which
enters only into the two-exciton Hamiltonian. As it reflects a property of the individual peptide
units, one can safely assume that this parameter is a constant which does not depend on the
geometry of the peptide backbone. In other words, the one-exciton Hamiltonian (5) describes
all the physics of the coupling between different amide I states, which is directly related to the
geometry of the molecule (see the next subsection). Only one additional parameter (�) enters
to describe the anharmonicity of the system, which is needed to relate the excitonic coupling
scheme to nonlinear IR spectroscopy. This renders the exciton coupling model a simple and
powerful way of describing 2D-IR spectroscopy of (poly)peptides.

It is instructive to discuss this point from yet another perspective. As long as only the
harmonic Hamiltonian equation (4) is considered, the coupling β12, defined in the site basis,
appears to be artificial since if one were to transform the Hamiltonian equation (4) into a normal
mode basis by diagonalizing it, any coupling would vanish. In other words, the coupling β12

appears to be the result of a wrong choice of the basis set. Hence, the question arises as to which
property distinguishes the site basis. The answer is the localized anharmonicity described by
terms 1

6χiii q3
i in equation (9), which expresses that the C=O bond is dissociative. While

we can understand coupling already in the harmonic limit, the anharmonicity is required
for an observable signal in the nonlinear third-order spectroscopic experiment, from which
the magnitude of the coupling can be derived. However, anharmonicity does not add any
complexity to the problem, since all physics of the system is already contained in the one-
exciton Hamiltonian equation (5).

2.1.3. Coupling models. Up to this point, we have discussed the principle of 2D-IR
spectroscopy without specifying the origin of the coupling βi j . In all practical applications,
2D-IR spectroscopy relies on the fact that the coupling between adjacent amide I modes is in
some way related to the geometry of the molecule. The simplest and very intuitive approach
to relate the coupling constant to the peptide geometry is the transition dipole coupling (TDC)
model introduced by Krimm et al [53] and Torii et al [37], which is based on two crude
approximations: (a) the dipole approximation and (b) neglect of through-bond effects. It is
well established that the amide I vibration (which is mostly the C=O stretching vibration)
is accompanied by a charge flow between the carbonyl oxygen and the nitrogen, which is
responsible for about 1/2 of the total transition dipole moment of the amide I mode [53]. Hence,
the size of the object (2.5 Å) which gives rise to the transition dipole is of the same order as
the distance between adjacent amide I groups. As a consequence, it is extremely questionable
whether the dipole approximation can be used. Furthermore, normal mode calculations on
N-methylacetamide (NMA, CH3–CONH–CH3) show that the amide I vibration is not entirely
localized on the peptide unit (–CO–NH–) and that methyl carbon and hydrogen atoms are
involved as well [16]. Hence, through-bond effects will certainly contribute to the coupling
between chemically bonded peptide units.

The most sophisticated way of calculating couplings between amide I modes would
be from ab initio normal mode calculations of the complete polypeptide. With the present
computer power, this is feasible only for extremely small peptides, such as di- and tripeptides,
but becomes impossible for larger polypeptides. Moreover, a structure determination will
require some sort of optimization algorithm, which iteratively varies the conformation of a
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test molecule, calculates a set of coupling constants for each configuration and compares
them with the experimental data. Since this will be a high-dimensional optimization problem
(except for the smallest peptides) it will require many calculations of coupling constants,
and it is necessary to seek for the least computer-expensive, but still sufficiently accurate,
methods to calculate a set of coupling constants for a given conformation. We have recently
compared several approaches to calculate vibrational coupling constants: TDC, transition
charge coupling, molecular orbital calculations and ab initio normal mode calculations [54].
These methods are increasingly sophisticated and (hopefully) accurate, but also increasingly
computer-expensive. It turns out that the dipole approximation is too crude to be useful
when aiming for quantitative results. The accuracy of higher level methods depends on the
conformational region under study. As long as only a two-dimensional (φ,ψ) conformational
space is to be explored, it is still feasible to assemble a map using ab initio normal mode
calculations (about 1 CPU-day for each point with present computer power), which takes into
account all through-space and through-bond effects. Such a map can easily be parametrized.
However, for a larger than two-dimensional configurational space, i.e. for larger peptides,
this approach becomes impossible. Hence, a mixed strategy is proposed: nearest-neighbour
coupling, for which through-bond effects are essential, should be calculated on the highest
available level, using a pre-parametrized map. For peptide units that come close in space, but
that are not adjacent in the polypeptide chain, through-bond effects are certainly much less
important and cheaper methods, such as the approach using transition charges, can be used.

2.2. The time-dependent coupling Hamiltonian

In solution, the molecule will be in a fluctuating environment, and the coupling Hamiltonian
equation (1) will be time dependent:

H (t) =
(

ε1(t) β12(t)
β12(t) ε2(t)

)
≡

(
ε1 + δε1(t) β12 + δβ12(t)

β12 + δβ12(t) ε2 + δε2(t)

)
(11)

where δε1(t), δε2(t) and δβ12(t) are the instantaneous deviations of the site energies and
couplings from their time-average values ε1, ε2 and β12 with vanishing time average 〈δε1(t)〉 =
0, 〈δε2(t)〉 = 0 and 〈δβ12(t)〉 = 0. While evaluation of this expression becomes quite involved
in the general case [29], it still decouples into simple and very intuitive terms in the weak
coupling limit β12 � |ε2 −ε1|. To this end, we diagonalize the Hamiltonian equation (11) with
respect to its time average part up to first order of the mixing angle (the smallness parameter):

φ ≈ β12

ε2 − ε1
(12)

and obtain

H ′(t) = Hstat + H (0)

dyn(t) + H (1)

dyn(t) + · · · (13)

with

Hstat =
(

ε1 − 2φ · β12 0
0 ε2 + 2φ · β12

)

H (0)

dyn(t) =
(

δε1(t) δβ12(t)
δβ12(t) δε2(t)

)

H (1)

dyn(t) =
( −2φ · δβ12(t) φ · δ�ε(t)

φ · δ�ε(t) 2φ · δβ12(t)

)
(14)

and δ�ε(t) = δε1(t) − δε2(t). The first term Hstat is the static contribution which is diagonal
by construction, the second term H (0)

dyn(t) is zero order in the mixing angle φ and the third term



R1044 Topical Review

is H (1)

dyn(t) first order in the mixing angle φ. The time averages 〈H (0)

dyn(t)〉 = 0 and 〈H (1)

dyn(t)〉 = 0
vanish.

To zeroth order of φ = β12/(ε2 − ε1), the time dependence of the coupling Hamiltonian
separates completely, leading to the simple picture sketched in figure 1. The time dependence
of the diagonal peaks (dephasing and spectral diffusion) is governed solely by fluctuations
of the diagonal elements δε1(t) and δε1(t), while the time dependence of the cross peaks
(cross relaxation) is exclusively governed by fluctuations of the off-diagonal elements δβ12(t).
This is the level of theory which is generally sufficient in NMR spectroscopy [8]. It is not
immediately obvious that it is also sufficient in the case of vibrational transitions, since typically
the mixing angles are larger. However, it has been verified using MD simulations [22, 23] that
the first-order term H (1)

dyn(t) contributes only little in the example considered in section 3. When
higher-order terms become important, fluctuations of diagonal terms start to contribute to the
time dependence of the cross peaks and vice versa through the term H (1)

dyn(t).

2.2.1. Dephasing and spectral diffusion. Within the zeroth-order approximation described
above, the lineshape function of each diagonal peak in the 2D spectrum can be treated as
if it were a separated (uncoupled) state. To this end, we use the Kubo picture of stochastic
fluctuations of the transition frequency as a result of perturbations by a fluctuating surrounding
(which can be inter- or intramolecular degrees of freedom) [55]. In this approach, both linear
and nonlinear spectroscopy are described in terms of the frequency fluctuation autocorrelation
function〈δεi(t)δεi (0)〉 (i = 1, 2). Employing time-dependent perturbation theory, the linear
absorption spectrum can then be written as

I (ω) = Re
∫ ∞

0
dt e−i(ω−ε/h̄)te−g(t)−t/2T1 , (15)

where the v = 0 → 1 transition is determined by the lineshape function

g(t) =
∫ t

0
dτ ′

∫ τ ′

0
dτ ′′ 〈δεi (τ

′′)δεi (0)〉, (16)

as well as by the vibrational energy relaxation time T1. Within the limits of the second-order
cumulant expansion, the formulation is readily extended to calculate the third-order nonlinear
response functions R(t1, t2, t3) [18, 43, 56], which yield the 2D lineshape after convolution
with the pulse envelopes [23, 45, 47, 57, 58]:

P(3)(t) =
∫ ∞

0
dt3

∫ ∞

0
dt2

∫ ∞

0
dt1 R(t1, t2, t3)E3(t − t3)E2(t − t3 − t2)E∗

1(t − t3 − t2 − t1)

(17)

where E1, E2 and E3 are the incident laser fields for the particular experimental configuration
chosen (see section 2.3).

One commonly finds that the frequency fluctuation correlation function decays on (at
least) two timescales [59]: (i) An ultrafast, inertial component on a 50–100 fs timescale
and (ii) a slower, diffusion-controlled component. In the case of vibrational transitions, the
ultrafast component is typically in the motional narrowing limit, i.e. its correlation time τc

is much faster than the effective dephasing time T ∗
2 [18, 56]. In that limit, its timescale

is not directly observable since it is hidden underneath the homogeneous linewidth of the
transition (note that this an intrinsic limitation and is not due to the time resolution of the
laser system). Only the pure dephasing time can be determined, which is calculated as
T ∗

2 = 〈�2〉 · τc, where � is the amplitude of the fast component. The slower process, however,
is directly observable as a change of the tilt of the 2D line with increasing mixing time τm (see
section 3.3) [23, 45, 47, 57, 58].
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2.2.2. Cross relaxation. In zeroth order of the mixing angle φ = β12/�ε, fluctuation of
off-diagonal elements δβ12 lead to irreversible cross relaxation of population between the two
eigenstates of Hamiltonian Hstat (equation 14) with increasing mixing time τm . Its rate is
determined by Fermi’s golden rule [8]:

k = 1

h̄2

∫ ∞

−∞
〈δβ12(t)δβ12(0)〉ei�ε t/h̄ dt (18)

which depends solely on fluctuations of the coupling δβ12(t). When the first-order term H (1)

dyn(t)
becomes important, the correlation function 〈δ�ε(t)δ�ε(0)〉 and the cross-correlation function
〈δβ12(t)δ�ε(0)〉 may also contribute to cross relaxation [22].

2.3. Experimental methods

A variety of 2D vibrational spectroscopies have been proposed theoretically [33, 60–62]
and implemented experimentally [63–68]. Many of these techniques are based on Raman
transitions and utilize ultrashort optical pulses for impulsive excitation, where at least one field
interaction induces a two-quantum transition. This explains why the nonlinear response of these
techniques is inherently very weak, and why these experiments are extremely challenging.
Here, we concentrate on 2D vibrational spectroscopies utilizing resonant, semi-impulsive
excitation with infrared pulses [15–36], which implies that all transitions involved are one-
quantum transitions (see figure 2). The same concept has also been applied to electronic
transitions by the Jonas group [44–47].

Two experimental techniques have been utilized to measure such 2D-IR spectra: double-
resonance or dynamic hole burning experiments [15, 16, 19–24] and pulsed Fourier transform
or heterodyne detected photon echo experiments [25–27, 34–36]. The former is a quasi-
frequency domain technique (quasi-frequency domain technique in the sense that the pump
pulse is spectrally selective, but still relatively short, and offers significant time resolution),
while the latter is a pure time-domain technique. The two techniques are complementary [69]
and provide specific advantages and disadvantages, which shall be discussed in the following.
Figures 3(a) and (b) shows the principle of the set-ups of both techniques and the pulse sequence
in the sample.

2.3.1. Double-resonance experiment. The double-resonance experiment is essentially a
conventional pump–probe experiment. One starts from an intense, ultrashort (typically 100 fs)
IR laser pulse [70], the bandwidth of which (≈200 cm−1) covers the whole spectral range
of interest. The pulse is split into pump and probe beam, one of which passes a computer
controlled delay line (i.e. the mixing time τm), and both are spatially recombined in the sample.
The probe beam is subsequently frequency dispersed in a spectrometer and detected in an IR
array detector. What differentiates the double-resonance experiment from a conventional
pump–probe experiment is the adjustable Fabry–Perot filter which the pump beam passes
before hitting the sample. It consist of two partial reflectors separated by a distance which
is regulated by a feedback-controlled piezoelectric mount, and slices out narrow-band pump
pulses (bandwidth 11 cm−1, FWHM ∼750 fs), the centre frequency of which can be varied
by adjusting the Fabry–Perot filter. In this way, two frequency axes are defined, the centre
frequency of the pump pulse and the probe frequency. These are the frequency axes used in
the 2D representation of figure 1. In other words, the two-dimensional (2D) plots are stacks
of transient spectra, each horizontal cross section representing a transient absorption spectrum
obtained by pumping at the frequency on the vertical axis. In the 2D spectra one observes
the bleach and stimulated emission of the v = 0 → 1 amide I transition as the negative
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Figure 3. Set-up for (a) a double-resonance experiment and (b) a pulsed Fourier transform
experiment. Pulse sequence used in both experiments in (c + d) time domain and in (e + f)
frequency domain.

(blue) signal and the v = 1 → 2 excited-state absorption as the positive (red) signal, the
latter occurring at a lower frequency because of the anharmonicity of the amide I mode. As
discussed above, the level scheme, figure 2, gives an intuitive explanation for the appearance
of the double-resonance 2D-IR spectrum.

2.3.2. Pulsed Fourier transform experiments. The pulsed Fourier transform experiment (or
heterodyne-detected photon echo experiment) starts from a conventional three-pulse photon
echo experiment [56, 59, 71–76], in which three pulses are directed onto the sample with the
delay times between the pulses varied by computer-controlled delay lines. One typically uses
the so-called box CARS configuration [77], which allows one to separate the phase matching
directions of all ingoing (k1, k2 and k3) and outgoing (−k1 + k2 + k3 and +k1 − k2 + k3) beams.
In a next step, the generated third-order field is 2D-Fourier transformed with respect to times
t1 and t3 (see figure 3(d)), generating a 2D-IR spectrum as a function of two frequencies
ω1 and ω3 [25–27, 34–36]. In order to be able to do so, one needs to know the third-order
electric field, rather than the time-integrated intensity, which is what ‘normal’ optical detectors
measure. The field is obtained by interferometric superposition of the generated third-order
field and a so-called local oscillator field (heterodyning), for which a fourth replica of the
initial ultrashort laser pulse is used. The delay times t1 between the first and second field
interaction and t3 between the generated third-order field and the local oscillator have to be
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Figure 4. Pulsed Fourier transform 2D-IR spectrum of the symmetric and asymmetric C + O
stretch vibrations of dicarbonylacetylacetonato rhodium (I) (RDC) dissolved in hexane. Adapted
from [34].

phase-stabilized. Fortunately, the large wavelength of the IR light gives rise to the hope that
one can rely on the mechanical stability of the set-up without active stabilization of the field
phases. A promising approach to significantly improve phase stability, based on diffractive
optics, has been proposed and implemented by Miller and co-workers [78, 79]

Despite the apparent differences in the measuring techniques, the resulting 2D-IR spectra
are remarkably similar. This is seen, for example, when comparing figure 1, calculated for the
double-resonance experiment, and figure 4, which is a pulsed Fourier transform 2D-IR spec-
trum of the symmetric and asymmetric C=O stretch vibrations of dicarbonylacetylacetonato
rhodium (I) (RDC) dissolved in hexane (adapted from [34] and kindly provided to us by Andrei
Tokmakoff). This system has sufficiently narrow absorption bands that all transitions in the 2D
spectrum are separately observable. As in figure 1, the separation between both contributions
to each diagonal and off-diagonal peak directly represents diagonal and off-diagonal anhar-
monicities 2xii and xi j , respectively, which are well known for this molecule (note that the x
and y axes are interchanged in figures 1 and 4). In fact, Tokmakoff and co-workers have used
the double-resonance picture, to discuss a pulsed Fourier transform 2D-IR spectrum [34–36].

The similarity between the two types of experiment is no coincidence. Both experiments
probe the same third-order response function R(t1, t2, t3), which is the property that describes
the system, and differ only in the way the laser fields E1, E2, and E3 read out that response
function through equation (17) (see, e.g., [18, 43]). In fact, the quasi-frequency-domain
experiment (i.e. the double-resonance experiment) and the time-domain experiment (i.e. the
heterodyned photon echo experiment) are connected by straightforward Fourier transformation.
In simple words, in the first case the Fourier transformation is performed by the Fabry–Perot
filter and the spectrometer, whereas in the second case it is performed numerically in the
computer. In fact, the Fourier transformation with respect to time t3 has also been performed
in a spectrometer in pulsed Fourier transform experiments [34–36, 44, 45, 80]. The only
difference between both experimental techniques therefore relates to time t1 and the first two
field interactions.

Figures 3(c) and (d) compare the pulse sequences in the sample generated by both
techniques in the time domain. The pulsed Fourier transform experiment uses two separate
pulses for the first two field interactions. Both the delay time and relative phase between
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these two pulses have to be controlled in the experiment. In contrast, the double-resonance
experiment uses a multiple pulse sequence for the first two field interactions, namely the
output of the Fabry–Perot filter. The sequence of pulses replaces the scanning of the delay
time between the first two field interactions. The relative phase of the pulses in the sequence,
on the other hand, is controlled by fine-tuning the distance between the Fabry–Perot mirrors.

In the frequency domain, the multiple sequence of pulses in the double-resonance ex-
periment corresponds to a relatively narrow pump pulse which selectively excites individual
transitions (figure 3(e)). Spectral interference of the first pair of pulses in the pulsed Fourier
transform experiment, on the other hand, corresponds to an excitation spectrum which has
a sinusoidal shape, with a period determined by the time delay between the two pulses (fig-
ure 3(f)), and which possibly excites more than one transition (depending on the period of the
sinusoidal spectrum). Since the subsequent probe process by the third field interaction, which
is identical in both approaches, is linear in the non-equilibrium density matrix generated by
the first two field interactions, the sinusoidal excitation spectrum will generate a linear su-
perposition of signals. This is why it makes no difference whether one performs the Fourier
transform with respect to time t1 before interaction with the sample, i.e. in the Fabry–Perot
filter, or afterwards in the computer.

It should, however, be noted that there are indeed conceptual differences between both
types of experiments, which are based on the fact that one has independent control over the
parameters of all three field interactions in the three-pulse photon echo experiment, while the
first two field interactions in the double-resonance experiment originate from one laser beam
with necessarily the same parameters. This advantage has recently been demonstrated very
elegantly by Hochstrasser and co-workers, who showed that, by independent control of the
polarization of all three laser beams, one can directly suppress the often dominating diagonal
contribution in a 2D-IR spectrum [27] (see section 3.1).

Furthermore, the three-pulse photon echo experiment allows one to discriminate between
different Liouville pathways, namely those emitting in the −k1 + k2 + k3 and +k1 − k2 + k3

directions [43]. Since the first two field interactions in the double-resonance experiment
originate from one laser pulse, both time orderings −k1 + k2 + k3 and +k1 − k2 + k3 occur
simultaneously. Interestingly, it has been argued that the direct analogue to 2D-NOESY
spectroscopy in NMR [9] should use a sum of both time orderings [31, 46], which is already
implicitly done in the double-resonance experiment.

To conclude this section, the pulsed Fourier transform experiment offers conceptual
advantages at the expense of a much more complex, and much more sensitive, experimental
set-up (see figures 3(a) and (b)). Only two instead of four laser pulses are needed in the double-
resonance experiment, with no need of phase stabilization. Furthermore, the double-resonance
experiment allows one to exclusively measure the response for one particular pump frequency
(i.e. a horizontal cut through the 2D spectrum of figure 1), enabling a longer averaging time and
hence a better signal-to-noise ratio. We use this advantage in section 3.2, where population
transfer between two amide I modes is measured for long mixing times with exceptionally
small signals. In a pulsed Fourier transform experiment, on the other hand, such a cut through
the 2D spectrum would still require a complete t1 data set to be measured in order to perform
the 2D-Fourier transform.

3. Structure and dynamics of trialanine

We now demonstrate how the conformation and conformational flexibility of a small peptide
can be determined from its 2D-IR spectrum [19, 20, 22, 23], based on the concepts outlined in
section 2. For the sake of simplicity, we focus on a system with only two amide I modes. We
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have chosen trialanine (see figure 5), since vibrational circular dichroism (VCD) studies [81–
83] have suggested that this peptide has a stable conformation in aqueous solution. Since
trialanine has only two peptide units, the central backbone conformation is characterized by
only a single pair of dihedral angles (φ,ψ) (see figure 5). These determine the coupling
strength β12 between the two amide I oscillators and the angle θ between their transition
dipole vectors.

In the remainder of this section, we first discuss the structural preference of trialanine as
obtained from the time-independent 2D-IR spectrum by evaluating the cross peak intensity
and anisotropy (section 3.1). In a second step, the time evolution of the 2D-IR spectrum
is investigated by additionally varying the mixing time τm . As emphasized in section 2.2,
fluctuations of the diagonal and off-diagonal elements of the coupling Hamiltonian lead to
separable time dependence of off-diagonal and diagonal peaks in the 2D-IR spectrum. These
will be discussed in sections 3.2 and 3.3, respectively.

3.1. Time-averaged structure

Figure 6(a) shows the linear absorption spectrum of deuterated trialanine in D2O. It shows two
amide I bands, centred at approximately 1650 and 1675 cm−1 [81]. Figures 6(b) and (c) show
the 2D pump–probe signal for parallel and perpendicularly polarized pump and probe pulses,
respectively. At the diagonal of the 2D spectrum one observes the bleach and stimulated
emission for each of the two amide I bands as the negative (blue) signal, and the excited-state
absorption as the positive (red) signal at lower probe frequency. The pump–probe signal is
elongated parallel to the diagonal, indicating that the amide I bands are inhomogeneously
broadened [45, 58].

At first sight, no cross peak structure can be distinguished in the 2D spectra,mainly because
the cross peaks overlap with the very strong and broad diagonal peaks. Overlap between
diagonal and cross peaks is a problem intrinsic to 2D vibrational spectroscopy on peptides,
and is due to the fact that the difference between the uncoupled amide I frequencies is of the
same order as the coupling strength and the linewidth. The overlap can be strongly reduced by
increasing the separation between the amide I frequencies using 13C isotope labelling of one
of the peptide units. The result is seen in figure 8(b), where the cross peaks are well separated
from the diagonal peaks. This figure should be compared to figure 1 (see section 2.1 for the
doublet structure of the cross peaks).

Since the intensity of the cross peaks scales quadratically with the frequency splitting
(see equation (8)), its value is much more difficult to determine for the isotope-labelled than
for the unlabelled molecule. Fortunately, for unlabelled trialanine the cross peaks can also
be separated from the strong diagonal signal by exploiting their dependence on the relative
polarizations of the pump and probe pulses. The pumped and probed transition dipoles giving
rise to the cross-peak signal are, in general, not parallel, which renders the anisotropy of
the cross peaks different from that of the diagonal peaks (which is ideally 2/5). Hence, by
subtracting the parallel from the perpendicular scan (both scaled to the maximum occurring
on their respective diagonals) the diagonal peaks are eliminated, and the cross peaks revealed
(figure 6(d)).

A similar but more elegant method to eliminate the strong diagonal peaks has recently
been developed by Hochstrasser and co-workers [27]. This method also relies on the fact that
the coupled transition dipoles are generally not parallel to eliminate the diagonal peaks, but
uses a specific choice of the relative polarizations of the four optical fields involved in the
experiment to eliminate the response in case the transition dipoles involved are parallel (see
section 2.3).
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Deriving the conformation from the 2D-IR spectrum involves two steps: (i) obtaining from
the 2D spectrum the coupling strength β12 between the amide I modes and the angle θ between
their transition dipoles; (ii) deriving the conformation from the values of these parameters. In
the ideal case where the cross peaks are well separated from the diagonal signal, β12 can be
determined from the cross peak intensity (see section 2.1) and θ from the dependence of the
cross peak intensity on the angle between the pump and probe polarizations [16]. In practice,
however, one least-squares fits calculated 2D spectra to the experimental ones, using starting
values of the parameters obtained by inspection of the experimental 2D spectra. To that end, one
calculates the 2D spectrum for a given set of parameter values β12 and θ by diagonalizing the
Hamiltonian (7) and using third-order perturbation theory [43] to obtain the nonlinear infrared
response due to optical transitions between the eigenstates. The parameters are then varied
using a nonlinear Levenberg–Marquardt algorithm [84] to find the best agreement with the
parallel and perpendicular experimental 2D spectra (see figures 6(e)–(h) for the fitted results).
In this way, we obtain β12 = 6 cm−1 for the coupling strength and θ = 106◦ for the angle
between the transition dipole vectors.

The values of β12 and θ are determined by the secondary peptide structure, and since
the peptide (–CO–ND–) group is essentially planar [85], by the two dihedral angles φ and
ψ only (see figure 5). The functional relation between the coupling β12 and (φ,ψ) has been
discussed in section 2.1. The relation between the angle θ between the two transition dipoles is
determined by geometrical considerations only. Note that θ is the angle between the transition
dipoles in the site basis, i.e. in the absence of coupling, and we assume an angle of 20◦ between
the C=O axis and the transition dipole [53]. In figure 7, the coupling strength β12 (red contours)
and the angle θ (blue contours) are plotted as a function of (φ,ψ). Using the map of figure 7,
the structure of the peptide can be determined directly from the experimentally determined β12

and θ , simply by finding the (φ,ψ) coordinates of the points where the β12 = 6 cm−1 and
θ = 106◦ contours intersect. There are two regions where this occurs, (φ,ψ) ≈ (−60◦, 140◦)
and (φ,ψ) ≈ (60◦,−140◦), situated centre-symmetrically in the Ramachandran plot. Because
of sterical hindrance by the residual methyl group of l-alanine [85],only a small range of (φ,ψ)

values, situated mainly in the left half of the plot, is physically realizable. Hence we conclude
that the conformation of trialanine is characterized by (φ,ψ) = (−60◦, 140◦), indicated by
the arrow in figure 7. In this conformation, the two C=O groups form a left-handed structure,
in agreement with the sign of the couplet observed in VCD spectroscopy [81].

It is well established that peptide conformations generally occur in two regions of the
(φ,ψ) conformational space [85]. The first region, around (φ,ψ) = (−60◦,−50◦), is
typical for the right-handed α-helix and (with slightly different dihedral angles) the π-
and 310-helix. The second region corresponds to secondary structures such as the anti-
parallel β-sheet (−139◦, 135◦), the parallel β-sheet (−119◦, 113◦), and the poly(Gly)II (PII)
structure (−80◦, 150◦), the latter of which is very close to the structure derived from the 2D-IR
spectrum.

We have verified our methodology by investigating different 13C-isotopomers of
trialanine (Ala–Ala–Ala, Ala∗–Ala–Ala and Ala–Ala∗–Ala) [20]. Even though the molecular
Hamiltonian, and hence the 2D-IR spectrum, is different in all three cases, the conformation
determined for each of the isotopomers is the same. This finding proves that, in spite of its
simplicity, the exciton model, which is at the basis of the structure determination, is accurate
enough to extract quantitative information.

An independent confirmation of the conformation predicted here has been obtained from
a 20 ns molecular dynamic (MD) simulation of trialanine in water [86]. It was found that the
trajectory populates three free-energy minima, the lowest of which at (φ,ψ) = (−68◦, 141◦) is
in very good agreement with the time-averaged conformation (φ,ψ) ≈ (−60◦, 140◦) obtained
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Figure 5. Molecular structure of trialanine. The central dihedral angles (φ,ψ) are indicated by
arrows.

here. Furthermore, the NMR 3 J -coupling between the Cα and the amide proton [23, 87], which
is indicative of the φ dihedral angle, supports our structure assignment.

3.2. Conformational flexibility

In solution, the structure of the peptide is not rigid and will fluctuate as a result of perturbations
exerted by the solvent molecules on the backbone. As the coupling β12 is a function of
peptide dihedral angles (φ,ψ) [54, 88], a fluctuating backbone translates directly into a
stochastic time dependence of the coupling β12(t) = β12 + δβ12(t) between the spectroscopic
states of the molecule, leading to irreversible transfer of population (see section 2.2.2).
The physical background of this experiment is comparable with that of nuclear Overhauser
effect spectroscopy (NOESY) in 2D-NMR spectroscopy, which also measures incoherent
population transfer between spin states to investigate conformational fluctuations of peptides
and proteins [9, 13]. However, since the typical frequency splittings between amide I states
are of the order of 10–100 cm−1, the IR method is specifically sensitive to conformational
fluctuations taking place on a 0.1–1 ps timescale.

We have measured 2D spectra of trialanine as a function of the pump–probe delay or
‘mixing’ time τm . Figure 8(a) shows the linear spectrum of Ala–Ala∗–Ala, where the asterisk
denotes 13C-labelling of the carbonyl carbon atom, and figures 8(b) and (c) show the two-
dimensional spectra of Ala–Ala∗–Ala at mixing times of 1.5 and 4 ps. The 2D spectrum
changes significantly as a function of mixing time, and the relative intensity of the cross peaks
increases with increasing mixing time. This is caused by an incoherent population transfer of
the vibrational excitation from the optically excited peptide unit to the other peptide unit. For
the latter this gives rise to a negative absorption change at the v = 0 → 1 frequency and a
positive absorption change at the v = 1 → 2 frequency, which is observed in the off-diagonal
region of the 2D spectrum. This contribution to the cross peak has essentially the same shape
as the coherent cross peak discussed in section 2.1. The two contributions can, however, be
clearly distinguished by their mixing-time dependence [9]: the coherent contribution to the
cross peak is independent of mixing time, whereas the contribution due to cross relaxation is
initially zero and increases with increasing mixing time.

The population ratio of the two amide I modes is obtained by dividing the ratio of the
cross and diagonal peaks by an appropriate scaling factor [22]. The ratio of the populations of
the two amide I states derived from the data is shown as a function of mixing time in figure 9.
Fitting the data yields for the cross relaxation rates 0.07 ± 0.01 and 0.19 ± 0.02 ps−1 for
Ala–Ala∗–Ala and Ala–Ala–Ala, respectively.

The cross relaxation rates are given by the Fourier transform of the coupling autocorrelation
function 〈δβ12(t)δβ12(0)〉, evaluated at the frequency of the energy gap between both states
(equation (18)). Assuming that the β12(t) fluctuations can be described as a Markovian process,
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Figure 6. (a) Linear absorption spectrum of deuterated trialanine in D2O at pD = 1. The
dotted curve shows a representative pump-pulse spectrum. (b) 2D spectrum at delay 1.5 ps, for
parallel polarizations of the pump and probe pulses, showing the absorption change as a function
of pump and probe frequency. Blue colours indicate negative absorption change, red colours
positive absorption change. Contour intervals are 0.13 mOD. (c) 2D spectrum for perpendicularly
polarized pump and probe. Contour intervals are 0.05 mOD. (d) Difference between perpendicular
and parallel signals (both scaled to the maximum value occurring in the respective 2D scans).
Contour intervals are 0.04 mOD. (e)–(h) Calculated signals, using parameter values β12 = 6 cm−1

and θ = 106◦ . Contour intervals in the 2D plots are the same as on the left. Adapted from [19].

〈δβ12(t)δβ12(0)〉 = d2 exp(−t/τ), we obtain for the relaxation rate

k = 2(d/h̄)2τ

1 + (�ε/h̄)2τ 2
. (19)
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Figure 7. Calculated coupling strength β12 (in cm−1, red contours), kindly provided to us by the
authors of [88], and angle θ (in degrees, blue contours) between the two amide I transition dipoles
as a function of the dihedral angles φ and ψ , which are defined as shown in figure 5. Adapted
from [19].

The rate k has been determined experimentally for two values of �ε using the Ala–Ala–Ala and
Ala–Ala∗–Ala samples, which are chemically identical, but have a different energy gap �ε as a
consequence of the 13C isotope substitution. From the two k values we obtain the amplitude of
the coupling correlation function d = 5.2 ± 0.5 cm−1 and a correlation time τ = 110 ± 20 fs.
Since the fluctuations in β12 directly mirror the fluctuations in the peptide dihedral angles
(φ,ψ) [88], our measurements show that the conformation exhibits fluctuations which occur
on a timescale of 100 fs.

It might seem surprising that a time constant of the order of 100 fs can be accurately
determined using pump pulses which are several times longer (750 fs FWHM, see section 2.3).
However, it should be noted that this time constant is not determined directly in a time-resolved
pump–probe measurement,but derived (using equation (19)) from the two cross relaxation rates
k, which are both very slow compared to the pump and probe pulse durations. In fact, it can be
seen from equation (19) that the timescale to which the method presented here is most sensitive
is given by the inverse of the frequency splitting between the coupled states, regardless of the
duration of the pulses used in the experiment. The only requirement is that these durations be
short enough to measure the cross relaxation rates from which the time constant is derived.
It should be noted that the indirect determination of dynamical timescales which are much
faster than the pulse duration is also widely used in NOESY spectroscopy [13].

It is instructive to compare our experimental results to the predictions obtained from
the already mentioned MD simulation of trialanine in water [86]. Figure 10(A) shows a
representative example of the calculated time evolution of the dihedral angles φ(t) and ψ(t)
pertaining to the central amino acid of trialanine (see figure 5). Figure 10(B) shows the
instantaneous coupling β12(t), which was calculated from the (φ,ψ) trajectory with the aid
of the ab initio based map of β12 as a function of (φ,ψ) (figure 7). Figure 10(C) shows the
corresponding correlation function 〈δβ12(t)δβ12(0)〉, which is well approximated by a sum of
two exponentially decaying components (shown as the red and green curves in figure 10(C)):
an ultrafast inertial component with time constants τ1 = 120 fs and a fluctuation amplitude
d1 = 4.1 cm−1 and a slower, diffusive component with τ2 = 2.2 ps and d2 = 3.5 cm−1.
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Figure 8. (a) Linear absorption spectrum of deuterated Ala–Ala∗–Ala dissolved in D2O. (b), (c)
2D spectra for perpendicular polarizations of the pump and probe pulses, showing the absorption
change as a function of pump and probe frequency for mixing times of 1.5 ps (b) and 4 ps (c). Red
denotes positive absorption change and blue denotes negative absorption change. The data have
been scaled to eliminate the effect of T1 relaxation. Adapted from [22].

From the MD data we can also calculate cross relaxation rates. We obtain values of 0.04
and 0.13 ps−1 for the cross relaxation rates of Ala–Ala∗–Ala and Ala–Ala–Ala, respectively
(insert of figure 10(C)), both reasonably close to the experimentally observed values. It can
be seen from the insert of figure 10(C) that these rates are exclusively determined by the
fast subpicosecond component of the correlation function (red curve), the time constant
and amplitude of which agree well with the values derived from experiment (see table 1).
Figures 10(A) and (C) show that this ultrafast component contributes significantly to the overall
conformational dynamics of the peptide.

3.3. Distribution of conformations

Finally, we focus on the time dependence of the diagonal peaks (see figure 11). In the case of
N-methylacetamide (NMA, CH3–CONH–CH3), a ‘peptide monomer’ used here as reference
molecule, the pump–probe contours are tilted along the diagonal for short pump–probe delays
(figure 11(b)). This means that the maximum absorption change occurs at a frequency which
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eliminate the overall decrease of the signal due to population relaxation. (a) Absorption spectrum
of deuterated NMA in D2O. (b)–(d) 2D pump–probe spectra of deuterated NMA, showing the
absorption change as a function of pump and probe frequency at delays of 1 ps (b), 2 ps (c) and 4 ps
(d). (e)–(h) Fitted absorption and 2D pump–probe spectra of NMA at delays of 1 ps (f), 2 ps (g)
and 4 ps (h). (i) Absorption spectrum of deuterated Ala–Ala*–Ala in D2O. (j)–(l) 2D pump–probe
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Table 1. Comparison of experimental and MD results [22, 86] obtained for the peptide dihedral
angles φ,ψ and the average transition coupling β12, as well as for the correlation time τ and
amplitude d of the cross relaxation correlation function.

Structural parameters Dynamical parameters

φ (deg) ψ (deg) β12 (cm−1) τ (fs) d (cm−1)

Experiment −60 140 6 110 ± 20 5.2 ± 0.5
Theory −68 141 5 120 4.1

varies with the pump frequency, implying that there exists a distribution of amide I frequencies,
and that the narrow band pump pulse spectrally selects a specific subensemble (hole burning).
The tilt of 2D diagonal peaks and its relation to inhomogeneous broadening has been discussed
in detail before [45, 47, 57, 58]. With increasing mixing time τm , the contours become more
vertically directed (figures 11(c) and (d)), i.e. the response of the system becomes less and
less sensitive to the frequency at which it has been excited at t = 0. At a delay time of
4 ps, the contours have become completely vertically directed (figure 11(d)), which means
that the observed absorption change has become independent of the pump frequency and that
the random fluctuations of the transition frequency have completely washed out any memory
about the initially selected sub-ensemble. On the 4 ps timescale, the amide I band of NMA is
homogeneous.
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The amide I band centre amino acid of isotope-labelled Ala–Ala∗–Ala is shown in
figure 11(i). The 13C-isotope-labelling of the C=O group causes a large redshift of its amide I
frequency, separating it from the other amide I bands. The pump–probe response of the amide I
mode is shown in figures 11(j)–(l). At early delays, the response of the peptide C=O group is
similar to that of the NMA C=O group but differs in one important respect: at 4 ps (figure 6(l)),
there still exists significant inhomogeneity (the contours are still skewed), which means that
spectral diffusion occurs on a sufficiently slow timescale that spectrally selected sub-ensembles
can still be distinguished after 4 ps. In contrast to NMA, the amide I band of trialanine is still
notably inhomogeneous on the 4 ps timescale. The lineshape functions of both transitions have
been determined in [23] by fitting the experimental spectra (figures 11(e)–(h) and (m)–(p)).

The frequency fluctuation correlation function 〈δε(t)δε(0)〉 (see section 2.2) of the amide I
mode reflects a superposition of various dynamical processes, which are difficult to separate.
Since intermolecular hydrogen bonding of solvent water molecules and the peptide C=O
group is known to cause a notable redshift of the amide I frequency, we have first studied
the hydrogen-bonding dynamics of NMA and trialanine using MD simulations [23]. The
calculated hydrogen bond lifetime of NMA was found to be of the same order as the measured
spectral diffusion correlation time. Hence, we conclude that the lineshape function of NMA
is dominated by hydrogen bond dynamics. Since the MD simulations predict quite similar
timescales of hydrogen bonding for both NMA and trialanine, however, hydrogen bonding
cannot be responsible for their distinctly different spectral response, namely the slow spectral
diffusion process observed in trialanine.

In contrast to NMA, which contains only a single peptide unit, trialanine may exhibit
conformational dynamics due to the highly flexible intramolecular degrees of freedom (φ,ψ)

of the peptide bond. A quantum-chemical study has shown that the amide I frequencies of
trialanine vary significantly with the central (φ,ψ) dihedral angles (a ‘chemical shift’) [23].
Hence, conformational fluctuations as well as transitions between various conformations are
expected to contribute considerably to the overall frequency fluctuations of the transition.
It turns out that the slow spectral diffusion observed in trialanine can be well explained by
assuming that a small fraction of the molecules is in a conformation different from the dominant
PII one. MD simulations using the GROMOS96 force field predict three main peaks of the
conformational distribution, the PII conformation (φ,ψ) ≈ (−67◦, 132◦), the β conformation
(φ,ψ) ≈ (−122◦, 130◦) and the αR conformations (φ,ψ) ≈ (−76◦,−44◦) [86, 89]. Due
to the well-known uncertainty in the conformational population probabilities, the relative
populations of these conformer states have to be determined by comparison with experimental
data. From NMR experiments, we have found the 3 J -coupling between the Cα and the N
proton to be 5.27 Hz [23], from which we obtain φ = −69◦ [90]. This angle is in agreement
with both the PII and αR conformations, which have roughly the same φ dihedral angle, but
excludes the β conformation. Both our 2D-IR experiments [19, 20] and IR/polarized Raman
studies [91] strongly favour the PII conformation. However, it is still possible that some of the
molecules are in the αR conformation. By combining the results of the MD simulations with
an accurate analysis of the 1D and 2D lineshapes (see figures 11(m)–(p) and [23]), we have
found that trialanine occurs predominantly (≈80%) in the PII conformation and occasionally
(≈20%) in the αR-conformation.

4. Other vibrational spectroscopic methods

There exist several other spectroscopic methods which use (couplings between) molecular
vibrations with the purpose of probing the conformations of peptides and proteins in solution.
The most commonly used are conventional (linear) IR and Raman spectroscopy, VCD and
Raman optical activity (ROA).
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Until recently, the IR and Raman spectra of proteins and peptides were mainly used to
derive general properties of the conformation by means of empirical rules, which were derived
by measuring and comparing the IR spectra of a large number of proteins and peptides with
known secondary structures. A well-known rule is the assignment of β-sheet and α-helical
motifs to different frequency regions of the amide I band structure [92]. Another example is
the empirical relations between the dihedral angles and the frequency of the amide III mode
of a single peptide unit [93, 94], which might to some extent be used to derive the dihedral
angles of the peptide unit from the IR spectrum.

The more recently developed methods of VCD and ROA both combine sensitivity to
optical activity with the chemical bond specificity of vibrational spectroscopy. In VCD, one
measures the vibrational optical activity by recording difference spectra of the IR absorption
of left and right circularly polarized radiation [81]. In ROA, one measures the optical activity
by recording the difference in the intensity of Raman scattering of right and left circularly
polarized light [95]. Both the VCD and ROA spectra are more conformation-sensitive than
conventional IR and Raman spectra due to the fact that mainly the normal modes which sample
the skeletal chirality most directly contribute to the VCD and ROA intensity. As a consequence,
ROA spectra of proteins contain distinct bands corresponding to different structural motifs.

Semi-empirical normal-mode calculations have long since been used to obtain a more
detailed and quantitative understanding of the relation between secondary structure and the
linear vibrational response measured in the techniques described above. By fitting of calculated
to experimental spectra, the force-field parameters have been extensively optimized and, as a
result, it is now possible to predict complete vibrational spectra from a known secondary peptide
structure with reasonable accuracy [53]. More recently, density-functional theory calculations
have been used to reproduce IR and Raman as well as VCD [96] spectra in an ab initio way.
Although such semi-empirical and quantum-mechanical calculations can nowadays reproduce
the observed spectra very well, it is clear that with such an approach it will generally not
be possible to systematically derive the molecular conformation from the experimental linear
spectra.

The results presented in section 3.1 suggest that such a structure elucidation does become
possible by measuring the vibrational couplings and relative transition dipole angles in the
molecule. The problem is that in general these couplings cannot be determined from the linear
IR spectrum alone. Even for the smallest system consisting of two coupled amide I modes,
there are four unknowns (ε1, ε2, β12, and the angle θ12 between the transition dipoles) and three
knowns in a linear IR spectrum (the frequencies of the two amide I bands and their relative
intensity).

However, when combining linear IR spectra with conventional isotropic and anisotropic
Raman spectroscopy, which as a nonlinear spectroscopy is capable of measuring intramolecular
angles, it has been shown that it is in fact possible to determine all four unknowns (ε1, ε2, β12

and the angle θ12) [91]. In more recent work, it has furthermore been suggested that one can
determine the structure of a tripeptide even without using any model for the coupling constant
β12, by measuring two independent angles, namely the angle between the IR transition dipoles
and the angle between the Raman tensor’s principal axes [97].

5. Outlook

The methods presented here provide an unique way of investigating conformation and ultrafast
conformational dynamics of small peptides. To our knowledge, our studies [19, 20, 22, 23],
combined with [87, 91, 97], provide the most detailed experimental information to date on
the conformation, conformational distribution and conformational dynamics of a small protein
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building block. NMR spectroscopy essentially fails for such small systems due to their high
flexibility and the lack of expressive NOESY peaks [98].

Only recently, NMR experiments in partially oriented samples of AcAlaMHMe, the
central structure of which is identical to trialanine, have revealed essentially the same PII

conformation [99]. The same has been shown for Ala7 [100]. In contrast to common belief,
tripeptides may adopt rather well defined structures in solution, even though they cannot be
stabilized by intramolecular hydrogen bonds. Interestingly for trialanine this structure is a
stretched PII conformation, which might explain the preference of this conformation in un- or
mis-folded proteins [101]. Different MD force fields yield considerably different results for
the conformational distribution of this type of model system [89, 102], even though one would
hope to be able to reproduce the conformation of the smallest building blocks correctly before
trying to predict protein structures. We therefore hope that our results will stimulate further
refinement of MD force fields.

2D-IR spectroscopy has recently been extended to larger peptides such as small α-
helices [21] and β-peptides [24]. However, 2D-IR spectroscopy will develop its real power only
in combination with site-specific isotope labelling [103], separating one or two specific peptide
units from the otherwise unresolved amide I band. The cross peak intensities and anisotropies
can be used to determine the angles and couplings between each pair of amide I modes, and
from these the (time-averaged) conformation of the peptide can be derived. Fluctuations of the
conformation can be observed from time-resolved 2D-IR spectra. The cross relaxation between
each pair of amide I modes will specifically mirror the fluctuations of those conformational
degrees of freedom which determine the strength of the coupling between these two modes.
In this way, it is possible to obtain a detailed, mode-specific picture of the subpicosecond
conformational dynamics of the peptide or protein under study.

As yet, 2D-IR studies have focused only on the equilibrium states of peptides. The
subpicosecond time resolution of 2D-IR spectroscopy makes it a powerful tool to also study
the (fast) evolution of non-equilibrium states. In such 2D-IR experiments, the non-equilibrium
state can be prepared using a short laser pulse (nanoseconds or less), and the subsequent
evolution of the peptide conformation to the new equilibrium state probed by recording 2D-
IR spectra at different delays with respect to the preparation pulse. A biologically relevant
example is the formation and breaking up of α-helices, which is known to take place on a
timescale of nanoseconds [104], well out of the range of NMR methods. The feasibility of
time-resolved non-equilibrium experiments has already been demonstrated for time-delayed
1D probing, using either a heating pulse to initiate formation of the coil state [104, 105] or
an optically triggered molecular switch directly incorporated into the peptide backbone [106–
109]. With 2D-IR probing, it will be possible to follow the conformational changes involved
in these processes in much more detail than with 1D methods [32].
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