Übungen zur Theoretischen Physik I

(Vorlesung J. Timmer, WS 2013/14)

Aufgabenblatt 1

Präsenzaufgaben

Aufgabe 1: Ableitungen

Differenzieren Sie folgende Funktionen f_i nach x:

(a)
$$f_1: x \mapsto \cos(x^2)$$

(b)
$$f_2: x \mapsto x^2 e^x$$

(c)
$$f_3: x \mapsto x \ln(x)$$

(d)
$$f_4: x \mapsto \sin(x)\cos(x)$$

(e)
$$f_5: x \mapsto \tan(x) = \frac{\sin(x)}{\cos(x)}$$

(f)
$$f_6: x \mapsto \arctan(x)$$

(g)
$$f_7: x \mapsto \ln(\cos(x))$$

Als bekannt vorausgesetzt werden hier nur die Ableitungen von x^2 , $\sin(x)$, $\cos(x)$ und e^x , aus denen dann die Ableitungen obiger Funktionen mit Hilfe diverser Regeln (Produktregel, Quotientenregel, Kettenregel und Umkehrregel) bestimmt werden sollen.

Aufgabe 2: Integrale

Berechnen Sie folgende Integrale:

(a)
$$I_1 = \int_0^\infty e^{-x} x^2 \, dx$$

(b)
$$I_2 = \int_0^{\frac{\pi}{2}} \cos^2(x) \, dx$$

(c)
$$I_3 = \int_0^{\frac{\pi}{2}} \sin^2(x) \, \mathrm{d}x$$

(d)
$$I_4 = \int_0^\infty x e^{-\sqrt{1+x^2}} \, \mathrm{d}x$$

Aufgabe 3: Taylor-Entwicklung I

Berechnen Sie die Taylor-Entwicklung der folgenden Funktionen f_i um den jeweils angegebenen x-Wert x_0 :

(a)
$$f_1(x) = \cos(x), x_0 = 0$$

(b)
$$f_2(x) = \sin(x), x_0 = \frac{\pi}{2}$$

(c)
$$f_3(x) = \ln(x), x_0 = 1$$

(d)
$$f_4(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{für } x \neq 0 \\ 0 & \text{sonst} \end{cases}$$

Aufgabe 4: Variablentransformation

Sei $f: \mathbb{R} \ni x \mapsto f(x) \in \mathbb{R}$ eine differenzierbare Funktion mit der Ableitung $f'(x) = \frac{df(x)}{dx}$. Die umkehrbare und differenzierbare Funktion $g: x \mapsto y = g(x)$ ist eine Variablentransformation von der Variablen x in die Variable y. Damit lässt sich die von x abhängige Funktion f in eine von y abhängige Funktion \tilde{f} transformieren:

$$\tilde{f}(y) := f \circ g^{-1}(y) = f(g^{-1}(y)).$$

Wie sieht allgemein der Zusammenhang zwischen der Ableitung $\frac{df(x)}{dx}$ der ursprünglichen Funktion f(x) und der Ableitung der transformierten Funktion $\frac{d\tilde{f}(y)}{dy}$ aus?

Verifizieren Sie das Ergebnis, indem Sie für $f(x) = x^2$ und $y = g(x) = e^{-x}$ einmal zuerst die Funktion f(x) in die Funktion $\tilde{f}(y)$ transformieren und diese dann nach y ableiten und einmal die Funktion f(x) zuerst nach x ableiten, um diese Ableitung mit dem erhaltenen Zusammenhang in die Ableitung von $\tilde{f}(y)$ umzurechnen.