Übungen zur Theoretischen Physik I

(Vorlesung J. Timmer, WS 2013/14)

Aufgabenblatt 5

Abgabe am Donnerstag, den 21.11.13 nach der Vorlesung

Bitte mehrere Blätter zusammentackern und mit Gruppennummer, Name und Name des Tutors deutlich lesbar beschriften.

Aufgabe 1: Skalarprodukt und Vektorprodukt II (4 Punkte)

Gegeben seien zwei linear unabhängige Vektoren \vec{a} und \vec{b} im \mathbb{R}^n .

(a) Zeigen Sie, dass die Vektoren \vec{a} und \vec{x} mit

$$\vec{x} = \vec{b} - \frac{1}{\|\vec{a}\|^2} (\vec{a} \cdot \vec{b}) \vec{a}$$

senkrecht aufeinander stehen.

(b) Zeigen Sie, dass die Gleichung

$$\|\vec{a} \times \vec{b}\|^2 = \|\vec{a}\|^2 \|\vec{b}\|^2 - \|\vec{a} \cdot \vec{b}\|^2$$

gilt.

Aufgabe 2: Kern und Bild linearer Abbildungen (6 Punkte)

Seien V und W Vektorräume und $A:V\to W$ eine lineare Abbildung.

(a) Zeigen Sie, dass der Kern(A) $\subseteq V$ und das Bild(A) $\subseteq W$ jeweils ein Vektorraum sind.

Hinweis: Es genügt zu zeigen, dass Kern(A) ein Untervektorraum von V und Bild(A) ein Untervektorraum von W ist. Ein Untervektorraum $U \subseteq X$ eines Vektorraums $(X, +, \cdot)$ über dem Körper K ist eine Menge, für die gilt:

- (i) $U \neq \emptyset$
- (ii) $u + v \in U$
- (iii) $\lambda u \in U$

für alle $u, v \in U$ und $\lambda \in K$.

(b) Zeigen Sie, dass A genau dann injektiv ist, wenn $Kern(A) = \{0\}$.

Aufgabe 3: Matrizen (2 Punkte)

Betrachten Sie die Matrizen

$$A = \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

Unter welchen Bedingungen kommutieren die beiden Matrizen?

Aufgabe 4: Matrizen als lineare Abbildungen (4 Punkte)

Gegeben seien die folgenden drei Matrizen:

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

- (a) Beschreiben Sie geometrisch die Wirkung dieser Abbildungen auf Vektoren im \mathbb{R}^2 .
- (b) Finden Sie aus der geometrischen Anschauung Vektoren, die
 - (i) sich unter der Abbildung nicht verändern,
 - (ii) unter der Abbildung in ihr Negatives übergehen. Für welche Matrix gibt es solche Vektoren im \mathbb{R}^2 nicht?