Mathematische Methoden zur Analyse von Zeitreihen komplexer Systeme

PROF. DR. JENS TIMMER

Aufgabenblatt 1

Aufgabe 1: Power des t-Tests

- Generiere je 1000 Daten der Normal,- Exponential,- und Cauchy-Verteilung und plotte sie. Was fällt auf?
- Simuliere M mal Datensätze x_i und y_i der Länge N aus den Verteilungen

```
-x_i \sim N(0,1), y_i \sim N(v,1)
- x_i \sim \text{Expdev}(1), y_i \sim \text{Expdev}(1+v),
```

- $x_i \sim \text{Cauchy}(0,1), y_i \sim \text{Cauchy}(v,1)$

für $M=1000,\,N=100,1000,\,v=0,0.1,0.2,\ldots,10$ und ermittele die Power des t-Tests für die verschiedenen Verteilungen für $\alpha=0.05$.

Plotte die Power in Abhängigkeit der Verletzung der Nullhypothese.

- Interpretiere das Ergebnis, speziell den Unterschied für Exponential- und der Cauchy-Verteilung.
- Was lernen wir hieraus für die Wichtigkeit der Gültigkeit von Annahmen?

Aufgabe 2: Power des Wilcoxon-Tests

- Wiederhole die Untersuchung aus Aufgabe 1 für den Wilcoxon-Test.
- Wie ist für den gegebenen Fall das Dilemma V: Effizienz vs. Power zu beurteilen?
- Erkläre das überlegene Verhalten für die Exponentialverteilung.

Sternchenaufgabe: Fallzahlkalkulation

Ermittele den notwendigen Stichprobenumfang, um bei zwei normalverteilten Zufallsvariablen mit Standardabweichung 1 eine Mittelwertsdifferenz mit Hilfe des *t*-Tests mit 95%igerWahrscheinlichkeit zu erkennen.