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Outline

• Systems Biology

• A dynamical model for the Epo receptor

• Validating the model

• Infering systems’ properties

• Understand what is known
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Erythropoiesis - A Closed-Loop Control System 

•  Epo: key regulator of 
  erythropoiesis 
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Erythropoiesis - A Closed-Loop Control System 

•  Epo: key regulator of 
  erythropoiesis 

•  feedback via red blood   
  cell mass: 
  establishing a closed-loop 
  control circuit 

•  normal conditions: 
  low levels of plasma Epo 
 15 mU/ml 

•  hypoxic conditions: 
  increased Epo levels 

 up to 10000 mU/ml 
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Erythropoiesis - Coping with Different Ligand Concentrations 
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Erythropoiesis - Coping with Different Ligand Concentrations 

➜ How is ligand-encoded information 
    processed by the EpoR? 

➜ Which dynamic properties of the EpoR 
    facilitate information processing over a  
    broad ligand range?	



15 mU/ml 

normal 

10000 mU/ml 

hypoxic 



Strategies for Processing Ligand-Encoded Information 



Low EpoR Abundance on the Plasma Membrane 

lymphoid murine 
BaF3-EpoR cell line 

➜ Epo binding sites: 
•  BaF3-EpoR: 

 appr. 7800 
•  primary erythroid progenitor cells: 

 up to 1000 

•  EGFR: up to 100000 receptors 

➜ EpoR abundance excluded as a strategy to 
     cope with large ligand concentrations 



Strategies for Processing Ligand-Encoded Information 
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Mathematical Model for Epo-EpoR Interaction and Trafficking Kinetics 
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➜ all parameters identifiable with 
    small confidence intervals 

➜ allowing for accurate predictions 

➜ extended model: EpoR mobilization 
    excluded as a major strategy 

Mathematical Model for Epo-EpoR Interaction and Trafficking Kinetics 



Strategies for Processing Ligand-Encoded Information 



Analysis of Model Including EpoR Mobilization



Model Topology – Core Model / Core Model + kmob 



Analysis of Model Including EpoR Mobilization 

➜ EpoR mobilization excluded as a major strategy to cope with large ligand concentrations 



Strategies for Processing Ligand-Encoded Information 



Key Properties of the EpoR System 

➜ fast recovery of cell surface EpoR ➜ rapid depletion of intact Epo 



EpoR Recovery at the Cell Surface - Model Validation 

➜ fast recovery of cell surface EpoR ➜ rapid depletion of intact Epo 



EpoR Recovery at the Cell Surface - Model Validation 

➜ recovery of EpoR, cells remain ligand-responsive 



Epo Depletion - Model Validation 

➜ fast recovery of cell surface EpoR ➜ rapid depletion of intact Epo 



Epo Depletion - Model Validation by Direct Measurements 



Epo Depletion - Model Validation by Direct Measurements 

➜ ligand depletion in both murine and human system 
➜ regulation of signal initiation by EpoR endocytosis through ligand depletion 



Strategies for Processing Ligand-Encoded Information 



Linear EpoR Signaling for a Broad Range of Epo Levels 
model simulations 



Linear EpoR Signaling for a Broad Range of Epo Levels 
model simulations 

experiments 

➜ linear relation of Epo input 
     and integral EpoR activation 



Dependency of Linear Relation 



Dependency of Linear Relation on EpoR Turnover 

➜ constitutive EpoR turnover: linear signal integrator 
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Contribution of Intracellular EpoR Pools 
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Contribution of Intracellular EpoR Pools 

➜ EpoR transport as a prerequisite for sampling and integrating ligand 

➜ critical role of large pools of newly synthesized EpoR in ER and Golgi 



Differential Ligand Binding Properties of Epo Derivatives 

➜ sensitivity analysis: kon essential ligand binding property for Epo depletion 



Simulation of Bioactivity and Bioavailability of Epo Derivatives 

➜ simulate system dynamics for different kon/koff rate couples 
➜ calibrated model employed to estimate kon and koff parameter values by using  
    immunoblot data for Epo and NESP 



Simulation of Bioactivity and Bioavailability of Epo Derivatives 

➜ estimation of bioactivity and bioavailability of Epo derivatives via ligand binding kinetics 
➜ rapid application, circumvents radioactivity or animal experiments 



Generalisation of the Model

• Different cell types: CFU-E, m/hBaF3, H838

• Different ligands: Epoα, Epoβ, NESP, CERA

ẋ = f(x, p), x(0) = xo

Different cell types, three possibilities:

• different xo: different expression levels

• different p: different reaction rates

• different f(.): different topology
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Generalisation of the Model

Ansatz: Fit all data by one model, individual parameters for

• number of receptors

• ligand-receptor affinities

Amount of data: 600 from 22 experimental conditions

Result: It works !
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Generalisation of the Model

Number of receptors

CFU-E: 1463± 156

BaF3: 10293± 485

H838: 458± 46

• # receptors CFU-E & BaF3 agree with experiments

• # receptors for H838 not determinable by experiments
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Looking Downstream

Combine receptor model with STAT5 signaling model

EpoRP

STAT5

CIS

cisRNA

JAK2

Epo

PpSTAT5

npSTAT5P

JAK2P

EpoR

JAK2P

EpoR

PTPact PTP
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Epo and Cancer

• Epo often applied during chemotherapy to fight anemia

• But, Epo-receptors also expressed on tumor cells

Question: Is there a difference in dosing effects ?

Integral nuclear pSTAT5 determines cell survival
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Dosing Effects
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Suggests: There is a range of differential effects
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Summary 

Information processing through EpoR: 

➜ rapid Epo depletion 

➜ fast recovery of cell surface EpoR 

➜ linear relation of Epo levels 
    and integral EpoR activation over a 
    broad range of ligand concentrations 

➜  accurate translation of ligand input  
    into erythrocyte production	



V. Becker, M. Schilling, J. Bachmann, U. Baumann, A. Raue, T. Maiwald, J. Timmer, and 
U. Klingmüller (2010). Science 328(5984):1404-1408. 
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Rational design of therapeuticals and cancer treatment strategies: 

➜ estimation of kon and koff rates 

➜ identification of risks in Epo treatment of lung cancer patients 
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In silico biology

Test the prior knowledge

Understanding systems’ properties

Identification of potential drug targets
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Flux Analysis Core Model 



Identifiability Analysis by Profile Likelihood Exploit 

➜ good model accuracy: 
•  all parameters identifiable with small confidence intervals 

➜ allowing for accurate predictions 

Raue et al. (2009), Bioinformatics 


