Statistics and Numerics

Lecture Prof. Dr. Jens Timmer

Exercises Helge Hass, Mirjam Fehling-Kaschek

Exercise Sheet Nr. 3

Exercise 1: Power of the t-test

- Generate sets of 1000 data points from the normal, exponential, and Cauchy distribution, and plot them. What differences do you see?
- Now, simulate M times two different data sets x_i and y_i , each with N data points from the following distributions:
 - a) $x_i \sim N(0,1), y_i \sim N(v,1)$
 - b) $x_i \sim \text{Exponential}(1), y_i \sim \text{Exponential}(1+v)$
 - c) $x_i \sim \text{Cauchy}(0, 1), y_i \sim \text{Cauchy}(v, 1)$

use
$$M = 1000$$
, $N = 100$, 1000 , $v = 0$, 0.1 , 0.2 , ..., 2 .

Thereof, compute the power of *t*-tests for $\alpha = 0.05$ for the x_i - y_i dataset tuples for each class of distributions a)-c). Plot the power for different values of ν , which denotes the deviation from the null hypothesis.

- Interpret the results, especially for the differences of exponential and Cauchy distribution.
- What do you learn regarding the assumptions for the *t*-test that have to be fulfilled?

Exercise 2: Power of the Wilcoxon test

- Repeat the previous exercise for the Wilcoxon test.
- What are the differences compared to the *t*-test?
- How would you judge, in this particular case, the Dilemma V: efficiency vs. power?
- Describe the advantages of the Wilcoxon test given data realizations from a Cauchy distribution.

