Exercise 1: Bias and variance of ill-posed inverse problems

Create a function to compute the $N \times N$ Hilbert-matrix

$$A_{ij} = \frac{1}{i+j-1}$$

given the dimension N as input.

a) Generate simulated data \vec{b} for normal distributed noise:

- choose:
 $$x_j = \sin(2\pi(j-1)/(N-1)), \quad j = 1, \ldots, N$$

- compute:
 $$\tilde{b}_i = \sum_{j=1}^{N} A_{ij} x_j$$

- add noise $\varepsilon_i \sim N(0, \sigma^2)$:
 $$b_i = \tilde{b}_i + \varepsilon_i$$

b) Estimate \vec{x} from the data \vec{b}:

- Calculate the singular-value decomposition of A (numpy.linalg.svd). How do the singular values relate to the eigenvalues in case of a symmetric matrix?

- Compute the condition number $\kappa(A)$ via numpy.amin and numpy.amax.

- Write a function to estimate x_i for the given b_i from Eq. (1), using the inverted matrix A^{-1} based on its singular value decomposition:

 $$A^{-1} = V^T \text{diag}(1/w_i) U^T.$$ (2)

Use the built-in functions numpy.diag, numpy.divide, numpy.matmul and numpy.transpose.

c) Test several setups regarding the effect of the regularization, $1/w_i = 0$ if $\max(w)/w_i > \kappa_{\max}$, for different choices of the maximal condition number κ_{\max}, of N and of the noise σ.

- $N = 4, \sigma = 0.001$ for either no regularization or for $\kappa_{\max} = 1000$

- $N = 7, \sigma = 10^{-5}, \kappa_{\max} \in \{100, 10^5, 10^{10}\}$

- $N = 10, \sigma = 0, \kappa_{\max} = \inf$ ("inf") in python. Compare the result with the one you obtain from using an in-build matrix inversion function (numpy.linalg.inv) instead of Eq. (2). How are A^{-1} and the x_i affected?

- $N = 42, \sigma = 0, \kappa_{\max} \in \{100, 10^5, 10^{10}\}$