
Statistics and Numerics
Lecture Prof. Dr. Jens Timmer

Exercises Helge Hass, Mirjam Fehling-Kaschek, Joep Vanlier

Exercise Sheet Nr. 11

Exercise 1: The Gillespie algorithm

• In the following exercise, we will attempt to implement the following reaction system:

S1 +S2
k1−→ S3

S3
k2−→ S2 +S4 ,

following the law of mass action and in a way that is suitable for the Gillespie algorithm.

In this exercise, we will try to separate the solver from the actual problem being solved. One method to
do this is to specify a lambda function which computes the propensities. A lambda function is defined
by specifying lambda, then the function’s input arguments and then the result the function is intended to
produce. Example (not the correct propensities for the system above):

propensityFunction = lambda x,p:[p[0]*x[0]*x[1], p[1]*x[2]]

The function can then be called as:

x = [1, 1, 1]

p = [1, 1]

result = propensityFunction(x, p)

a. Write the lambda function that calculates the propensities for our problem.

b. Write the stoichiometry matrix for this problem. Each row in the stoichiometric matrix represents a
reaction. Negative values refer to species which are consumed, while positive values indicate species which
are produced. Example:

n_rxns = 2

n_states = 4

N = np.zeros([n_rxns,n_states])

N[0,:] = [-1.0, -1.0, 1.0, 0.0]

N[1,:] = [0.0, 1.0, -1.0, 1.0]

helge.hass@fdm.uni-freiburg.de joep.vanlier@fdm.uni-freiburg.de
http://jeti.uni-freiburg.de/vorles_stat_num/vorles_stat_num.html

http://jeti.uni-freiburg.de/vorles_stat_num/vorles_stat_num.html

c. We will first implement integration of the system using deterministic simulation. This will provide
us with a reference for what the simulation would look like for large numbers of particles. The following
code will simulate the system when provided with a stoichiometric matrix N, propensity function ‘pro-
pensityFunction’ and parameters parsODE. Initial is an array of the initial concentrations of the model
components (Si). The function will then construct an array of differential equations dx from the propensi-
ties and N.
Hint: Remember to convert the parameters appropriately between particles and concentrations.
Nto conc = 1.0/1.0e−12/1.0e−9/6.022/1.0e23;
Hint: The ODE integrator odeint can be imported by: from scipy.integrate import odeint.

Deterministic integration

def rhs(y, t, N, fun, pars):

w = fun(y, pars)

sizes = np.shape(N)

dx = N[0,:]*w[0]

for i in range(1,sizes[0]):

dx = dx + N[i,:]*w[i]

return dx

sol = odeint(rhs, initial*N_to_conc, t, args=(N, propensityFunction, parsODE),

hmax=10, rtol=1e-14, atol=1e-14)

d. Now that we have a reference simulation, write a new function which will solve the problem using
the Gillespie algorithm. This function should take the initial condition (number of particles of each species),
the stoichiometry of the problem, the propensity function which returns the reaction propensities and the
parameters and simulation time.

def gillespie(n_s0, N, fun, pars, maxtime, maxsteps)

Call this function from the main script.

e. Make the code evaluate the propensities. How can we select the appropriate reaction to perform?
(Hint: you can compute a cumulative sum with np.cumsum).

f. Implement a mechanism which appropriately selects the reaction to perform according to its pro-
pensity and apply it. (Hint: Row or column selection can be done by X [:, i] and X [i, :]. Rows can simply be
added (provided that you use a numpy array or matrix for storage).

g. Recall the formula to calculate the next reaction time from the lecture. Implement this in your
Gillespie simulation routine.

h. Write a loop to simulate over the time steps. Evaluate the propensities, calculate the time increment
and store the results after applying the appropriate reaction.

i. For our model system, when is the simulation finished? What will happen to the next reaction
time when the step or time threshold is hit? Make sure this does not happen and terminate the simulation
appropriately.

j. Simulate the system with this algorithm.

• Simulate the system for a maximum of 20000 steps between 0 and 1000 seconds:

a) k1 = 0.5(nMsec)−1

b) k2 = 0.02sec−1

c) V = 1pL

d) Initial values: #S1(0) = #S2(0) = 10, #S3(0) = #S4(0) = 0.

helge.hass@fdm.uni-freiburg.de joep.vanlier@fdm.uni-freiburg.de
http://jeti.uni-freiburg.de/vorles_stat_num/vorles_stat_num.html

http://jeti.uni-freiburg.de/vorles_stat_num/vorles_stat_num.html

• Take the average of 20 realizations of the algorithm and compare it with a deterministic simulation of the
system. For this purpose, interpolate your solutions to a fixed time vector. Hint: You can use interpola-
te.interp1d for this which can be imported by:

from scipy import interpolate

And used as follows:

f = interpolate.interp1d(t_simulated, y_sim, kind=’zero’)

y_desired = f(t_desired)

You can also copy the function averagedGillespie from the online solution.

• Bonus question for the interested. Implement the following system:

S2
k1−→ 2S2

S1 +S2
k2−→ 2S1

S1
k3−→ /0

/0
k4−→ S1

Simulate this system for a maximum of 2000000 steps between 0 and 100 seconds and compare it to its
ODE equivalent:

a) k1 = 1.0sec−1

b) k2 = 0.005(nMsec)−1

c) k3 = 0.5sec−1

d) k4 = 0.3nMsec−1

e) Initial values: #S1(0) = 100,#S2(0) = 50.

What do you notice?

helge.hass@fdm.uni-freiburg.de joep.vanlier@fdm.uni-freiburg.de
http://jeti.uni-freiburg.de/vorles_stat_num/vorles_stat_num.html

http://jeti.uni-freiburg.de/vorles_stat_num/vorles_stat_num.html

