Theoretische Physik IV: Statistische Physik

(Vorlesung Prof. Dr. J. Timmer, WS 2017/18)

Aufgabenzettel Nr. 3

Abgabe am Freitag, den 3.11.17 nach der Vorlesung. Bitte mehrere Blätter zusammentackern und mit Gruppennummer, Name des Tutors und Ihrem Namen deutlich lesbar beschriften.

Aufgabe 1: Stirlingmotor und Ottomotor

(8 Pkt.)

Die Kreisprozesse des Stirling- bzw. Ottomotors lassen sich durch folgende vier Teilprozesse beschreiben:

	Stirlingmotor	Ottomotor		
1	Isotherme	Adiabate	Kompression	$V_1 \rightarrow V_2$
2	Isochore	Isochore	${\it W\"{a}rmezufuhr}$	$p_2 \rightarrow p_3$
3	Isotherme	Adiabate	Expansion	$V_2 \rightarrow V_1$
4	Isochore	Isochore	Wärmeabfuhr	$p_4 \rightarrow p_1$

Gehen Sie davon aus, dass die Motoren mit einem idealen Gas betrieben werden.

- i.) Skizzieren Sie die Prozesse jeweils im *p-V*-Diagramm. Notieren Sie die Richtung, in der die Teilprozesse durchlaufen werden müssen, damit der Motor mechanische Arbeit leistet. (2 Pkt.)
- ii.) Geben Sie die aufgenommene bzw. abgegebene Wärme für jeden Teilprozess an. Zeigen Sie insbesondere beim Stirlingmotor, dass sich die Beiträge aus den Prozessen 2 und 4 aufheben. (*Hinweis:* Die bei der isochoren Entspannung freiwerdende Wärme wird bei der isochoren Verdichtung wieder zugeführt). (2 Pkt.)
- iii.) Bestimmen Sie die Arbeit, die pro Zyklus geleistet wird, für beide Motoren. (2 Pkt.)
- iv.) Der Wirkungsgrad ist definiert als $\eta=\frac{|W_{\rm ab}|}{Q_{\rm zu}}$, wobei $W_{\rm ab}$ die vom System verrichtete Arbeit und $Q_{\rm zu}$ die zugeführte Wärme ist.

Stirlingmotor: Geben Sie den Wirkungsgrad als Funktion der beiden vom Gas angenommenen Temperaturen an. (1 Pkt.)

Ottomotor: Geben Sie den Wirkungsgrad als Funktion des Verdichtungsverhältnisses der Volumina $\epsilon = \frac{V_1}{V_2}$ an. (1 Pkt.)

Aufgabe 2: Adiabatischer Ausdehnungskoeffizient

(4 Pkt.)

Der isobare, α_p , und adiabatische, α_S , Ausdehnungskoeffizient sind definiert durch

$$\alpha_p = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p \quad , \quad \alpha_S = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_S.$$

Sbezeichnet hierbei eine Zustandsgröße, deren Differential dSproportional zu δQ sei.

Benutzen Sie den ersten Hauptsatz der Thermodynamik, um den Quotienten α_p/α_S durch die spezifische Wärmen C_p und C_V auszudrücken. Die innere Energie U=U(V,T) soll hierbei eine Funktion von V und T sein.

Ein Zimmer soll bei $T_2=21^{\circ}\mathrm{C}$ gehalten werden, die Außentemperatur betrage $T_1=0^{\circ}\mathrm{C}$. Dies soll zum einen

- mit einer Elektroheizung betrieben mit elektrischem Strom (100 % Wirkungsgrad) und zum anderen
- mit Hilfe einer strombetriebenen Wärmepumpe zwischen T_1 und T_2 realisiert werden.

Eine Wärmepumpe ist eine Maschine die unter Aufwendung der Arbeit W die Wärme Q_1 von einem System mit niedriger Temperatur T_1 in ein System mit höherer Temperatur T_2 überträgt. Ein Teil der aufgewendeten Arbeit wird als zusätzliche Wärme $(|Q_2| > |Q_1|)$ dem System mit höherer Temperatur zugeführt, der andere Teil der Arbeit geht verloren (vgl. Abbildung). Der Anteil, der in der Wärmepumpe verlorenen Arbeit betrage ϵ .

Der Wärmeverlust aufgrund mangelnder Isolation des beheizten Zimmers sei proportional zur Temperaturdifferenz

$$Q_{verlust} = \gamma (T_2 - T_1).$$

- i.) Berechnen Sie das Verhältnis der Stromkosten für die beiden Realisierungen. (4 Pkt.)
- ii.) Wieviel Prozent Verluste darf die Wärmepumpe haben, damit sie gerade gleich viel elektrische Energie wie die Elektroheizung benötigt. (2 Pkt.)

Hinweis: Für eine reversibel arbeitende Wärmepumpe gilt $\frac{Q1}{T1} + \frac{Q2}{T2} = 0$.

Münsteraufgabe

Verlässt man das von 1999-2004 restaurierte Hauptportal des Münsters, steht rechter Hand eine von vorne reichgeschmückte schöne Frau. Was will uns deren Rückseite sagen?