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Examples of Networks I: Apoptosis

Pathway cartoon System’s behavior

Death Alive

Threshold behavior, one-way bistable
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Why Mathematical Modelling in Biology ?

• Make assumptions explicit

• Understand essential properties, failing models

• Condense information, handle complexity

• Understand role of dynamical processes, e.g. feed-back

• Impossible experiments become possible

• Prediction and control

• Understand what is known

• Discover general principles

• ”You don’t understand it until you can model it”
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Michael Reth’s Seven Questions

Question to answer for the Question to answer for the 
understanding of intracellular understanding of intracellular 

signalingsignaling

who? who?  identification identification 

how? how?  mechanismmechanism

what? what?  function function 

where?where?   loction in the cellloction in the cell  

withwith  whom? whom?  reaction partnerreaction partner

when?when?   kinetickinetic  

how much?how much?   quantityquantity

Courtesy of Michael Reth
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Two Differences between Physics and Biology

Physics: Understand the empirical world by mathematics

• Fundamental laws of nature vs. principles

• In biology there is ”function” due to evolution

Physics in biology = Systems Biology:

Understand function by mathematics
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The Eighth Question

WHY ?

Why is chemotaxis more complicated than needed ?
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Bacterial Chemotaxis – The Phenomenon

• Bacteria sense nutrient gradients over four orders of
magnidute of absolute concentration

• Detect relative changes of 2 %

Chemotaxis: One of the best investigated biological
systems
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Bacterial Chemotaxis – The Strategy

• Bacteria too small to compare front to end

• Strategy:

– Change direction from time to time (tumble)
– If concentration increases: reduce tumbling frequency
– If concentration decrease: increase tumbling frequency

• Sense spatial gradients by temporal changes
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Chemotaxis – Tumble and Swim

Random walk vs. biased random walk
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Chemotaxis in E. coli
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Chemotaxis – Flagella

Movement by rotating corkscrew-flagella

• counter-clockwise: form bundle: swim by marine propeller

• clockwise: rotate radially: tumble
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Chemotaxis – The Task

Tumbling/Swimming depends on phosphorylated CheY

Important: A small working range
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Chemotaxis – Adaptation

• Motor has a small range of sensitivity

• Cell is chemotactic for a large range of concentrations

=⇒ System has to be adaptive:

Steady state of CheYp must be independent from

absolute concentration of ligand
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Chemotaxis – The Task

Input: Nutrient concentration Output: Tumbling frequency

System performs a kind of differentiation
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The Players and their Roles

• T: Receptors

• CheR: Methyltransferase, adds CH3

• CheB: Methylesterase, removes CH3

• CheA: Kinase, adds PO4

• CheZ: Phosphatase, removes PO4

• CheY: Signaling protein
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Barkai/Leibler Model – Graphical Version
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Barkai/Leibler Model – Mathematical Version

Probability for activating methylated receptor by ligand L:

p =

„
1−

L

KL + L

«
Concentration of activated receptors Ta :

Ta = p Tm

Methylation/demethylation dynamics of receptors:

Ṫm = kRR− kBB
Ta

KB + Ta

Dynamics of Ap:

Ȧp = kA(Atot − Ap)Ta − kYAp(Ytot − Yp)

Dynamics of Yp:
Ẏp = kYAp(Ytot − Yp)− γYYp
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Perfect Adaptation by Ta = p(L)Tm(Ta)

Steady state of Ta from

Ṫm = kRR− kBB
Ta

KB + Ta
= 0

yields

T ssa = KB
kRR

kBB − kRR

• Independent from ligand concentration L

• Steady state is stable

• The same holds for Yp

Barkai & Leibler, Nature 387:913, 1997
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The Mechanism: Ta = p(L)Tm(Ta)

• Increasing L leads to fast decrease of Ta

• Ap & Y p are fastly dephosphorylated

• Tm is slowly increased

• Turns Ta and Ap & Y p back to steady state

• Integral negative feedback control

In words:

Degree of methylation compensates/remembers absolute
concentration of ligand
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But ...

... this model is not realised by nature
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Nature’s E. Coli
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Sources of Variability

• Intrinsic noise

Differences between identical reporters within one cell

– Stochasticity of reactions

• Extrinsic noise

Differences between identical reporters in different cells

– Expression level of signaling proteins
– Number of ribosomes

Cell-to-cell variability
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Quantification of Variability

Colman-Lerner et al. Nature 437:699, 2005
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Results

E. coli and yeast:

• Extrinsic noise is larger than intrinsic noise

• Protein concentrations fluctuate in a correlated manner
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Fluctuations and Chemotaxis

• Cell-to-cell fluctuations up to factor of ten

• Correlated fluctuations are dominant
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A Robustness Principle

The functionality of a pathway must be robust against
fluctuations of protein levels.

For chemotaxis:

• Steady state level Yp in [2.2 µM, 4.3 µM]

• For correlated fluctuation:

Steady state invariant under transformation: Xi → λXi

Important quantities may only depend on ratios of concentrations

• For uncorrelated fluctuations:

Use negative feedback-loop to attenuate noise
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Application to Barkai/Leibler Model
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Robustness of Barkai/Leibler Model

Steady states:

T ssa = KB
kRR

kBB − kRR
o.k.

Assp ≈ kAT
ss
a

kY

Atot
Ytot

o.k. (w.o.a)

Y ssp =
kyA

ss
p

kYAssp + γY
Ytot not o.k.

Cure: Yp must have a phosphatase (CheZ)

Y ssp =
kyA

ss
p

kZ

Ytot
Ztot

o.k.
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Extension of the Model
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Robustness Against Correlated Fluctuations

• Yp must have a phosphatase (CheZ)

• Methyltransferase CheR has to work at saturation

• The pathway must be weakly activated, Xp� Xtot
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Robustness Against Uncorrelated Fluctuations

Diminish uncorrelated noise by a classical negative feedback

• Methylesterase B can be phoshorylated by Ap

• Only Bp can demethylate receptors

∆Yp = −
∂f
∂Ta

∂Ta
∂R

α+ β
∂Bp
∂Ap

∆R

• Robustness against correlated fluctuations:

=⇒ Bp must not have a phosphatase
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Final Model

And this is how E. coli looks like
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In silico Biology

Is nature’s solution optimal ?

• Choose different chemotactic pathway topologies

• Protein concentrations from experimental distributions

Compare chemotactic behaviour of in silico mutants to
in vivo E. coli for different expression levels of proteins
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Cartoons of Perfect Adaptive
Pathways
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Results: in vivo vs. in silico

red: Barkai/Leibler, black: final model, cyan: without feedback

blue: CheR not in saturation, green: CheBp with phosphatase
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Impossible Experiments

wild type: 0.4 wild type: 0.2

red: BL, black: fm, blue: w/out fb, green: mcm
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Conclusions

• E. coli has to be adaptive and robust

• E. coli seems to be optimised to deal with fluctuations:

– Uncorrelated noise: Feedback control
– Correlated noise: Phosphatase here, saturation there

• Deals with noise on protein level, not in expression process

• E. coli is as complex as necessary but as simple as possible
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Number of Players per Cell

• Receptors: 40.000

• CheB: 400

• CheR: 300

• CheY: 14000

• CheZ: 6000
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