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5Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 052, 79110 Freiburg, Germany
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Abstract: Many spatial patterns in biology arise through differentiation of selected cells within a tissue, which is regulated by a
genetic network. This is specified by its structure, parameterisation and the noise on its components and reactions. The latter, in
particular, is not well examined because it is rather difficult to trace. The authors use suitable local mathematical measures based
on the Voronoi diagram of experimentally determined positions of epidermal plant hairs (trichomes) to examine the variability or
noise in pattern formation. Although trichome initiation is a highly regulated process, the authors show that the experimentally
observed trichome pattern is substantially disturbed by cell-to-cell variations. Using computer simulations, they find that the rates
concerning the availability of the protein complex that triggers trichome formation plays a significant role in noise-induced
variations of the pattern. The focus on the effects of cell noise yields further insights into pattern formation of trichomes. The
authors expect that similar strategies can contribute to the understanding of other differentiation processes by elucidating the
role of naturally occurring fluctuations in the concentration of cellular components or their properties.
1 Introduction

Many spatial patterns arising in biology show remarkably
regular features. However, because of the stochastic nature
of biological processes, the resulting patterns deviate from a
hypothetical perfect pattern. In general, the concept of
pattern formation represents a process by which some cells
within a population of initially homogeneous cells acquire a
specific fate. The basis for differentiation is the
communication between cells via non-cell autonomous
molecules or direct cell-to-cell contacts that induce
regulation of gene expression [1]. Examples for the study of
patterning processes using mathematical models are
epidermal patterns such as root hairs [2], cell sizes in sepals
[3] and hair follicles [4], as well as other biological systems
[5–7]. As it is generally difficult to assess patterns
accurately and to discriminate between different patterns by
visual inspection the use of mathematical methods is
necessary [8]. A useful mathematical framework for many
applications is reaction-diffusion equations [9], in which
cells communicate via diffusive exchange of molecules.
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Recently, the study of variance within a system’s behaviour
became more popular and led to the question about the
consequences of noise [10]. However, only a few studies on
pattern formation in biology consider models with a
stochastic component, for example, the stochastic Boolean
network model for root hairs [2], or examine perturbations
on biological networks, for example, underlying flower
development [11]. The impact of stochastic noise on
patterning is examined in various biological systems, for
example, the Bicoid morphogen gradient in Drosophila
[12], the MinCDE protein system in Escherichia coli [13],
the delta–notch system [14, 15] and the regulation of
patterning by small RNAs [16], as well as in chemical
systems, for example, the chlorine dioxide-iodine-malonic
acid (CDIMA) reaction [17]. As new quantitative data
become available and experimental manipulations to verify
theoretical predictions are feasible, the aspect of noise in
pattern formation is receiving more attention [1, 10, 18].
These advances require quantitative comparisons of spatial
patterns in order to evaluate the effect of perturbations.
Classifying patterns as similar or different by visual
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inspection is not sufficient, mathematical methods that yield
robust, testable statements are needed. The general aim
of this new approach to developmental biology is a
mechanistic understanding of the processes that lead to the
experimental observations [18]. Here, we present an
approach to analyse the influence of cell noise on spatial
pattern formation.

1.1 Sources and effects of noise

Multiple sources and effects of noise have been explored
theoretically and have partly been confirmed experimentally
[19–22], but it remains challenging to distinguish noise
from different sources because of the complexity of intra-
and intercellular processes [10]. Noise can arise from
fluctuations in, for example, the number of cell components
such as ribosomes and amino acids or the number of
nutrients in the extracellular environment [10]. Variations in
protein copy number can also originate from stochasticity
inherent in genetically identical cells [22]. In the context of
pattern formation, additional variability can arise from the
potentially inaccurate readout of positional information
encoded in morphogen gradients [23]. Noise in biochemical
systems can be classified into intrinsic and extrinsic
depending on whether the stochasticity is within the process
of interest or affects it indirectly [10, 24–27]. We focus on
the impact of cell-to-cell variability, that is, stochastic
differences between cells of the same tissue, on pattern
formation. Without a pre-pattern, cells in one tissue are
generally identical, but they will at a given time differ
slightly in, for example, protein abundance. The specific
cellular composition will influence the patterning
mechanism as the rates of the processes involved, for
example, protein expression, will vary from cell to cell.

1.2 Trichomes as an example

Trichomes (plant hairs) are specialised cells that protrude
from the epidermis and form three branches (Fig. 1). They
develop on plant surfaces, that is, two-dimensional (2D)
domains, which facilitates their observation and statistical
analysis. We examine trichomes that arise in the initiation
zone [28] near the base of developing leaves. The
underlying molecular processes are regulated by GLABRA1
144
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(GL1), GL2, GL3, TRIPTYCHON (TRY) and several
homologues [29]. We have established a mathematical model
for the interactions of the core patterning genes/proteins [30],
which we briefly describe here (Fig. 1b). GL1, GL3 and
TRY are basally expressed and can be induced by the active
complex (AC) that is formed by GL1 and GL3 in some cells.
The AC also induces the downstream gene GL2, which
triggers the actual differentiation processes. In other cells,
TRY and GL3 form an inactive complex, thereby preventing
GL2 induction. The inhibitor TRY is the only non-cell
autonomous protein in this system. Its mobility therefore
represents the intercellular communication. As GL2 is a
direct readout of the AC concentration we model only the
latter. Hence, trichomes are formed in cells with high AC
concentration in the simulation.

1.3 Quantitative analysis

To quantitatively characterise trichome patterns and detect
the influence of cell-to-cell variability, appropriate methods
are required to describe planar point patterns and determine
their degree of regularity. Detecting a deviation from
randomness or a difference in point density is not sufficient,
subtle differences between relatively similar patterns
must be detectable. In addition, we deal with small domains
and rather few repetitions. To overcome these limitations,
we use tessellation-based methods, which are more
sensitive to structural order than, for example, Fourier-based
methods [31].

Our approach uses spatial relationships between
individuals and their neighbours, which are defined by a
modified Delaunay triangulation derived from the Voronoi
diagram [32] of the trichomes. We consider neighbours in
an appropriate region, that is, neither all others nor only the
nearest neighbour, and calculate distances and angles
between them as well as the anisotropy of their distribution.
Several other studies also present quantifications of spatial
patterns based on Voronoi diagrams [8, 31, 33, 34] or related
graphs [35–38]. Some also include the definition of graph
neighbours [33, 34, 39, 40], which reflects the presumptive
short-ranged communication between cells during
development [33]. To obtain neighbourhood relationships
that reflect a certain morphology, graph edges are sometimes
added or deleted, for example, by parameter-dependent
Fig. 1 Trichomes as an example for pattern formation

a Trichome distribution over the adaxial (upper) leaf epidermis of A. thaliana
b Molecular interactions underlying trichome patterning. GL1 and GL3 bind to form the AC (dashed arrow), which induces GL2 and therefore trichome
formation. Alternatively, TRY and GL3 bind to form the inactive complex IC (dash dotted arrow), thereby inhibiting trichome formation. AC regulates the
expression of GL1, GL2, GL3, and TRY (solid arrows), and TRY is transported to neighbouring cells (wavy arrow). For clarity, basal expression and
degradation are not shown
c Young leaf with mature trichomes and trichome initials. A coordinate system is fitted for labelling. The data volume is obtained from confocal microscopy by
stitching together several image stacks
IET Syst. Biol., 2012, Vol. 6, Iss. 4, pp. 143–153
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rules [36]. Alternatively, the Gabriel graph [38] is used, which
is constructed like the Delaunay triangulation, but with a
stricter rule for admissible edges. We use the Gabriel rule to
avoid artefacts near the border.

We use these methods to determine the noise level present
in our experimental data. This approach is based on the
observation that biological patterns often exhibit lattice
structures [34]. Similarly to other studies [31, 34], we
perform a fit of increasingly irregular hexagon patterns to
the trichome data in order to find the best matching pattern
and thereby the noise level. Noisy hexagon patterns are well
suited for this calibration because they are generic in the
sense that they cover the whole range from a regular to a
random point pattern [41].

2 Data generation

2.1 Experimental trichome data

We generate two sets of trichome data from rosette leaves of
wild-type plants of Arabidopsis thaliana (see the Appendix),
which differ in their age and shape. One set with 37 flat
adult leaves with morphologically visible trichomes is
imaged with a light microscope. The base of each trichome
is manually labelled in the digital images with ImageJ
software (PointPicker plugin), and the labels are saved as 2D
coordinates. Another set contains 24 thick and strongly
curved young leaves which are rather volumetric than planar
objects. In order to visualise those trichomes that only exist
as initials within the epidermis, we use a marker line with
cell autonomous green fluorescent protein (GFP) expressed
in trichomes. The GFP fluorescence and the autofluorescence
of the chlorophyll are recorded by confocal laser scanning
microscopy. Each young leaf is imaged in several stacks,
which are later stitched together to yield a complete data
volume [42]. The volumetric leaf surface is extracted and
represented as a 2D height field with respect to the leaf’s
coordinate system (Fig. 1c) [43]. As the epidermis lacks
chlorophyll, it is not visible in the confocal images. We use
the subepidermis to guide the manual labelling of trichome
bases in three dimension (3D) using VGStudioMAX
(Volume Graphics) and software developed in one of our
groups. Notably, the trichome pattern, effectively, is a spatial
point pattern on a non-planar surface in space. Hence, we
can treat it analogously to all other patterns, with the
difference that the neighbourhood relationships and the
corresponding measures are calculated in 3D taking the leaf
surface into account (see the Appendix). All computations
are done with MATLAB (Math Works Inc.). As the data
from adult and young leaves do not show any significant
difference in the distribution of our measures (not shown),
we combine them into one data set with 61 leaves.

2.2 Simulated trichome data

We model the trichome pattern in the initiation zone by four
coupled ordinary differential equations, which describe the
IET Syst. Biol., 2012, Vol. 6, Iss. 4, pp. 143–153
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time evolution of GL1, GL3, TRY and the AC [30]. We
consider only those terms that have been found to be
relevant and add a transport term for AC to test the
influence of its mobility on the pattern. The non-
dimensionalised model is given by (1), where [GL1],
[GL3], [TRY] and [AC] are the non-dimensional
concentrations. Neighbouring cells are coupled by passive
transport of TRY and AC, which is defined as

k[c]xyl = [c]x,y−1 + [c]x,y+1 + [c]x−1,y + [c]x+1,y + [c]x−1,y+1

+ [c]x+1,y−1 − 6[c]xy (2)

where [c] stands for [TRY] or [AC]. We use a discrete
hexagonal grid with coordinates 1 ≤ x ≤ xmax and
1 ≤ y ≤ ymax, a domain of size D2 ¼ 50 × 50 and zero-flux
boundary conditions. The parameters are effective rates that
represent basal expression (k1, k4), regulated expression (k2,
k5 and k10), degradation (k16, k6, k11 and k14), complex
formation (k17 and k7) and transport (k11 k13 and k14 k15) of
the corresponding species. We use the values from our
previous parameter scan [30]: k1 ¼ 8.2707, k2 ¼ 3.4869,
k4 ¼ 15.0952, k5 ¼ 1.3488, k6 ¼ 0.4503, k7 ¼ 7.9509,
k10 ¼ 0.4117, k11 ¼ 0.9565, k13 ¼ 10, k14 ¼ 0.2703,
k16 ¼ 1 and k17 ¼ 1. The rate for the activator mobility k15

will be varied in order to study the influence of the AC
mobility. The initial concentrations are drawn from a
normal distribution with mean [c]0 and standard deviation
(SD) 0.005[c]0, denoted by N ([c]0; 0.005[c]0). The
concentrations [c]0 represent the stable homogeneous steady
state for the different variables. In order to identify [AC]
peaks, that is, trichomes, we normalise the final
concentrations [AC]xy by their maximum [AC]max and find
grid cells with relative concentrations above a threshold
of 50%. For each set of conditions, we generate 500
realisations.

2.3 Hexagon and random point patterns

As the generic planar point pattern, we examine hexagon
patterns, that is, patterns in which each point is surrounded
by six others, including perturbed versions with varying
degrees of regularity. We denote the irregular hexagon
patterns by H(1) where 1 denotes the noise level (see the
Appendix for details). Fig. 2 shows three examples of H(1).
The regular arrangement H(0), that is, the deterministic
case, represents uniformly packed cells. Strongly disturbed
arrangements H(1), that is, cases with large stochastic
influence, approach a uniformly random pattern and reach it
for an SD that is on the order of original inter-point
distance [35]. The memory (or recognition) of the initial
unperturbed state H(0) is lost well before the patterns H(1)
and random points get indistinguishable [41]. The
coordinates of the random pattern are drawn separately from
a random uniform distribution with boundaries 0 and D.
We use 110 points, which is the same as in the hexagon
patterns.
∂t[GL1]xy = k1 + k2[AC]xy − [GL1]xy(k16 + k17[GL3]xy)

∂t[GL3]xy = k4 + k5[AC]xy − [GL3]xy(k6 + k17[GL1]xy + k7[TRY]xy)

∂t[TRY]xy = k10[AC]2
xy − [TRY]xy(k11 + k7[GL3]xy) + k11k13k[TRY]xyl

∂t[AC]xy = k17[GL1]xy[GL3]xy − k14[AC]xy + k14k15k[AC]xyl

(1)
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Fig. 2 Effect of noise 1 on hexagon patterns H(1)

a 1 ¼ 0.1
b 1 ¼ 0.3
c 1 ¼ 0.5
Edges of the Delaunay triangulation (lines) determine the neighbours of each point. While non-border points (simple dots) have mostly six neighbours around
them, the neighbourhood of border points (circled dots) is cut off
3 Method of analysis

3.1 Neighbourhood definition

The local environment around each trichome tn is determined
by the set of its neighbours, which we define by a modified
Delaunay triangulation derived from the Voronoi diagram.
In a Voronoi diagram U = {Vn}, one polygon Vn is
constructed around each trichome, which can be interpreted
as its influence zone that is determined by the range of the
inhibition. By joining all pairs of trichomes whose Voronoi
polygons share a edge, we construct the Delaunay
triangulation D. The modified triangulation T is obtained
from D by deleting narrow triangles near the border that are
actually artefacts (see Fig. 3a and the Appendix). Two
trichomes tn1

and tn2
are defined as neighbours if T

contains the edge tn1
tn2

. The set of neighbours of tn is
denoted by N n and the number of neighbours of tn is
denoted by In. Owing to the triangulation, the most
common case is In ¼ 6 in general [39], which also holds for
noisy hexagon patterns (see the Appendix).

3.2 Neighbourhood measures

While the neighbours have to be determined separately for each
realisation k, the neighbourhood measures can be calculated for
146
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all trichomes {tn}k and their respective neighbours together.
Hence, we introduce the index m replacing n and k, so that
m uniquely labels all trichomes on all leaves of one data
set. For each trichome tm, we calculate the neighbour
distances vi and neighbour angles di by

{vi}m = {|tmti|}m and {di}m = {S(ti, tm, ti+1)} (3)

which equal the edge lengths and interior angles of all
triangles involving tm. For a compact representation,
summary statistics can be used (compare [44] for various
tessellation-based statistics). Here, we prefer the variation
coefficient (VC), that is, the ratio of the SD to the mean,
over other summary statistics (see the Appendix). By
definition, the VC is normalised and therefore independent
of scale or density. The VC is commonly used to measure
variability [10] and sometimes even equated with noise [24,
27]. We define the VC for the neighbour angles di by

d∗m = dsm
�dm

with �dm = 1

Im

∑Im

i=1

di and

dsm =

�����������������������
1

Im − 1

∑Im

i=1

(di − �dm)2

√√√√ (4)
Fig. 3 Tessellations and neighbour measures

a Construction of the Voronoi diagram. One line (solid) is drawn between two trichomes and another (dashed) perpendicular to the first at its midpoint. In this
manner, the Voronoi polygon (dashed) is constructed around a point. The intersecting lines (solid) are part of the Delaunay triangulation. If the Voronoi polygon
(dashed) intersects a line segment (dotted) between adjacent neighbours at the border, the edge is removed in the modified triangulation T
b Voronoi diagram U (dashed grey lines) and modified triangulation T (solid grey lines). The neighbourhood relationships are equivalently defined by the
Voronoi polygon (dashed black lines) or the intersecting lines of the triangulation (thin black lines). The contiguous Voronoi polygon (thick black lines) is
the basis for the calculation of the anisotropy. The ellipse (dotted black) represents the anisotropy, where the principal axes (dotted black lines) correspond to
the inverse values of the square root of the eigenvalues (drawn 100-fold longer here for clarity). The trichome in the centre (magnification) has six
neighbours ti. The neighbour distances, for example, v1 and v6, and angles, for example, d3 and d4, (thin black lines and arcs) are the basis for the measures
IET Syst. Biol., 2012, Vol. 6, Iss. 4, pp. 143–153
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where �dm and dsm are the mean and SD of the neighbour angles
at tm, respectively. We exclude the angle between two border
trichomes from our calculations to avoid a bias. The VC for
the neighbour distances vi at tm, denoted by v∗m, is defined
analogously to (4).

We also characterise the shape of the neighbour
distribution N m around the corresponding trichome tm using
the polygon with vertices ti = (Xi, Yi) [ N m (relative to
tm). This contiguous Voronoi polygon [45] is the
agglomerate of all Delaunay triangles Dl involving tm
(Fig. 3b). Here, we calculate its anisotropy, that is, the
dependence of its properties on direction. A well-known
measure to detect anisotropy is the moment of inertia tensor
[46], which is in 2D defined as

Am =
Axx Axy

Axy Ayy

( )
with Axx =

∑Im

i=1

Y 2
i ,

Axy = −
∑Im

i=1

XiYi, Ayy =
∑Im

i=1

X 2
i (5)

Its eigenvalues l1
m ≤ l2

m are inversely related to the lengths of
the principal axes of an ellipse (Fig. 3b). For the special case
of an isotropic mass distribution, the principal axes are of
IET Syst. Biol., 2012, Vol. 6, Iss. 4, pp. 143–153
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equal length so that the ellipse becomes a circle. The ratio
of the eigenvalues is a measure for the deviation of the
mass distribution from isotropy. Hence, we define the
anisotropy of the neighbourhood by

am = 1 − l1
m

l2
m

(6)

which is bounded by 0 ≤ am ≤ 1. Applying this concept to
contiguous Voronoi polygons means that am increases with
the noise level 1 and effectively measures the deviation
from a regular hexagon. We exclude border trichomes from
the calculation of am to avoid a cut-off effect at the border.

3.3 Noise-induced changes in hexagon patterns

We illustrate the effect of noise on generic planar point
patterns by applying our measures to a series of noisy
hexagon patterns H(1) with 0 ≤ 1 ≤ 2 (Fig. 2). We obtain
the probability density functions for v∗m, d∗m and am by
kernel density estimation using a Gaussian kernel function
and a bandwidth that is fixed for each statistic. The
estimated density curves, denoted by f̂ H(1)(d∗), f̂ H(1)(v∗) and
f̂ H (1)(a), are shown in the insets in Fig. 4. For increasing 1,
Fig. 4 Effect of noise 1 on hexagon patterns H(1)

a VC of the neighbour distances, v∗m
b VC of the neighbour angles, d∗m
c Anisotropy of the neighbourhood, am

Main plots show means F, Q and L of the measures v∗m, d∗m and am, respectively, as functions of 1 and relative to FR ¼ 0.436, QR ¼ 23.8 and LR ¼ 0.493 for the
random pattern. The cross corresponds to the value for the experimental pattern, which has the noise level 1∗ ¼ 0.44 as determined in Section 4.2. Insets show
estimated densities f̂ H(1)(v∗), f̂ H(1)(d∗) and f̂ H(1)(a) for selected 1. The errors on the means as determined by a bootstrap with 100 samples are smaller than the
symbol height
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all f̂ H(1)(·) become wider and shift towards larger values.
In case of v∗m, this effect is much weaker than for d∗m and
am. For rather large 1, the relevant f̂ H(1)(·) lie close together
and approach f̂ R(·) for a uniform random point pattern.

To summarise the density curves and enable easy
comparisons, we use the arithmetic means of the three
neighbourhood measures defined in (4) and (6). The mean
VC of the neighbour angles is given by Q = (1/M )∑M

m=1 d
∗
m, where M is the total number of trichomes.

Analogously, F denotes the mean VC of the neighbour
distances, v∗m, and L denotes the mean of the anisotropies,
am. We normalise the measures by FR, QR and LR of the
random point pattern. It follows that F/FR etc. are zero for
perfectly regular and one for random point patterns. In case
of H(1), the relative quantities F/FR, Q/QR and L/LR

increase with increasing noise level 1, first roughly linearly
and then reaching a saturation level for 1 . 1 (main plots
in Fig. 4). The behaviour of our chosen measures illustrates
that they suit our purpose and quantify the degree of
regularity in spatial point patterns.

We now estimate which sample size K is sufficient by
comparing f̂ H(1)(d∗), f̂ H(1)(v∗) and f̂ H(1)(a) for 1 ¼ 0.5 and K
varied from 5 to 2000. All curves are very smooth, but those
for very small K deviate slightly (not shown). For K ≥ 20,
we find no significant differences in all three f̂ H(1)(·), so that
our chosen standard K ¼ 500 for simulations should yield
very accurate results. We have K ¼ 61 for the experiments,
which is well above the threshold.

4 Characterisation of trichome patterning

4.1 Neighbourhood measures

We now calculate the previously discussed measures for our
experimental data. The mean number of neighbours is 6.02
(+0.96) over all trichomes. The distribution of the
neighbour counts per leaf shows a dominance of trichomes
with six, five and seven neighbours (Fig. 5a) with the
average of the mean number per leaf being 6.03 (+0.23).
The means of the three neighbourhood measures relative to
those for a random pattern are F/FR ¼ 0.60 (+0.27), Q/
QR ¼ 0.67 (+0.41) and L/LR ¼ 0.77 (+0.32) (Fig. 4).
Although the trichome differentiation process is governed
by a regulatory network, it exhibits significant influence of
noise and actually shows a medium degree of regularity that
is between a perfectly regular and a random pattern. Hence,
we aim to quantify and try to explain this noise by several
strategies.
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4.2 Noise level

The amount of noise from the various possible contributions
is difficult to estimate from experimental data. Instead, we use
the noisy hexagon patterns to assess the overall amount of
noise present in the observed trichome pattern. For a
particular noise level 1, we measure the differences in the
distributions of the neighbourhood measures v∗, d∗ and a
for the hexagon pattern H(1) and the observed trichome
patterns. For example, the probability that v∗ of H(1) lies in
a specific interval of size Dv∗p is given by f̂ H(1)

p (v∗)Dv∗p,
where f̂ H(1)

p (v∗) is the estimated probability density function
(see Section 3.3) for the step size Dv∗p at the point p. For
the observed trichome patterns, the probability is denoted
by f̂p(v∗)Dv∗p. We calculate their difference for v∗ and
analogously for d∗ and a. The sum over the squared
differences is taken as the measure for the similarity of
H(1) and the experimental trichome pattern. Calculating this
sum for each 1 allows us to find the particular 1∗, for which
the patterns are most similar. In effect, we minimise the
objective function

D(1) =
∑P

p=1

[([f̂p(v∗) − f̂ H(1)
p (v∗)]Dv∗p)2

+ ([f̂p(d∗) − f̂ H(1)
p (d∗)]Dd∗p)2

+([f̂p(a) − f̂ H(1)
p (a)]Dap)2] (7)

The minimum of D(1) defines the optimal noise value
1
∗ ¼ arg min1D(1), which reads 1

∗ ¼ 0.44 in our case
(Fig. 5b). This means that the generic pattern H (0.44)
resembles the observed trichome pattern best.

While this comparison quantifies the noise level in the
trichome patterns relative to generic patterns, it remains to
be examined what causes this deviation from a regular
pattern. Hence, we set out to analyse the source(s) of noise
that play a role for the trichome pattern by studying
variations of our mathematical model. Our strategy focuses
on the effects of spatially different conditions within the
simulation domain, which we encode either in the initial
states of the cells or the individual reaction rates.

5 Effects of cell noise on trichome patterning

At the onset of trichome initiation, the epidermal tissue
consists of identical cells. However, because of the noise
Fig. 5 Qualitative characterisation of experimental trichome patterns

a Relative frequency of non-border trichomes with Im neighbours per leaf. Bar heights represent means and errorbars show SDs
b Objective function D(1) for the noise level in the trichome pattern. The minimum at 1∗ ¼ 0.44 shows that there is a significant amount of noise present in the
experimental pattern
IET Syst. Biol., 2012, Vol. 6, Iss. 4, pp. 143–153
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inherent in all biochemical reactions, the actual cell
composition will differ slightly from cell to cell. This
affects the initial conditions of the patterning system as well
as the rates involved in the patterning process. In the
following, we separately discuss these two specific sources
of spatial variability.

5.1 Random spatially inhomogeneous initial
conditions

The trichome initiation process as described by (1) resembles
an activator–inhibitor system [47] with an immobile
activator. When the simulation of this patterning mechanism
starts at time zero, the states of the individual cells differ
slightly, which is implemented as random spatially
inhomogeneous initial conditions of the differential
equations. The development of the pattern, however, is
considered to be completely deterministic. The resulting
pattern depends only weakly on the initial conditions in case
of typical activator–inhibitor systems where both substances
are mobile, whereas the dependence becomes strong in case
of low activator mobility. In the singular limit of vanishing
activator mobility the optimal alignment of the activator
peaks is impaired, and noise from the initial conditions
IET Syst. Biol., 2012, Vol. 6, Iss. 4, pp. 143–153
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remains in the final pattern. A similar effect of very low
activator mobility is the formation of asymmetric patterns [48].

We simulate our model first with an immobile AC, that is,
k15 ¼ 0, and then increase k15 in steps of 0.005 (Figs. 6a–c).
For small k15, the system exhibits clear AC peaks,
representing the trichomes, which get blurred above
k15 ¼ 0.075, when neigbouring cells of a trichome show
slightly elevated AC levels. These regions widen until all
cells have very similar AC concentrations, that is, the pattern
is lost, near k15 ¼ 0.095. Shortly before, at about k15 ¼ 0.090,
the pattern reaches almost perfect regularity. The transition
from very ordered to no pattern happens in a very small range
of the parameter k15, where the exact magnitude depends on
the chosen discretisation of the mathematical model.

We find by visual inspection that the trichomes are
arranged in a more regular fashion when the AC is mobile.
The relative mean neighbour measures F/FR, Q/QR and
L/LR decrease for increasing k15 in a slightly sigmoidal
fashion (Fig. 6d). For a weak AC mobility k15 ≤ 0.02, the
pattern is hardly affected, whereas for an intermediate
mobility, the regularity increases significantly. This result
shows that there is a threshold below which the system
behaves the same as for an immobile activator (similar to
[48]). Notably, experiments on the trichome patterning
system point towards a cell-autonomous AC, that is,
Fig. 6 Influence of cell noise on the simulated trichome pattern

a–c Simulations with variable mobility of the AC, k15 and constant homogeneous parameters
a Immobile AC, that is, k15 ¼ 0
b Mobile AC with k15 ¼ 0.055
c Mobile AC with k15 ¼ 0.075
d Effect of random spatially inhomogeneous initial conditions on the simulated trichome pattern over a range of k15. Plot shows mean values of neighbour
measures (relative to a random pattern) against mobility of the AC, k15, which are the relative mean VC of the neighbour distances, F/FR (squares), relative
mean VC of the neighbour angles, Q/QR (triangles), and relative mean anisotropy of the neighbourhood, L/LR (circles). The errors on the means as
determined by a bootstrap with 100 samples are smaller than the symbol height
e Effect of random spatially inhomogeneous parameters on the simulated trichome pattern with mobile AC (k15 ¼ 0.075). Plot shows mean values of relative
neighbour measures against cell noise 1k: F/FR (lower group), Q/QR (middle group) and L/LR (upper group). The line styles correspond to the parameters k4

(upper group), k5 (middle group) and k14 (lower group). For clarity, the results for k2, k7, k16 and k17 are not shown, these lie between k5 and k14
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k15 ¼ 0. It follows that the random spatially inhomogeneous
initial conditions restrict the regularity of the trichome pattern.

5.2 Random spatially inhomogeneous parameters

Another method to incorporate spatial variability into the
simulations is to replace the deterministically fixed rates of
the different processes by spatial stochastic fields that
represent varying cell compositions. For simplicity, we
assume that the correlation time [49] of the cell noise is
much larger than the duration of the trichome initiation
process, which allows to treat the stochastic rates as time
independent.

We perform a systematic analysis of the influence of
random parameters on the trichome pattern, in which we
simulate the system with only one stochastic parameter at a
time to distinguish between the influences of the different
processes. All the following simulations are done with zero
initial concentrations and mobile AC (k15 ¼ 0.075) to
minimise the dependence on the initial conditions. The
stochastic parameter fields k̂xy

j are given by

k̂xy
j = kj + kxy with kxy � N 0;

kj

2
1k

( )
(8)

where kj is the corresponding deterministic value (given in
Section 2.2). This specific choice implies that the
cell-individual parameters coincide on average with the
constant value used in all other simulations, which reflects
our interest in the variability between cells (and not in a
shift of the whole process to another parameter value). For
each kj, we generate a series of simulations with
1k ¼ 0.002, 0.004, . . ., 0.01, 0.02, . . ., 0.2, that is, we
increase the range of the cell-individual variations. Fig. 6e
shows the variation of the relative mean neighbour
distances F/FR and angles Q/QR as well as the relative
mean anisotropy L/LR with increasing cell noise 1k for
those parameters that have a significant effect on the
regularity of the pattern when they are randomised. For the
parameters not shown in the plot, the pattern is rather
insensitive to cell noise.

5.2.1 Random expression and degradation rates:
Expression and degradation of proteins are both complex
sequential biochemical reactions, which are influenced by
intrinsic noise. Simulations with cell noise on the
corresponding parameters indeed show an influence on the
resulting pattern regularity (Fig. 6e). In case of k2 (AC-
regulated GL1 expression) and k5 (AC-regulated GL3
expression), this effect is similar to that of the binding rate
for the inactive complex, k7. The shape of the curves is
almost identical. This similarity follows from the fact that
these rates influence the abundance of the AC, which
determines which cell becomes a trichome and which does
not. While the rates k2 and k5 are involved in the self-
amplification of AC, the rates k4, k14 and k16 belong to
processes that are independent of the complex formation.
The curve corresponding to k4 (basal GL3 expression) lies
well below all others, thereby illustrating a weaker influence
of basal expression. The strongest influence is exerted by
cell noise on the direct degradation of the activating
complex, incorporated by k14 (AC degradation). Spatial
variation on k16 (GL1 degradation) also leads to a rather
strong variability, which is identical to that for k7. The
system apparently reacts in the same way to variation in the
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degradation of one component of the activating complex or
the sequestration of the other component by an alternative
complex. In both cases, the formation of the activating
complex – and hence the pattern – is affected.

5.2.2 Random complex formation rates: It is known
that protein-binding rates are strongly influenced by
macromolecular crowding [21, 50, 51]. This concept refers
to the fact that all cellular components experience non-
specific steric repulsion [21, 52]. As the abundance of
macromolecules will, in general, slightly differ from cell to
cell, the macromolecular crowding will vary and as a
consequence also the protein-binding rates. A rough
estimate based on Zimmerman and Trach [53] shows that
10% variation in the fraction of the cell occupied by
molecules, the volume fraction, can lead to at least 30–40%
variation in the protein–protein association rate. A higher
density of cell components triggers more binding events,
which is due to the fact that the resulting complex is
energetically favourable over the single molecules as it
occupies a smaller volume in the densely packed cell [21,
50]. In simulations with noisy parameters k17 or k7 (GL1–
GL3 or GL3-TRY association, respectively), we see an
increase in the relative mean neighbourhood measures F/
FR, Q/QR and L/LR, that is, pattern variability, for larger
cell noise 1k (Fig. 6e). This decrease in the regularity of the
pattern illustrates an effect of cell-to-cell variations in the
volume fraction.

6 Discussion

6.1 Characteristics of trichome patterns

In previous studies, the trichome pattern on Arabidopsis
leaves has been analysed by simple approaches that only
allow a rough pattern classification. Trichomes were
counted along the leaf’s proximodistal axis to find that they
are spaced regularly at initiation [54]. Non-randomness for
trichomes on mature leaves has been detected using the
average distance between nearest neighbours, and a
minimum distance between trichomes has been found by
comparing the numbers of adjacent trichomes that are
observed on leaves and expected by chance [55]. The
results of our study go beyond these by describing the
pattern in a detailed analysis of the spacing of trichomes,
their angular structure and the local anisotropy. In
particular, we base our measurements on a local
environment of each trichome, which represents a suitable
adaptation to the biological system.

We find that the trichome pattern is very similar to a
hexagon pattern with 44% noise. This medium degree of
regularity describes a well-sampled epidermis, which may
represent the best compromise for the plant between the
regulation effort needed for regular patterning and the
potential problems caused by random spacing. Although
trichomes can arise closer together or further apart
compared to a regular pattern, there is a minimal distance
between any two of them. Hence, we hypothesise that the
epidermis is divided into quite regular regions of
competence, which consist of several cells, and that in each
region, one cell differentiates into a trichome. The
irregularity in the pattern then represents situations where
either the competence region is distorted or where the
trichome is not exactly in its centre. Both cases represent a
kind of noise that affects the spatial arrangement of trichomes.
IET Syst. Biol., 2012, Vol. 6, Iss. 4, pp. 143–153
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6.2 Influence of cell noise on the trichome pattern

In order to shed light on the origin of the observed noise in the
trichome pattern, we use simulations to investigate the effect
of spatial variability in different molecular interactions, that
is, cell noise. In terms of the model, this variability implies
random, spatially inhomogeneous initial conditions and
renders the reaction rates to be stochastic fields rather then
deterministically fixed rates. Notably, the influence of the
initial conditions in an activator–inhibitor-related model
decreases with an increase in the mobility of the activator.
We indeed find that the trichome pattern approaches
regularity for increasing AC mobility above a certain
threshold, so that additional stochasticity is introduced into
the system by the cell autonomy of the AC. Furthermore,
the regularity of the trichome pattern decreases with
increasing stochasticity of some parameters. This impact is
strongest for variations in the rates that affect the formation
of the activating complex. Besides other sources of noise,
the influence of macromolecular crowding is increasingly
studied after being neglected for a long time (compare [52,
56]), but its connection to intracellular reactions is not
exactly clear yet. As crowding affects complex formation,
the volume fraction, differing slightly from cell to cell,
affects the regularity of the resulting pattern. In summary,
we point out several potential sources of noise and discuss
their influence on the trichome pattern, which may partially
explain the observed irregularity.

7 Conclusion

In this study, we present a local analysis of a spatial point
pattern and evaluate the influence of cell noise on pattern
formation taking the initiation of trichomes as an example.
Our mathematical methods are tailored to the requirements
of small data sets that result from the observation of
developmental processes in plant biology. We take the step
from a qualitative to a quantitative description of different
planar point patterns, which requires a combination of
experimental and theoretical tools. Although we learn from
comparing real data to generic patterns how much noise the
real system contains, a mathematical model is needed to
investigate the contribution from various potentially noisy
processes. Comparing simulations that incorporate specific
stochastic inputs yields relevant insights concerning the
influence of cell noise on trichome patterning. Performance
of this kind of joint theoretical–experimental study for
other systems will provide further understanding of
developing structures in biology.
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10 Appendix

10.1 Details on experimental data

All data are obtained from rosette leaves of wild type A.
thaliana in the Landsberg erecta ecotype, which contain
GFP fused to the endoplasmatic reticulum signal sequence
(ER) expressed under the GL2 promotor (pGL2::GFP-ER).
This construct marks cells with high GL2 content, that is,
trichomes. Plants are grown on soil under long day
conditions (16 h light, 8 h dark). We use the third leaf at an
age of 8 and 18 days for confocal laser scanning and light
microscopy, respectively. The younger leaves are prepared
with petioles from seedlings, embedded in 1% MS Agar,
and imaged without a cover slip. The older leaves are cut
off the plant, incubated in 75% ethanol and 70 8C for 5 min
to wash out the chlorophyll, and imaged under a cover slip.

10.2 Calculation of neighbourhood measures from
confocal data

A coordinate system is fitted to each leaf such that the origin
lies in the centre of mass and the axes are aligned with the
natural leaf axes as shown in Fig. 1c. If needed, we adjust
the 3D labels slightly so that they lie on the leaf surface
given by the height field. Then, we obtain the influence
zones around each trichome by associating every pixel of
the leaf surface with its closest trichome. From this
Voronoi-like diagram, we determine the neighbourhood
relationships by finding adjacent influence zones. The
neighbour distances vi are calculated by approximating the
geodetic distance along the leaf surface using the height
field data. We take the angles between the line segments
between a trichome and two adjacent neighbours as the
neighbour angles di. For the calculation of the anisotropy,
we generalise the moment of inertia tensor given in (5) to
three dimensions and base the anisotropy on the ratio of the
smallest to the medium eigenvalue analogously to (6). Note
that the largest eigenvalue is not relevant for our study
because its corresponding eigenvector is roughly
perpendicular to the leaf surface.

10.3 Construction of hexagon patterns

We use two grid vectors at an angle of 608 to place points in a
quadratic domain V of size D2 ¼ 50 × 50 arbitrary units
starting from its centre. Adding noise hn, jn [ R yields

(Xn, Yn) = D

2
+ cxhx + hn,

D

2
+ cyhy + jn

( )
(9)

with cx, cy [ Z. The grid vectors are defined by

hx = (d, 0) and hy =
d

2
,

��
3

√

2
d

( )
(10)

where d ¼ 5 arbitrary units is the original inter-point distance.
We define hn and jn so that (Xn, Yn) coincide on average with
their original and the perturbations reflect a noise level 1 by
setting

hn, jn � N 0;
d

2
1

( )
(11)

This implicit definition of 1 uses the fact that 95% of the
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values in a normal distribution lie within two SD of its mean.
The regular lattice is a special case with hn ¼ jn ¼ 0 for all n.

10.4 Construction of the modified triangulation

The Voronoi diagram U = {Vn} and the Delaunay
triangulation D = {Dl} are dual tessellations of a domain V
into non-overlapping and adjacent regions [32]. For
U = {Vn}, the domain V is split into convex polygons Vn

by associating all locations (X, Y ) [ V with their closest
trichome(s), that is, one Voronoi polygon Vn is formed
around each trichome tn ¼ (Xn, Yn). For D = {Dl} with
l ¼ 1, . . ., Lk, the convex hull of all trichomes is split into
Lk triangles Dl by joining all pairs of trichomes whose
Voronoi polygons share an edge.

The border B is initially given by the convex hull of the
trichomes. We check for each triangle TB ¼ {tn, ti, ti ′} that
involves at least two border trichomes ti, ti ′ [ B whether
the line segment ti, ti′ intersects the Voronoi polygon Vn. If
this is true, TB is deleted and B is updated by deleting ti, ti′
and adding tn, ti and tn, ti′ . This criterion is usually applied
to all edges in the Delaunay triangulation D to obtain the
Gabriel graph [38]. We apply our modification step
repeatedly until no more unwanted border edges are found,
taking care not to completely disconnect any trichome.

10.5 Comparison of different summary statistics
for neighbour measures

The mean and median of the neighbour angles di are not
appropriate for detecting the noise level because they are
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interrelated with the number of neighbours per trichome
(Im). This in turn follows a distribution with a peak at
Im ¼ 6 for any pattern (shown in Fig. 7 for noisy hexagon
patterns H(1)). Even random point patterns are dominated
by points with six neighbours, followed by five and then
seven [40]. For each set {di}m and {vi}, we consider the
extremes, quartiles, range, and SD, and compare them for a
range of noise levels 1 (not shown). In both cases, we
choose the SD, which is reliable and powerful to
distinguish between different 1.

Fig. 7 Relative frequency of points with Im neighbours depending
on the noise level 1

Symbols correspond to the number of neighbours Im

Markers refer to disturbed hexagon patterns H(1), the dashed line denotes the
level for random point patterns, and filled markers denote the relative
frequency for real trichome patterns
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