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Abstract

We discuss issues of structural and practical identifiability of
partially observed differential equations, which are often
applied in systems biology. The development of mathematical
methods to investigate structural nonidentifiability has a long
tradition. Computationally efficient methods to detect and cure
it have been developed recently. Practical nonidentifiability, on
the other hand, has not been investigated at the same
conceptually clear level. We argue that practical identifiability is
more challenging than structural identifiability when it comes to
modeling experimental data. We discuss that the classical
approach based on the Fisher information matrix has severe
shortcomings. As an alternative, we propose using the profile
likelihood, which is a powerful approach to detect and resolve
practical nonidentifiability.
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Introduction

Biological modeling and Box’s statement

"Iraditional biological reasoning often is rather qualita-
tive, descriptive, and static, which results, for example, in
cell biology in so-called ‘pathway cartoons’. Mathematical

models based on differential equations can help to turn
these into a quantitative, predictive, and dynamic un-
derstanding of the underlying system. Discussing
modeling in general, in 1979, George E.P. Box coined his
famous statement: “All models are wrong, but some are
useful” [1]. Although the former part of the quote is
intuitively clear, because every model necessarily poses a
simplification of reality, the latter highlights the impor-
tance of assessing what constitutes a #s¢fu/ model.

Bad, good, and useful models

Three properties comprise a #sefu/ model. First, it has to
capture the main effects of the question of interest, that
is, describe the data with reasonable accuracy, and
neglect the rest. Second, a wsefu/ model has to make
experimentally falsifiable predictions to be testable.
Models that exhibit these two properties are good
models. Third, the model should enable to gather in-
sights about the biological system. In a typical modeling
process, one starts off with an initial model based on
current biological knowledge. Usually, this model cannot
explain the data and therefore is a bad model. On the
basis of biological intuition and trial-and-error, one in-
creases the model complexity until the data can be
fitted. Often, this leads to an overparameterized model
that overfits the data. The parameters of such a model
and, in turn, its predictions are not well determined, and
it thus remains a dzd model.

The path from such a bad model toward a good model is
laborious: additional data need to be measured and in-
tegrated, the model complexity needs to be reduced and
balanced to the available data, or a combination of both.
This process needs to be iterated until a good model is
found, which has well-determined parameters and
predictions.

However, such a good model also needs to deliver bio-
logical insights in order to be wsefu/. Only this third
property turns a good model into a usefu/ model. In this
sense, the final goal of mathematical modeling in sys-
tems biology is not the model itself but to use the model
to understand biology. One example of how a model can
be used to gain biological insight, which would be un-
attainable by merely assessing the data by itself, was
given by Becker et al. [2].
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Parameter identifiability

The concept of identifiability is strongly linked to the
transition from bad models to good models. Identifi-
ability analysis is necessary to create good models that
can describe the data and have well-determined pa-
rameters and predictions. It is especially important
when modeling biological systems because the limited
amount and quality of the experimental data with large
measurement noise in only partially observed systems
often lead to bad models during the modeling process.
Concerning identifiability, one distinguishes between
structural identifiability dealing with inherently inde-
terminable parameters because of the model structure
itself, and practical identifiability, dealing with insuffi-
ciently informative measurements to determine the
parameters with adequate precision.

Partially observed dynamical systems
A biological system is translated into ordinary differen-
tial equations (ODEs)

& = f(x,p,u), (1)

comprising 7 model states x(#), unknown parameters p to
be estimated from time-resolved experimental data, and
external stimuli #(#). As data is often recorded on a relative
scale, scaling and offset parameters for background cor-
rections need to be estimated in parallel. Furthermore, in
typical applications, not all components of a cell-biological
system can be measured, for example, because of the
limited availability or restricted capability of antibodies to
discriminate between unphosphorylated, that is, inactive,
and phosphorylated, that is, active, proteins. Thus, an
observation function g(-) is required, which maps the in-
ternal states x to the observations:

y = g(x,p,7). (2)

Typically, the dimension 7 of y is smaller than the
dimension 7 of x. We are therefore dealing with param-
cter estimation in partially observed systems. Moreover,
in systems biology, these ODE models are typically stiff,
nonlinear, sparse, and nonautonomous, and the discrete-
time observations are noisy.

Parameter estimation is usually performed based on the
weighted residual sum of squares, the negative
log-likelihood assuming Gaussian errors

m  dy

) =323 (y” 5 m) SNC

F=1/=1

to determine the agreement of experimental data with the
model trajectories, where yg and og represent & data
points and measurement errors at time points # for each
observable.

On structural and practical identifiability Wieland et al. 61

A common point estimate for the best parameter vector
is the maximum likelihood estimator

p = arg min[xfcs(p)]. 4)

Structural identifiability

Definition of structural identifiability and connection
to observability

Partially observed dynamical systems often exhibit
structural nonidentifiability. A model is structurally
identifiable if a unique parameterization exists for any
given model output. A parameter p; is globally structurally
identifiable [3], if for all parameter vectors p, it holds

) = 30 ) =pi = b (5)

An individual parameter p; is structurally nonidentifi-
able, if changing the parameter does not necessarily alter
the model trajectory y, because the changes can be fully
compensated by altering other parameters. Local
structural identifiability of a parameter is defined by
reducing the definition to a neighborhood v(p) instead
of the entire parameter space. A model is structurally
identifiable, if all of its parameters are structurally
identifiable. Multiple related definitions for structural
identifiability exist; for a comprehensive discussion, see
a recent overview [4].

A structurally nonidentifiable parameter implies the
existence of a manifold in parameter space upon which
the trajectory y is unchanged. However, on this mani-
fold, the dynamic variables x of the model can change,
for example, by a scaling factor, and are thus not
uniquely determinable. This is denoted as nonobserv-
ability, a concept closely related to parameter noni-
dentifiability [5—9].

A priori analysis of structural identifiability

"Two basic approaches exist to assess structural identifi-
ability of nonlinear dynamic models. A priori methods
only use the model definition, whereas a posteriori
methods use the available data to find nonidentifiable
parameters. Many @ priori algorithms have been devel-
oped based on a variety of approaches. Powerful methods
use Lie group theory because nonidentifiabilities are
closely related to symmetries in the system [10—13].
Furthermore, a variety of notable methods exist, which
are based on power series expansion [14], generating
series [15,16], seminumerical approaches [17,18], differ-
ential algebra [19—27], differential geometry [28], and
numerical algebraic geometry [29]. For reviews of some of
these approaches, see Refs. [28,30,31]. Many of these
approaches, especially the early developed methods, can
only be applied to rather low-dimensional systems
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because of their computational complexity. Thus, recent
developments have mainly focused on improving the
computational efficiency of the algorithms, for example,
by local sensitivity calculations.

As a promising example, Joubert et al. [32] proposed a
comprehensive and computationally fast pipeline to cure
structural nonidentifiabilities by reparameterization of the
model in a five-step procedure: (1) a numerical identifi-
ability analysis based on sensitivities; (2) symbolic iden-
tifiability calculations for the low-dimensional candidates
from (1), this renders the procedure fast; (3) computation
of new model parameters, this step is not unique but
requires decisions of the modeler; (4) simplify the original
model leading to a lower dimensional parameter vector;
and finally (5) check the identifiability of the reparame-
terized model. In an application to a model with 21
states and 75 parameters, two groups of nonidentifiable
parameters were detected, and the model was reparame-
terized within minutes.

Analysis of structural identifiability using
experimental data

In contrast to the aforementioned methods, @ posterior:
methods use the available data to perform identifiability
analysis. They infer structural nonidentifiability based

Figure 1

on model fits to experimental data. Similar to some
sensitivity-based @ priori approaches, these approaches
only assess local structural identifiability.

One approach by Hengl et al. [33] suggested to perform
numerous fits and investigate nonparametrically whether
the final parameter estimates form a low-dimensional
manifold in parameter space. This approach also allows
to disentangle different sets of coupled nonidentifiable
parameters.

An informative and successful method is based on the
profile likelihood [34]. The idea of the profile likelihood
is to vary one parameter p; after the other around the
maximum likelihood estimate (Equation (4)) and
reoptimize the remaining ones.

PL(p;)

min [t (9] ©

For the two-parameter examples in Figure 1, the blue
dashed lines show the path in the parameter space
determined by Equation (6). Figure 1A shows the profile
likelihood of an identifiable parameter. For a structurally
nonidentifiable parameter, the profile likelihood yields a
flat line, as shown in Figure 1B. Plotting the remaining
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lllustrative example of likelihood contour plots and profile likelihood for an identifiable parameter and structurally and practically nonidenti-
fiable parameters. Subfigures (A), (B), and (C) show contour plots of x2,; above as well as the profile likelihood versus the parameter below. Lighter
colors in the contour plots signify a lower value of X?es‘ Thresholds for confidence intervals corresponding to a confidence level of 95% are shown in red
and plotted both in the contour plots and the profile likelihood plots. The lowest value of X2, is denoted by a gray asterisk in both the contour plot and the
profile likelihood plot. For the identifiable parameter (A), the profile likelihood reaches both an upper and lower threshold, thus leading to a finite con-
fidence interval. For the structurally nonidentifiable parameter (B), the profile likelihood is completely flat, thus yielding infinite confidence intervals. In the
contour plot, this translates to a flat path, along which x2, does not change. The practically nonidentifiable parameter (C) shows an infinite extension of

the low szes region for lower values of the parameter, never reaching the 95% confidence interval threshold. In contrast, a finite upper confidence bound
can be derived.
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parameters along the profiled parameter reveals which
parameters are coupled to the nonidentifiable one [35].
The profile likelihood was recently extended to include
two-dimensional profiles to allow for the identification
of parameter interdependence [36].

Profile likelihood calculation can be computationally
demanding for larger systems because of the numerical
reoptimization. Addressing this issue, a fast & posteriori
method to test identifiability without the need to
calculate complete profiles using radial penalization was
recently developed [37].

Structural nonidentifiability can also be investigated «
posteriori by a Bayesian Markov chain Monte Carlo
(MCMC) sampling approach. However, for nonidentifi-
able systems, efficient mixing and thus convergence of
the Markov chains is difficule [38]. This problem can
be cured by informative priors, but these would mask
the problem and should only be implemented if they are
based on actual biological insights and prior information.
One recent application in the field identified a minimal
subset of reactions in a signaling network with a com-
bination of parallel tempering and LASSO regression
methods [39].

Reparameterizing structurally nonidentifiable models

Given the recent advances in the computational effi-
ciency of methods, we essentially consider determining
structural identifiability no longer a bottleneck in the
modeling of nonlinear dynamic systems with ODEs. For
models with a high number of connected structurally
nonidentifiable parameters, finding and resolving these
structural nonidentifiabilities can still be challenging.
This is often the case if the number of observed states is
much lower than the number of dynamic states. When
the structurally nonidentifiable parameters are deter-
mined, the problem is usually fixed by a reparameteri-
zation of the model. In the simplest case, this is
accomplished by fixing some of the involved parameters
to a certain value. The price to be paid is typically that
the information about the scale of some components is
lost, which can limit the predictive power of the model.
Nevertheless, biologically meaningful reparameterization
of the models after finding nonidentifiabilites remains a
challenging task (G. Massonis et al., arXiv:2012.09826v2).

Practical identifiability

From structural to practical identifiability

Structural identifiability implies practical identifiability
only for an infinite amount of data with zero noise.
Practical identifiability is important for obtaining precise
parameter estimates. Moreover, it is especially crucial to
ensure that model predictions are well determined. It is
analyzed increasingly often to judge a model’s predic-
tivity [40—44]. The notion of practical identifiability
has been rather vague in the literature, mainly referring

On structural and practical identifiability Wieland et al. 63

to large confidence intervals [45—47]. Some approaches
exist that define practical identifiability as a combina-
tion of model structure and experimental protocol
without actual data [48,49]. In contrast, we consider a
combination of model and data as practically identifiable
if the confidence intervals of all estimated parameters
are of finite size [35].

Parameter confidence intervals and identifiability

The profile likelihood (Equation (6)) provides a proper
assessment of confidence intervals of estimated pa-
rameters in ODE models (Figure 1) by

Clor,(pi) = {pi | PL(p) <X2s(P) +Aa}, (D)

where A, denotes the « quantile of the XZ distribution with
df = 1 degrees of freedom for point-wise confidence in-
tervals [34].

The traditional method for determining confidence in-
tervals based on the Fisher information matrix (FIM)
leads to accurate confidence intervals for linear regression
models. Because the solutions of all nontrivial ODE
models are nonlinear in their parameters, using this
method for analyzing, identifiability of such models is
questionable [50]. Furthermore, in contrast to FIM-based
confidence intervals, profile likelihood—based confi-
dence intervals can be asymmetric and are invariant
under reparameterizations of the model, for example, the
often applied logarithmic transformation of the parame-
ters. Figure 2 shows five parameters with FIM-based and
profile likelihood—based confidence intervals, mainly
taken from applications in synthetic biology [51,52].

Identifiability is obtained if all estimated parameters are
structurally and practically identifiable, that is, have
finite confidence intervals. A nonidentifiable parameter
is called practically nonidentifiable if the confidence in-
terval becomes finite for a given confidence level by
adding additional measurements for the existing ob-
servables (Figure 1C). By adding enough data, a practi-
cally nonidentifiable parameter can be made identifiable.

Bayesian methods for identifiability analysis

Bayesian sampling approaches, for example, MCMC,
can be used to assess practical identifiability [53—55].
"This, however, is only feasible if the model is structur-
ally identifiable because structural nonidentifiabilities
will lead to bad mixing of the sampling algorithms.
Given a structurally identifiable model, MCMC sam-
pling yields similar results as the profile likelihood
analysis [38]. However, a recent application in a
spatiotemporal reaction—diffusion model showed that it
is one order of magnitude slower than the profile like-
lihood [56]. To the best of our knowledge, a compre-
hensive benchmark study comparing the two methods is
so far missing.
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Parameter confidence intervals based on Fisher information matrix and profile likelihood. Confidence intervals for five parameters based on profile
likelihood (blue) and on quadratic approximation using the Fisher information matrix (FIM; orange). FIM-based confidence intervals have two major
problems. First, because of the nonlinearity of the underlying systems, the Cramér-Rao bound on the error is invalid, and thus, the FIM-based confidence
intervals become uncontrollable for a finite amount of measurements. While in (A), the FIM-based interval is larger than the profile likelihood—based
interval, in (B), it is smaller. Second, FIM-based intervals are insensitive to practical nonidentifiabilities. In (C), the FIM-based confidence interval is finite,
and thus, the practically nonidentifiable parameter is not detected. In (D), the practically nonidentifiable parameter leads to a flat FIM-based interval,
wrongly suggesting structural nonidentifiability. Although the structurally nonidentifiable parameter in (E) is correctly detected, similarly to (D), the
calculation of the FIM is challenging because of its singularity in flat likelihood landscapes. The parameters (A)—(D) are adapted from two applications in
synthetic biology ((A), (B), (C) from a study by Schneider et al. [52] and (D) from a study by Ochoa-Fernandez et al. [51]). Parameter (E) is from a minimal
nonidentifiable toy model. Gray asterisks signify the maximum likelihood estimate of the parameter.

Experimental design and model reduction Model predictions have to be sufficiently precise to
Model predictions produce insights. For special cases, this can be achieved
To test the predictive power of a model, confidence  without identifiability [60,61]. If the model predictions
intervals for the predictions can be computed. For this  are not of sufficient precision, one has two principal op-
purpose, forward evaluations of the model are used, for  tions to tailor the model complexity to the information
example, bootstrap approaches [57] or sensitivity anal- content of the data: (1) measure additional data, corre-
ysis [58]. They typically require large numerical efforts ~ sponding to an increase of the dimension of the obser-
in the context of nonlinear biological models with a  vation function gin Equation (2) or (2) reduce the model
high-dimensional parameter space. A more powerful  complexity according to the available data, corresponding

approach is the prediction profile likelihood. to a decrease of the dimension of the parameter space
and/or of the ODE system fin Equation (1). Both options
PPL(z) = min [Xz ] (8) increase the practical identifiability of the model.
res ’

PEAD | gprea(p) =2}
Achieving practical identifiability by new
which is obtained by minimizing x%(») (Equation (3))  measurements with optimal experimental design
under the constraint that the model response gpred(p) is  Practical identifiability can be achieved by adding new
equal to the prediction 2. The prediction profile likelihood — data [44,62]. The process of determining the most
propagates the uncertainty from the experimental data to  jpformative targets and time points for the new mea-
the prediction by exploring the prediction space instead of  gyrements is known as oprimal experimental design and is
the parameter space [59]. frequently applied in different modeling fields, for
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Flowchart of the entire modeling process from initial to final model including identifiability analysis. The modeling process begins with the
inception of an initial model based on prior knowledge and the underlying biological research question. It ends with the final validated model and the

biological insights it provides. The flowchart shows how identifiability analysis

is embedded into the overall modeling workflow. The topics discussed in

this review related to structural identifiability (blue) and practical identifiability (red) are highlighted with colors in the flowchart. The remaining tiles in gray
represent aspects that are beyond the scope of this review. The intricacy of the flowchart shows that the path to biological insights requires multiple
iterations of different methods. Identifiability analysis is an integral part of this workflow and should be performed to gain insights from predictive models
with well-determined parameters. Furthermore, methods dealing with structural and practical identifiability should always be focused on ultimately

progressing along the path toward biological insights.

example, metabolic models [63], animal science [64],
linear perturbation networks [65], or synthetic biology
[66]. The task is related to the search for an additional
measurement that contains the maximal information
about the system or parts of it. For improving the
identifiability of a specific parameter, the model trajec-
tories along the corresponding parameter profile can be
investigated [67,68]. Thereby, measurement points
with maximal information content for the parameter of
interest can be determined, which corresponds to tra-
jectories with high spread. Similarly, the prediction
profile likelihood (Equation (8)) determines the pre-
diction uncertainty of the model at a potential new
measurement time point [59], thus promoting the
identifiability of the whole model. Measurement points
with high prediction uncertainty are effective to
constrain the model further, whereas measurements

with a low prediction uncertainty are better suited for
model selection purposes.

Achieving practical identifiability by reducing model
complexity

If measuring additional data is not feasible, the
complexity of the model has to be reduced. One way is
to fix parameter values or ratios of parameters by means
of prior knowledge [69], sensitivity analysis [70,71], or
profile likelihood [72]. However, fixing parameters can
decrease the interpretative relevance of the model’s
predictions.

Taking this into account, a systematic model reduction
strategy that tailors model complexity to the available
data was suggested by Maiwald et al. [73]. On the basis
of likelihood profiles, they discuss four basic scenarios

www.sciencedirect.com

Current Opinion in Systems Biology 2021, 25:60—-69


www.sciencedirect.com/science/journal/24523100

66 Mathematical Modelling

that are discriminated based on the profile likelihood by
the combinations of either (1) the profile flattens out for
a logarithmized parameter going to infinity or (2) to
minus infinity, and either other parameters are (a)
coupled to the investigated one or (b) not. For all four
possible combinations, there is a cure. For case (1/a),
one differential equation is replaced by an algebraic
equation; for (1/b), states can be lumped; for (2/a), a
variable is fixed, leading to a structural nonidentifiability
that can be cured by the methods discussed previously,
and for (2/b), a reaction can be removed from the model.
This model reduction strategy has been applied, for
example, in Refs. [51,52,74]. Independent of the
applied method, model reduction steps, and in partic-
ular, the conclusions thereof, should always be docu-
mented together with the model according to good
scientific practice to facilitate reproducibility.

Conclusions

Given the multitude of recently developed methods
[13,16,27,32], we consider the file of identifying struc-
turally nonidentifiable parameters as closed. Future
research in this field could focus on identifying biolog-
ically plausible reparameterizations of the model, for
which no comprehensive method yet exists to our
knowledge. Furthermore, the extension of the concept
of identifiability to different model types, for example,
mixed effects models [75,76], is of interest.

Achieving practical identifiability for model and data is
more laborious in practice. Practical nonidentifiabilities
can be detected reliably, for example, by the profile
likelihood method [31]. To achieve identifiability, the
model complexity has to be reduced or additional data
must be added. Profile likelihood—based model reduc-
tion [73] and optimal experimental design [68] provide
valuable methods for these purposes. A flowchart
locating structural and practical identifiability analysis as
discussed in this review within the entire modeling
process is given in Figure 3.

Although the availability of advanced methods for the
detection and cure of structural and practical noni-
dentifiabilities is promising, two related challenges
remain. In many applications identifiability analysis is
not performed with state-of-the-art methods. Particu-
larly, identifiability analysis based on the FIM can be
misleading in typical applications in systems biology. We
propose a more consequent use of the discussed
methods for structural identifiability and especially
profile likelihood for practical identifiability analysis to
check the limitations and predictive power of mathe-
matical models. In summary, we believe the focal point
of research in systems biology should always remain on
the biological insights that can be gained from mathe-
matical models, which are structurally and practically
identifiable.
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