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Abstract: We investigated the problem of identifying the
parameters of a nonlinear fifth order model describing
the population dynamics of two main bacterial groups in
an anaerobic wastewater treatment process. In addition
to addressing problems concerning structural and prac-
tical identifiability, we also analyzed how mathematical
descriptions of bacterial population dynamics can model
real data. Using three data sets recorded under different
experimental conditions, we estimated important bio-
chemical parameters and demonstrated that our model
could describe the data successfully. Parameters, which
are simultaneously determined using information from
all three experiments, have more reliable estimates. We
conclude that, after appropriate estimation, this model
can be used for optimization and the control of contin-
uous processes. © 2002 Wiley Periodicals, Inc. Biotechnol
Bioeng 78: 89-103, 2002; DOI 10.1002/bit.10179
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INTRODUCTION

Anaerobic wastewater purification processes have been
increasingly used in the last few decades. These pro-
cesses are important because they have positive effects:
depollution of higher organic loading, which includes
low sludge production and high pathogen removal,
methane gas production and low energy consumption.

The increased interest in these processes has stimu-
lated mathematical modeling, because it is usually much
faster and less expensive to model a system and to
simulate its operation than to perform laboratory ex-
periments. The application of sophisticated methods of
process control is only possible if mathematical models
are available for the system to be optimized (Schiirbii-
scher and Wandrey, 1991).
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The anaerobic degradation of organic matter is a
complicated biological process. The conversion of or-
ganic matter consists of several independent, consecu-
tive, and parallel reactions in which a close-knit
community of bacteria cooperate to form a stable, self-
regulating fermentation that transforms organic matter
into a mixture of methane and carbon dioxide gases.
These processes go through six main stages: hydrolysis
of biopolimers (proteins, carbohydrates, lipids) into
monomers (aminoacids, sugars, and long-chain fatty
acids); fermentation of aminoacids and sugars; anaero-
bic oxidation of long-chain fatty acids and alcohols;
anaerobic oxidation of intermediary products such as
volatile fatty acids; conversion of acetate to methane;
and the conversion of hydrogen to methane (Jeyaseelan,
1997). Several simulation models of these processes
have been proposed (Husain, 1998; Jeyaseelan, 1997,
v. Miinch, 1999a). Angelidaki et al. (1999) described the
hydrolysis of undissolved carbohydrates and the hy-
drolysis of undissolved proteins as separate paths. Their
model included eight bacterial groups, 19 chemical
compounds, and a detailed description of pH and
temperature characteristics. The specific growth and
decay rates can also be presented with differing levels of
complexity (Angelidaki et al., 1999; Hill et al., 1983;
Moéche and Jordening, 1996; Thomas and Nordstedst,
1993).

The models described require the simultaneous solu-
tion of mass-balance equations for each individual
substrate and bacterial population. Such a treatment is
extremely complex, yielding equations with numerous
unknown parameters. Therefore, simpler treatments
have been developed to predict the dynamic behavior of
digesters. The six main groups of bacteria were divided
into two major groups: acid producing microorganisms
and methane producing microorganisms (Hill and
Barth, 1977; Husain, 1998; Jeyaseelan, 1997).

In this study we investigated such a simplified model,
which is a modified version of Hill and Barth’s model
(1977). Although the model is simplified, it still has a
large number of unknown parameters, and only a little



experimental data is available, which makes the pa-
rameter identification problem difficult to solve.

The main goals of our work were first to investigate
the structural and practical identifiability of the model
and, second, based on these results, to estimate the most
important identifiable parameters for three data sets
obtained from laboratory experiments.

MATERIAL AND METHODS

In this study we used three experimental data sets. The
first data set and the experimental methods used to
obtain this data were published previously (Simeonov
et al., 1996). The last two data sets were obtained in the
same laboratory.

All experiments were conducted in a 5-L automated
stirred fermenter. The working volume of the reactor
was 2 L. A fresh digester was started by preparing a
mixture of water and cattle dung in a ratio that gave a
final total solid concentration of 4.5% for the first data
set, 6.3% for the second data set, and 12.65% for third
data set. The dry weight at the end of the processes was
1.2%, 2.2% and 5.4%, respectively. The decreasing level
also depends on the processing time, which was 51 days
for the first two processes, and 58 days for the third.

During all the processes, the digester was maintained
at a temperature of 34+0.5°C; that is, the processes
were mesophilic. The monitoring of the methane reactor
was conducted by a dedicated data acquisition system of
on-line sensors, which provided measurements of pH,
temperature, rH, and biogas flow rate.

The structural identifiability analysis was made with
the symbolic computational tools in MATHEMATICA
3.0. The solution of the differential equations was car-
ried out numerically with a fourth order Runge-Kutta
method, realized in SIMULINK toolbox 3.0, MATLAB
5.3. For our parameter estimation, we used a nonlinear
constrained optimization method, which is implemented
in the program fmincon in OPTIMIZATION toolbox
2.0, MATLAB 5.3. The programs for calculating con-
fidence intervals and Monte Carlo simulations were
written by the authors.

MODELING
The Model

In our model the anaerobic digestion is represented as a
three-stage process (Ghaly and Pyke, 1991; Hill and
Barth, 1977). During the first hydrolytic stage, the hy-
drolytic bacteria produce extracellular enzymes that
hydrolyze the organic compounds into simple soluble
compounds. The second stage is the acid-producing
stage, in which acid-forming bacteria convert simple
organic compounds into volatile acids. During the last,
methanogenic stage, methanogenic bacteria convert
volatile fatty acids into methane and carbon dioxide.

Complex Organics
(Polysaccharides,
Lipids, Proteins, Nucleic acids)
- - First Stage
Hydrolytic Bacteria (Hydrolysis)
Simple Organics
(Sugars, Fatty Acids, Amino Acids,
Purines, Pyrimidines, Cellobiose, Clycerol)
Acid Producing Bacteria Second Stage
(Acidogenic)
Volatile Acids
(Acetic, Propionic, Formic,
Butyric, Isobutyric,
Alcohols, CO, and Hy
Methane Forming Bacteria Third Stage
(Methanogenic)
Biogas
(CH4 , CO2, H20, Ny, HS)

Figure 1. Anaerobic digestion processes.

Schematically these processes are presented in Fig. 1.
Our model, corresponding to this three-stage scheme, is
presented as follows:

dC
dtS° = —DCs, — BCx,Cs, + DY»Cs,
dC
5= —k = D)Cy,
dCS] MICXI
dt CSl + B X1 CSO Yl (l)
dCy,
= (k2 =D)C,
dCS., H CX7
T —DCys, + Yy Cy, — 2Y2 .
Q = YgHQCXz
where
Yy maxCSI
= "Hax "ol 2
M ksi + Cs, (2)
"e
= Mo max LS, (3)

(ks + Cs,)(1+52)

The interpretation of all variables and parameters and
their dimensions are described under Nomenclature.
The growth rate of acidogenic bacteria p; is modeled
according to the classical Monod formula Eq. (2). The
growth rate of methanogenic bacteria p, is described
using the noncompetitive inhibition model Eq. (3). For
simplicity we assume that inhibition by volatile fatty
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acids occurs only with respect to methanogenic bacteria.
These bacteria are the most sensitive to their growing
conditions (Forster and Wase, 1990). In our model (1)
the dynamic variables are represented by the state vector
x = [x] = [Cs,, Cx,, Cs,, Cx,, Cs,] € R®, the measura-
ble output is y = [Q] € R!, and the model parameters
are represented by the vector p = [pj] = [N max, ks>,
Y, Ba kS] ) klayh M2 max> kiv k27 Y, Yg}T € R12~

In this paper we analyze only batch processes; that is,
from now on we assume D = 0.

In any biologically meaningful model, the concen-
trations must remain positive and bounded. It is easily
verified that for each i X; = 0 implies % > 0. Therefore,
the positive cone {X; > 0} remains invariant. Moreover,
the relation

d 1

k
—ZCXQ <0

= —kiCy, — o1, <

shows that all orbits are bounded.

For the continuous case, when D = 0, there is one
equilibrium point. Stability of the equilibrium, as well as
the conditions when wash-out can appear, were inves-
tigated by Simeonov et al. (1996).

Limitations Caused by the
Experimental Conditions

Because we analyzed batch processes only, we were not
able to investigate the influence of the parameter Y, and
we therefore excluded it from the parameter vector. In
our model only the biogas production rate Q is meas-
urable, and we suppose that the initial values of the
concentrations of the substrates and microorganisms are
known. In our experiments the composition of the me-
dium was measurable only once before mixture, but not
during the experiments.

The estimation of parameters is much more reliable if
there are experimental time series data of the concen-
trations of all substrates and microorganisms. Although
obtaining data about substrate concentrations is possi-
ble, measuring of biomass concentration and microbial
growth is still difficult. In the literature of wastewater
treatment, there is no clear consensus on how microbial
kinetics should be measured or how to interpret the
results from existing technology (Ahring, 1995; Merkel
et al., 1999; Pollard and Greenfield, 1997). The problem
of determining biomass concentration, and especially
how to incorporate the information from different
measuring techniques in the model, is still open.

In the case of continuous cultivation, it is highly de-
sirable to have more measurements for the substrate
concentrations. In that case, D = 0 and the model be-
come more complicated because the parameter Y, has to

be estimated as well. Some results from parameter esti-
mation for a similar model in the continuous case with
measurable substrates are reviewed by Nopens et al.
(2001).

For successful parameter estimation in the continuous
case, we have to perform a series of steady-state experi-
ments at different dilution rates, D. From an experi-
mental point of view the batch experiments are far more
attractive because they are not so complicated and time-
consuming. The main advantages and drawbacks of
different experiments (batch, continuous, and fed-batch)
for the Monod kinetics are reviewed in Nopens et al.
(2001).

Boundary Values for All Parameters

To determine the admissible range of all model param-
eters, we conducted a review of the literature. The results
are presented in Table I. We have not included values
obtained from experiments with simulated media (syn-
thetic wastewater) or with relatively pure cultures (e.g.,
Kalyuzhnyi et al., 2000; Kus and Wiesmann, 1995;
Moéche and Jordening, 1999). Using a single substrate
and a pure culture to describe a reactor that contains a
mixed culture and mixed substrates yields limited in-
formation, because many interactions inherent in mixed
cultures are not taken into account (Hill, 1983).

We have not conducted a temperature correction for
the specific growth rates p; .« and Wy . solubilization
rate B, and decay coefficients k; and k;, because the
different authors have used different substrates, and
there is no information about the involved community
of microorganisms.

A temperature correction would be possible for our
case if we had experimental data for these rates for
different temperatures, but unfortunately this is not the
case. As one of our experimental data sets is taken from
Simeonov et al. (1996), we take our initial values for
these coefficients from there.

THEORETICAL IDENTIFIABILITY

The identification problem is difficult to solve because of
the high number (12) of parameters to be estimated, the
complexity of the model, and the scarcity of experi-
mental data. Therefore, we did not expect all 12 pa-
rameters in our model to be identifiable. Bastin et al.
(1982) and Chalon et al. (1982) applied model trans-
formations to determine which parameter combinations
were identifiable. Unfortunately, even for their trans-
formed model, it was still unclear whether at least the
transformed parameters were identifiable. Furthermore,
there was no one-to-one relationship between the orig-
inal parameter set and the transformed one. Conse-
quently, we have to assume a priori knowledge about
most of the parameters from previous studies or from
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Table I. Literature values of the model parameters previously used in dynamic anaerobic digestion models (mesophilic or thermophilic condi-
tions).
Parameter Substrate and
[unit] Value References microorganisms used Wastewater Temperature [°C]
Mimaxe [day™'] 0.4 Simeonov et al. (1996) Sugars Cattle manure 34 +£ 0.5
0.4 Hill and Barth (1977) Amino acids, sugars Poultry farming 25
1 Angelidaki et al. Carboh. enzymatic Chemical oxygen demand 55
(1993, 1999) cattle manure with
glycerol trioleate or gelatin
5.1 Angelidaki et al. Glucose acidogens 55
(1993, 1999)
0.3 Kiely et al. (1997) Glucose acidogens Codigesting municipal solid 36
waste and pig slurry
0.313 Husain (1998), Hill’s model Biodegradable volatile Different types of 34
reviewed in solids, acidogens farming: pig, beef,
v. Miinch et al. (1999a) dairy, poultry
2.5 Tschui (1989) 35
5 Tschui (1989) and Siergist Sugars 35
et al. (1993)
6 Bryers (1985) Amino acids/amino acids
and sugars
25 Jones et al. (1992) Amino acids and simple
sugars
0.55 Siergist et al. (1993) Biodegradable
soluble organics
ks, mg/L] 25 Hill and Barth (1977) Volatile fatty acids (VFA) Poultry farming 25
0.82 Simeonov et al. (1996) Cattle manure 34 £ 0.5
120 Angelidaki et al. (1999) Acetic acid Chemical oxygen demand 55
cattle manure with
glycerol trioleate or
gelatin
120 Kiely et al. (1997) Acetic acid Codigesting municipal 36
solid waste and pig
slurry
3000 Husain (1998), Hill’s model VFA Different animal wastes: 34
pig, beef, dairy, poultry
64 Masse and Droste (2000) Methanosaeta species Pig manure 20
1280 Masse and Droste (2000) Methanosarcina Pig manure 20
[11, 421] reviewed in Jeyaseelan Acetic acid/acetate
(1997):
154 Mosey (1983) Acetic acid 35
reviewed in
v. Minch et al. (1999a):
30 Siergist et al. (1993) Acetic acid
80 Tschui (1989) Acetic acid 35
500 Bryers (1985) Acetic acid
Y, [mg/mg] 0.06 Hill and Barth (1977) VFA, methanogens Poultry farming 25
0.0242 Simeonov et al. (1996) VFA, methanogens Cattle manure 34 +£ 0.5
0.08 Kiely et al. (1997) Methanogens, acetic acid Codigesting municipal 36
solid waste and pig slurry
0.042 Husain (1998), VFA, methanogens Different animal wastes: 34
Hill’s model pig, beef, dairy, poultry
0.0524 Masse and Droste (2000) Acetic acid Pig manure 20
[0.014, 0.054]reviewed in Acetic acid/acetate
Jeyaseelan (1997):
0.04 Mosey (1983) Acetic acid 35
reviewed in
v. Miinch et al. (1999a):
0.025 Tschui (1989) and Acetic acid 35
Siergist et al. (1993)
0.029 Bryers (1985) Acetic acid
B, [day™"] 0.5 Simeonov et al. (1996) Volatile solids Cattle manure 34+0.5
0.4 v. Miinch et al. (1999b) Insoluble organics Raw domestic wastewater 18+22
0.15 and primary sludge in
0.15 prefermenters of waste
0.05 water treatment plants in
0.092 Canada and Australia
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Table I. Continued
Parameter Substrate and
[unit] Value References microorganisms used Wastewater Temperature [°C]
ks, [mg/L] 150 Hill and Barth (1977) Amino acids, sugars Poultry farming 25
160 Simeonov et al. (1996) Sugars Cattle manure 34+0.5
500 Angelidaki et al. (1999) Glucose Codig. cattle manure 55
with glycerol trioleate
or gelatin
150 Kiely et al. (1997) Glucose Codigesting municipal 36
solid waste and
pig slurry
1805 Masse and Droste (2000) Carbohydrates Pig manure 20
[22.5, 630] reviewed in Carbohydrates
Jeyaseelan (1977):
23 Mosey (1983) Glucose 37
reviewed in
v. Miinch et al. (1999a):
22 Tschui (1989) Amino acids or sugars 35
22 Bryers (1985) Amino acids, sugars
50 Siergist et al. (1993) Amino acids, sugars
200 Siergist et al. (1993) Long-chain fatty acids
2000 Tschui (1989) Long-chain fatty acids 35
ki, [day™] 0.025 Hill and Barth (1977) SO, acidogens Poultry farming 25
0.004 Simeonov et al. (1996) Sugars, acidogens Cattle manure 34+0.5
0.05 Angelidaki et al. (1999) Carbon, enzymatic; Codig. cattle manure 55
0.255 Angelidaki et al. (1999) glucose acidogens with glycerol 55
trioleate or gelatin
0.006 Masse and Droste (2000) Acid formers Pig manure 20
0.008 Masse and Droste (2000) Acetogenic butyric Pig manure 20
reviewed in v. Miinch acid bacteria
et al. (1999a):
0.43 Tschui (1989) Amino acids, sugars 35
1 Siegrist et al. (1993) Amino acids, sugars
reviewed in
Jeyaseelan (1997):
0.8 Mosey (1983) Glucose 37
6.1 Pavlostatis (1991) Carbohydrates
Yy, [mg/mg] 0.2 Hill and Barth (1977) Amino acids, sugars Poultry farming 25
0.0264 Simeonov et al. (1996) Sugars, acidogens Cattle manure 34 +£ 0.5
0.188 Kiely et al. (1997) Glucose acidogens Codigesting municipal 36
solid waste and pig
slurry
0.07 Husain (1998), Hill’s Sugars, acidogens Different animal 34
model wastes: pig, beef,
dairy, poultry
0.228 Masse and Droste (2000) Carbohydrates Pig manure 20
[0.14, 0.17] reviewed in Jeyaseelan (1997):  Carbohydrates
0.173 Mosey (1983) Glucose 37
reviewed in v. Miinch et al.
(1999a):
0.036 Bryers (1985) Amino acids, sugars
0.15 Tschui, Siergist Amino acids/sugars 35
et al. (1993)
0.25 Tschui (1989) Sugars 35
Womaxs [day™] 0.4 Hill and Barth (1977) VFA, methanogens Poultry farming 25
0.4 Simeonov et al. (1996) VFA, methanogens Cattle manure 34 £ 0.5
0.6 Angelidaki et al. (1993) Acetic acid, methanogens Codig. cattle manure 55
with glycerol
trioleate or gelatin
[0.67, 1] Hansen et al. (1998) Methanogens Mixture pig-cattle 55
manure in different ratio
[0.18, 1] Hansen et al. (1998) Methanogens Mixture of pig manure 55

with different ammonia
concentrations
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Table I. Continued

Parameter Substrate and
[unit] Value References microorganisms used Wastewater Temperature [°C]
[0.21, 1] Hansen et al. (1998) Methanogens Pig manure with different 36
H,/CO; ratio
0.6 Kiely et al. (1997) Methanogens, acetic acid Codigesting municipal 34
solid waste and
pig slurry
0.313 Husain (1998), Hill’s Biodegradable volatile Different type wastes:
model solids, acidogens pig, beef, dairy,
reviewed in poultry
v. Miinch et al. (1999a):
0.3 Jones et al. (1992) Acetic acid 35
0.34 Bryers (1985) Acetic acid
0.36 Tschui (1989) Acetic acid
0.48 Siergist et al. (1993) Acetic acid
k; [g/L] 0.3 Hill and Barth (1977) Methanogens, VFA Poultry farming 25
5 Angelidaki et al. (1999) Methanogens, LCFA Codig. cattle manure 55
with glycerol
trioleate or gelatin
3,432 Noykova and Gyllenberg Methanogens, VFA Cattle manure 34 +£ 0.5
41.85 (2000)
0.015 Kiely et al. (1997) Methanogens, acetic acid Codigesting municipal 36
solid waste and
pig slurry
9 Husain (1998), Hill’s model Methanogens, VFA Different animal 34
wastes: pig, beef,
dairy, poultry
k>, [day™] 0.04 Hill and Barth (1977) VFA, methanogens Poultry farming 25
0.004 Simeonov et al. (1996) VFA, methanogens Cattle manure 34 £ 0.5
0.03 Angelidaki et al. (1999) Acetic acid, methanogens Codig. cattle manure with 55
0.016 Kiely et al. (1997) Methanogens, acetic acid glycerol trioleate or gelatin 36
reviewed in Jeyaseelan (1997):
0.019 Mosey (1983) Acetic acid 35
6.1 Pavlostatis Acetic acid/ acetate
reviewed in v. Miinch et al.
(1999a):
0.003 Bryers (1985) Acetic acid Codigesting municipal 35
solid waste and pig slurry
0.005 Tschui (1989) Acetic acid
0.1 Siergist et al. (1993) Acetic acid
Y, [mg/mg] 245 Hill and Barth (1977) SO, amino acids and poultry farming 25
sugars
45.51 Simeonov et al. (1996) SO, sugars Cattle manure 34 £ 0.5
3.543 Angelidaki et al. Yield of acetate from Codig. cattle manure 55
(1993, 1999) glucose degraders with glycerol trioleate
or gelatin
0.38 Kiely et al. (1997) Yield of acetate from Codigesting municipal 36
glucose degraders solid waste and pig slurry
9 Husain (1998), Hill’s Yield of acetate from Different animal wastes: 34
model glucose degraders pig, beef, dairy, poultry
reviewed in v. Miinch
et al. (1999a):
26.7 Bryers (1985) Amino acids, sugars
21.22 Tschui (1989) Long-chain fatty acids 35
5.66 Siergist et al. (1993) Amino-acids/sugars
3 Tschui (1985) Sugars 35
Y, [L? CH4/ 74.54 Simeonov et al. (1996) Yield of methane from Cattle manure 34 + 0.5
mg m.o.] VFA for methanogens
15.37 Husain (1998), Hill’s model VFA, methanogens Wastewaters from different 34
reviewed in v. Miinch types of animal farming:
et al. (1999a) pig, beef, dairy, poultry
19.5 Tschui (1989) and Siergist Yield of methane from 35
et al. (1993) acetic acid
16.74 Bryers (1985) Yield of methane from

acetic acid
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the literature. In this study we assume only the subset of
the parameters p2 = |1} max, Ks,, Y2] to be unknown. The
reason for this choice will be explained later. We also
suppose that all initial values of the state variables are
known.

First we discuss whether the unknown subset of the
model parameters is theoretically identifiable. We have
to determine whether identifying every parameter in p,
from precise and noiseless experimental data is possible
(Godfray and DiStefano, 1985; Julien et al., 1998).

There are several approaches to proving structural
identifiability:

1. Vajda’s approach, based on the local state isomor-
phism theorem and developed from Vajda et al.
(1989) for proving the theoretical identifiability of
control systems. Unfortunately, this approach is not
applicable in our case for a batch model without ex-
ternal input (Joly-Blanchard and Denis-Vidal, 1998).

2. Ljung’s approach for testing theoretical identifiabil-
ity using differential algebra. The question of global
identifiability is reduced to the question as to
whether the given model structure can be rearranged
as a linear regression (Ljung and Glad, 1994). An
improved version of this approach is presented in
Denis-Vidal et al. (2001). The computer implemen-
tation of Ljung’s method, described in Wang (1995),
was tried, but unfortunately did not yield any results
due to computational problems: The complexity of
this method increases rapidly with the size of the
problem.

3. The transformation of the nonlinear model into a
model linear in the parameters (Dochain et al., 1995).
We were not able to find such a transformation for
our case.

4. The Taylor series expansion approach (Godfrey and
DiStefano, 1985; Holmberg, 1982; Pohjanpalo,
1982), which proves to be successful in our case.

Our model (1) is presented in the following form:

x(t,p) = f(x(,p), 1, p)
M ¢ y(t,p) = g(x(1,p), 1,p), 4)
X0 = X(%,p)

In model (4) the parameter vector p is presented as p =
[P1. pZ]Tr where  p1 = [Cs,(0), Cx,(0), Cs,(0), Cx,(0),
Cs,(0),B, ks, ki, Y1, Wy maxs Kir k2, Y, Y| is the vector of
known parameters, p2 = [l maxs ks, Y2] 18 the vector of
unknown parameters, and f and g are nonlinear vector
functions that define the known coupling parameterized
by the parameter vector p, see (1). We assume that
P2 € Q, where Q is an open subset in R?. The global (cf.
local) identifiability at p, € Q of the model MP is de-
fined as follows (Denis-Vidal et al., 2001; Pohjanpalo,
1982): for any p; € Q (cf. there exists an open ¢-neigh-
borhood N(pz,¢) C Q, such that for any p; € N(pz,¢)),
p2 # p, the systems MP and MP will yield different

outputs. These definitions are generically extended so
that MP> is said to be globally (locally) theoreti-
cally identifiable if it is globally (locally) identifiable at
all p € Q except the points of a subset of zero measure
in Q.

In the Taylor series approach (Pohjanpalo, 1982), y(t)
and its successive time derivatives are evaluated in terms
of the unknown model parameters p, at a particular
time, usually t=0, that is:

12
»(t,p2) = 3(0,p2) + 50, p2) 1 + 5P (0, p2) 5+ .

; t
+ 300, p2) 5+ - (5)

where (0, pz) = (0, pa).

Because the measurement vector is unique, all its de-
rivatives are unique. Then the problem of showing the-
oretical identifiability for model (4) with respect to the
parameters p, is reduced to determining the number of
solutions for p, for a set of algebraic equations:

g(k)(x(0)7p) :)’<k)(0apz) k=0,...,00, (6>

where g¥) is the k' derivative of the vector function g.
The Eq. (6) is in general nonlinear in the parameters.

By definition, the parameter set p, is unidentifiable if
the set of solutions is uncountable, it is locally identifi-
able if the set of solutions is countable, and it is globally
identifiable if there is a unique solution (Chappel
et al., 1990; Godfray and DiStefano, 1985; Pohjanpalo,
1982).

Our theoretical identifiability analysis with respect to
the parameter vector p, is given in the Appendix. Under
some conditions these parameters are locally identifiable
with two solutions at most. If there were more solutions
for these parameters (in one of the examples of Poh-
janpalo [1982] there were 36 different solutions), then
the local identifiability would be of very little value.

To find useful identifiable parameter combinations,
we also used the results from sensitivity analysis
(Noykova and Gyllenberg, 2000). Depending on their
influence on the output variable Q, we divided all pa-
rameters into three groups: (1) kinetic parameters in-
cluded in the equation for py, B, and decay coefficient k;
(2) kinetic parameters included in the equation for ,
and the decay coefficient k,, and (3) all yield coefficients.
We had to choose only one parameter from each group
because the Taylor series approach does not provide
results for theoretical identifiability in cases with more
than three parameters. The reason is that computational
problems appeared because the expressions are very
complicated, and the memory of MATHEMATICA
was often exceeded. This clearly shows that existing
methods for identifiability analysis have to be improved,
especially with respect to their computational imple-
mentation.
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Table II.

Dependence of the noncompetitive substrate inhibition p, = p,(Cs,) on Cs,(0) (or Cs,qum in some cases), ks, and k;.

Specific case

Possible cases approximation Approximation of the function p, = p,(Cs,) Comments: possible simplifications
Case 1 ks, > Cs,sum /\&17‘(3 ~ % Ly & %"k' (k,i?s ) Monod equation with maximal specific
o ’ : . growth rate o = “2,‘(‘;“}"’ and saturation
constant k;. )
Case 1.1 k; > Cs,sum kiia ~ % W & %Cs; Linear dependence 1, = p1,(Cs,)
Case 1.2 k; < Cs, (0) G iSCS 5~ 1 W, ~ “ZA?;“" W, is a constant
i 02
Case 2 ks, < Cs,(0) (kh(flcs 5 A~ W, & ;"Tcsk Remark: p, = p,(Cs,) has a maximum
T : w; when Cy = +/kiks,
[kiks, 0 when CSZ (0) =0 . .
Case 2.1 % o 2 1 W, = N 0} > 0 W, = W, (Cs,) can be replaced with a
2 Momax When Cs, (0) > more simple discrete model
0 Cs,(0)=0
ik X Vi .
Case 2.2 & ((i)z <1 w=23 H when 0 ; Cs:(0) < Vhiks, W = i (Cs,) can be replaced with a
2
Ho max Ki more simple discrete model
= —=22— when Cs,(0) > /kik p
Ha /(,' ¥ CS: Sz( ) = i8S,
Case 3 kg, is in the same range as Cs, (0) or Cs,sum
V/kiks, max Cs
Case 3.1 Csz((;)- >1 W A2 :lz\ﬁ—csz Monod dependence

12 max Csy

- Csy
(ks, +Cs,) I*T’

Vkiks,
Case 32 ¢ < 1 n =

Typical noncompetitive substrate
inhibition dependence

PRACTICAL IDENTIFIABILITY IN THE CASE
OF SPECIFIC PARAMETER RELATIONSHIPS

In the previous section we demonstrated the structural
identifiability of the parameters [max, ks,, and Y, given
the model structure and perfect data of the output
variable Q. Here we discuss the practical identifiability
problems related to specific parameter combinations.
After obtaining the parameter estimates, we discuss the
practical identifiability problems related to the quality of
the experimental data and their informative content.
These problems arise in the case of real experimental
data, often complicated by unknown noise characteris-
tics (Dochain et al., 1995; Holmberg, 1982; Vanrolleg-
hem and Dochain, 1998).

As Holmberg (1982) demonstrated with the Monod
model, it is possible to make model simplifications if the
biological parameters are in specific areas of the pa-
rameter space.

To generalize this idea, we analyzed the dependence of
the noncompetitive substrate inhibition described by p,
in Eq. (3) on parameters pomax, ks,, and k;.

We demonstrate the parameter relationships for
which the noncompetitive substrate inhibition can be
replaced by simpler mathematical descriptions, in some
cases even by a simple linear dependence so that the
model could be drastically simplified. We investigated all
possible cases.

Later we will be able to check possible model reduc-
tions for given pymax and k; from a priori knowledge and
estimated kg, from experimental data.

The function py(Cs,), Eq. (3), can take on a different
shape depending on the ratio between the parameter kg,
and the value of the maximal substrate concentration

Cs,max- The substrate concentration Cgs, can take values
0 £ Cs, £ Cs,max- The maximal substrate concentration
Cs,max can take values Cs, (0) < Cg,max < Cs,sum, Where
Cs,sum = Cs,(0) + Cs,(0) + Cs,(0) is the sum of all ini-
tial substrate concentrations in the beginning of the
batch process. To analyze the dependence of i, (Cs,) on
the three parameters, we distinguished between three
different cases. The main results from the analysis of
these cases are summarized in Table II. All possible
situations in Case 1 are shown in Figure. 2. This figure

W [mg/1]

0.014 T T T T T T

ki=10000

0012 | /_— ki=1000 |
L k=100
001 | ]
0.008 | - i
— ki=10
0006 | /

ki-3
/_

PSS
6.004 | o [_kizz
-
k=1
0.002 | / ]
— k=0.5
o ‘ , . ‘ . f— k=03
2 25 3 35 45 5 55 6
Cs2(0) Cszmax for k=10000  Cgy [mg/1]

Figure 2. The specific growth rate p, as a function of Cg, for ks, =
160 (mg/L) and different values of the inhibition coefficient ;.
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Figure 3. The specific growth rate i, as a function of Cg, for ks, =
0.01 (mg/L) and different values of the inhibition coefficient k;.

shows that all curves between the lower and upper ones
can be approximated linearly with a high degree of ac-
curacy. All possible situations in Case 2 are shown in
Figure 3. The parameter [,.x determines an upper
bound of the specific growth rate, and the equation
Wy = “Z‘C“—;‘k’ determines a lower bound of p,. The graph-
ical representation of Case 3 is given in Figure 4.

From this analysis, we conclude that if the saturation
constant is ks, > Cgs,sum 0T ks, < Cs,(0), the model Eq.
(3) can be reduced to the Monod or simpler equations.
In these cases, the Haldane approach to noncompetitive
inhibition kinetics is not feasible.

Ha, [mg/1]

T T T T T T T T

ki =1000.10000

=100
— ki=10

o os . 15 > 25 2 as ] e

Csr (0) Cormanfork=os % [M&/1]

Figure 4. The specific growth rate p, as a function of Cg, for kg, =
0.82 (mg/L) and different values of the inhibition coefficient k;.

Note: For our practical identifiability investigation in

Y S’;f};; > 1) we used the value

Cs,(0) instead the maximal substrate concentration
value Cg,max. We were not able to predict the value
Cs,max because it is influenced by the dynamics in the
first two stages of the model. Consequently, it is possible
that some of our predictions for the Monod model are
valid only for the concentrations Cg,max = Cs,(0). Our
simulation studies show that, in most cases, this as-
sumption is true, see Figures 3 and 4, where the initial
conditions of all substrates are taken from our labora-
tory experiments.

Cases 2 and 3 (inequality

RESULTS FROM THE PARAMETER
ESTIMATION IN THE CASE OF NOISY DATA

Qualitative Analysis of the Results from
Parameter Estimation

After investigating local theoretical identifiability for
Wimax» Ks,, and Y, we used our experimental data to
estimate these biochemically important parameters. Al-
though the data sets were recorded under similar ex-
perimental conditions, they describe three different
situations: (1) the normal case, (2) a case with strong
substrate inhibition, and (3) a case with high organic
loading.

Before starting our estimation, we checked whether
the conditions for the local structural identifiability held
(inequalities [14], [22], [23], and [24] from the Appendix).
For this purpose, we assumed Q@ = 0™°9(0), and
quite arbitrarily the first two derivatives 0V _ 0® _ 0.
We used MATLAB for our calculations. For all three
cases, these inequalities held, and model (1) is locally
identifiable with respect to p,.

We estimated the kinetic parameters [jmax and ks,
separately for different data sets because we had no in-
formation about the microorganisms involved, and we
expected that they would have different characteristics in
different data sets. We estimated the yield coefficient Y,
simultancously for all data sets because we assumed the
same biochemical reactions. We expected smaller confi-
dence intervals for this parameter because we used much
more information in the estimation process, namely
all three experiments, than for the other parameters.

In particular, we wanted to discover whether the
mathematical model could describe all three different
experimental situations given the estimated parameters.

To start the estimation procedure, we first needed
values for the biological parameters, which we took
from the literature. These can be found in Table I,
written in boldface. As the second experimental data set
shows strong substrate inhibition, i.e., low pH values
during the experiment, we assumed a different inhibition
coefficient for this data set. For the second data set, we
assumed k; =3.432 (mg/L) and for first and third data
set, k; = 41.85 (mg/L). Second, we needed starting

NOYKOVA ET AL.: ANALYSES OF ANAEROBIC WASTEWATER TREATMENT PROCESSES 97



Table III. Initial values of the substrate and biomass concentrations for different experiments.
Initial values of the state variables
Cs, (0) Cx, (0) Cs,(0) Cx,(0) Cs,(0)
Experiment 1 14.24 0.1 7 0.01 3
Experiment 2 14.24 0.1 7 0.01 6
Experiment 3 48 0.1 30 0.01 3

conditions for the state variables. As the first data set
was the same as in Simeonov et al. (1996), most of our
initial values were the same as the values given there (see
Table III).

For our estimation we used OPTIMIZATION tool-
box 2.0 in MATLAB 5.3. We used the nonlinear con-
strained optimization method because we have
information about the boundaries for the parameters to
be estimated. Our optimization criterion is a sum of the
optimization criteria for every data set:

With the estimated value of parameter ks, for the
second data set the inequality Civffo? =0.819 < 1 still
22

holds, and we have a typical noncompetitive substrate
inhibition curve for the second experimental situation.

For the other two data sets the inequality —ka? > 1

holds, which means we have typical Monod curve. This
shows that the obtained results from the estimation
procedure are in agreement with the observed experi-
mental phenomena.

CRIT(pz) = CRIT; (pz) + CRITz(pz) + CRIT3(p2),
()
Practical Identifiability of the Estimated
o Parameters
CRIT( Wi Ei=1,...,3, (8 _
/(p2) Z = Qo) J ® Sensitivity Analysis
Here we investigate the influence of a small deviation in
where w; = are weighting coefficients, p2 = |KUimax»

error;
ks,, Y>| is the parameter vector to be estimated, and the

number of data points is N = 50.

The numerical results from our estimation are given in
Table IV, and the graphical results are shown in Fig. 5,
6, and 7.

The results from the estimation show that the model
can fit the experimental data for all three experimental
situations.

The estimated values of the parameter . for all
three experimental sets reveal an almost linear depend-
ence of the Monod curve p; = p; (Cs,). This means we
can assume the estimated p; . values are true only if we
are sure the values ks, are determined very accurately.
This also follows from Holmberg’s (1982) results con-
cerning the practical identifiability of the kinetic coeffi-
cients in the Monod model.

the parameter set on the fit of the model to the data.
This means we are interested in the value of the objective
functional CRIT; for a parameter set slightly differently
from the optlmal one. This expected value is given by
Eq. (9) (Vanrolleghem and Dochain, 1998):

E[CRIT;(pz2 + 5p,)]

e[ (2200) (20 e,
+ XN: tr(Ciw;)

i=0

in which C; represents the measurement error covariance
matrix. The term between brackets is the Fisher infor-
mation matrix and expresses the information content of

Table IV. Numerical results from the estimation.
Simultaneous estimation of Y3
First data set Second data set Third data set

W max 0.8313 +0.08 0.27 +0.08 0.4263 +0.06

-0.07
ks, 5.0858 +0.4 7.0305 +2.2 22.5625 +0.7

-0.3 -1.7
Y3 0.0127 +0.0003

—0.0004

CRIT 670.3802
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Figure 5. Results from parameter estimation for first data set. 9™°%!
is very close to O°*" for the points with high weighting factors.

the experimental data (Vanrolleghem and Dochain,

1998):

i=0

The terms % are the sensitivity functions of the pa-
rameters p, with respect to the output measurable var-
iable Q. The sensitivity analysis is a central task in the
practical identifiability study (Holmberg, 1982; Noyk-
ova and Gyllenberg, 2000; Vanrolleghem and Dochain,

Q[I/day]

. /

; o

AW
'S

4\

i /T
0 1 0 30 40 50
time [days]

igure 6. Results from parameter estimation for second data set.
Figure 6. Results fi p t timat: fi d dat: t
0™°%! present the main trend in the measurable behavior O°*P.
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igure 7. esults from parameter estimation for thir ata set.
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1998; Yordanova and Noykova, 1996). Here we use the
relative sensitivity functions, logarithmic sensitivity
functions, because they are nondimensional and allow
us to compare the results for different parameters and
variables. These functions are defined as:

~ 0lnQ

i=i=1,2,3. 11
0 = Binpy (11)

Vanrolleghem and Dochain (1998) suggested a useful
test for practical identifiability. If the sensitivity func-
tions are linearly dependent, the model is not practically
identifiable. Stronger evidence can be obtained by cal-
culating of the rank of the Fisher information matrix. If
no linear dependence exists, it should be full rank. Ac-
cording to our results, we have rank(F)=3, i.e., the
Fisher matrix has full rank, for all data sets. This means
our model is practically identifiable with respect to the
parameters Wymax, Ks,, and Y, for all three data sets.

Confidence Region of the Parameter Estimates

We can measure the quality of the estimates quantita-
tively by calculating confidence regions. Unfortunately,
in nonlinear systems an analytical description of the
probability distribution of the parameters exists only in
the limit of large number of data points, namely using
the asymptotic normality properties of the maximum
likelihood estimator (Cox and Hinkley, 1974). In this
rare case the Hessian matrix, i.e., the second derivative
of the score function with respect to the parameters, can
be used to obtain confidence intervals. In experiments
with small sample sizes, it is better to rely on the Monte
Carlo simulation (MCS) (Press et al., 1992). The idea of
the MCS is that the probability distribution of the pa-
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rameters at the convergence point does not differ sub-
stantially from the probability distribution of the true
values, because we assume that our estimate is close to
the true parameters. Therefore, we can use our estimate
to simulate many data sets closely related to the original
data set. We can obtain an approximation of the
probability distribution for every parameter and hence
can calculate 95% confidence intervals for all parame-
ters.

One of the advantages of this method is that we use
the original nonlinear model instead a linear approxi-
mation in the neighborhood of the best parameter esti-
mates.

The results after applying the MCS method are dis-
played in Table IV. Due to the small number of data and
the nonlinearity of the model, confidence intervals are
not symmetric and the computation of the confidence
intervals with the Hessian matrix approach would yield
inappropriate results. The parameter Y,, which was es-
timated simultaneously, could be determined most reli-
ably. This is a clear sign that simultaneous estimation
using many experiments is superior to the analysis of
single experiments.

To summarize, the model is able to describe different
experimental situations, producing reliable estimates
with relatively low confidence intervals.

CONCLUSIONS

We investigated a modified fifth order nonlinear Hill’s
and Barth’s model, conducting both structural and
practical identifiability analyses. The results show
that the model is locally structurally identifiable. Prac-
tical identifiability analysis was carried out using several
approaches — qualitative analysis of the kinetic pa-
rameters for methanogenic growth, sensitivity analy-
sis, and calculating confidence regions using Monte
Carlo simulations. We conclude that the model is
practically identifiable and the parameter estimates are
reliable.

In addition, we have provided a review of the litera-
ture concerning the possible parameter values. These
values show the possible parameter boundaries, which
can assist the work of other researchers in this area,
too.

Finally, three main important parameters were esti-
mated. One important feature of the estimation proce-
dure is the simultaneous estimation of the parameters,
which make the parameter estimates more reliable.

The results from the parameter estimation show that
the model can describe different experimental phenom-
ena. We conclude that, after appropriate estimation, this
model can be used for optimization and control of
continuous processes, which is the subject of our further
work.

APPENDIX

Theoretical Identifiability Analysis with
Respect to the Parameters pimax, Ks, and Y,

If we denoteX) = JXOP and QU = JQ;%"), model (1)
can be written as:

1 0 0 0
cy) = -pcy) —pc'cy),
0
C(]) ulmaxCES‘I) ky (0)
x o k1| G
k51 + CS]
(0) ~(0)
1 0 M xCS,- CX
) _ BCE(?)C( ) ma 1

S
" ks, + C§H Y,

(0)
(1) _ “2mdxc (0)
= ©) 4 0 any R G (12
(kg +Cg)) <1 + %)
0 0
C(l) _ Y “]mdfoS]) C(O) u2mz1xcf92> C)(((z))
S ke + c ) AN 1
Si (ks, + Cg)) [ 1+ 22
0
00 — v, Hom s )

0 Xy
(ks, + C§) <1 +k)

Determining K,
We can determine parameter kg, directly from the last
equation from model (12) because the initial values of all
variables, as well as the values of the parameters Homax
and k; are known:

C (kitoman C. Y, — kiQ© — 00CY))
ks, = (13)
Q (kl + CSz )
As kg, > 0, one necessarily has
kitoman C Ye > (k@ + 00C)). (14)

Determining the pimax and Y, Values

These values have been determlned in two steps:
Determining the values Cfg and C ) . We have to find the
first two derivatives for all state varldbles in model (12).
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For this purpose we use the symbolic computational
tools in MATHEMATICA 3.0. Using the information
for the known values ps, Cy,(0), Cy,(0), Q(0), 0V, and

2 we can ﬁnd exact expressions for the derlvatlves
Q(l) Q(2) C 7’ and CS)

To calculating C / directly from the fourth equation
of model (12), we assume that all parameters and initial
values in this equation are known.

For the first derivative O'" we obtain the expression:
Determining C<SI) from the Eq. (15):

where A4, A, Az, A4, and As are known constants be-
cause they are functions of known variables:
0) 0
L Chety,
ks, + Cg)l)
0) (0
ki M2 max ng) CE\’;
(ksz + Sg)(kl + S(z))

Ay =~

0 1 0 0
Kibtama (RS (s, + ) ) (ki + € + € (ksoi = (C9)7) €)Y, )

o — . - (15)
o ) (hr )
) ©)
(0)\2 ] (0) 2 (0) . C,\zkiUZmaxCSZ Yy
i (ks, + Cs, )" (ki + Cs,) (Q (s 700+ ) g Y, CY) (—kiC) (ks + CSI )+ ks, C5))
et e (s, ki — COY Yy, (ks, + C§))?
(16) Lo
(0) ~(0) [ ~(0) 51 Cx
For the second derivative C()?z), we obtain: ) YbCX1 C51 (C& - (ks, +1C§O,)l) Y1>
4= 3
(0)
(2) ki“Zmang? (ksl + CSI )
CXz CXz —ky + 0) 0)
(kSz + CS2 )(ki + Csz ) (1) (0) ~0)
(ks, + C9) (ki + C§))? (ks, + Cs) ) (ki + Cg,)
kluZmang(’)Z Sv ( kkS’ ( ?))2)

degj;:f\?;lggg C from the equation for the second (ks, + Csz) (k; + ng)

In Eq. (18) only the value Cs is unknown.

(1) 0)’
Q(z) Y ki u2max(2ch C Sy (k )(kS? + C )(k kSz (2> ))
(ks, + Csz) (k1 + Csz)
3
| Yekiboma (2(CY) ) (kiks, (ki + ks,) + 3kiks, C5) — €5 )CF)
(ks, + C§) (ki + CY)Y?
2) (0 0) (0 0
ngiHZmang(z) ng) + ngiHZmang(g) Cg‘g)(kiksz B (ng))2) (18)

(ks, + C§)) (ki + C§))

Constructing and solving the set of al ebrazc e uatlons
in respect Wmax and Y,. The values C ) and C have
been determined. Then we can ex ress these values in
terms of derlvatlves CXR CX1 CS0 Cgl), Cgf and the
value Cx (Eq. [12]). Thus, we can write the following

system of equation:

1 A2
CY) = At + 5 (19)
2
2 As
C_(gz) = l“lllllElX(A3 + A4ulmax) + 72’ (20)

(ks, + C§)) (ki + €YY’

Because Eq. (20) is quadratic in respect to [ymax, it 1S
impossible to find a unique solution in respect to this
parameter. After applying the symbolic computation in
MATHEMATICA, it is possible to observe that there
are, at most, two solutions for the coefficients p;m.x and
Yz:

— A1As £ v Discr)

1
1 2

A
(1)

Y;ﬁz R
Alymax — Cs,
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As the specific growth rate py,.x has positive real
values, the following conditions should be satisfied to
guarantee at least one solution for this parameter:

Discr = A} A2 — 24> As5(A, A3 + 244CY))
+ A3(A3 +444C5)) > 0 orV/Diser ~ 0 (22)

1
——(AyA3 + A1 A 0 23
2A2A4(23+15)> (23)
Analogously, the parameter Y, will be positive if the
following condition is satisfied:
A — C) > 0. (24)
Our conclusion from the theoretical identifiability
analysis is that if the inequalities (14), (22), (23), and (24)
hold, the model parameters pi,.x and Y, are locally
identifiable with at most two solutions, whereas kg, is
uniquely identifiable.

We are grateful to Ivan Simeonov for allowing us to use the
experimental data sets obtained at the Central Laboratory of
Bioinstrumentation and Automation, BAS, Sofia.

NOMENCLATURE
Cs,, volatile solids in the influent (g/L)
Cs,, Cs,, Cs, concentrations of volatile solids, soluble volatile

solids, and volatile fatty acids (mg/L)
concentrations of acidogenic and methanogenic
bacteria (mg/L)

D dilution rate (day™)

Cy,, Cyx,

ki, ko decay coefficients for acidogenic and methanogenic
bacteria (day™")

ks, , ks, saturation constants for acidogenic and
methanogenic bacteria (mg/L)

ki inhibition coefficient for methanogenic bacteria
(mg/L)

p parameter vector

Q biogas production rate (L/day)

X vector of state variables

y output

Y, > yield coefficients for acidogenic
(mg organism/mg soluble organics)
and methanogenic (mg organism/mg volatile acids)
bacteria

Y5 yield coefficient for the yield of volatile acids from
soluble organics (mg volatile acids/mg organism)

Y, yield coefficient with respect to the gaseous output
(L’mg™)

Y, fraction of volatile solids in the influent that can be
solublized (mg/mg)

B solubilization rate per unit of acidogenic biomass
(L/mg day)

Wiy specific growth rate of acidogenic and methanogenic

bacteria (day™")
maximum specific growth rate for acidogenic and
methanogenic bacteria (day™")

Himax> H2max
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