
Chapter 18
Receptor Dynamics in Signaling

Verena Becker, Jens Timmer, and Ursula Klingmüller

Abstract Reliable inter- and intracellular communication is central to both the
development and the integrity of multicellular organisms. Key mediators of these
processes are cell surface receptors that perceive and convert extracellular cues
to trigger intracellular signaling networks and ultimately a phenotypic response.
Deregulation of signal transduction leads to a variety of diseases, and aberrations in
receptor proteins are very common in various cancer types. Therefore, cell surface
receptors have been established as major targets in drug discovery. However, in
order to efficiently apply therapeutics, it is crucial to gain knowledge about design
principles of receptor signaling. In this chapter, we will discuss signal transduction
at the receptor level for examples from different receptor classes.

1 Introduction

Tightly regulated cellular communication is key not only to the development of
multicellular organisms but also to the functional integrity of tissues, organs,
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Fig. 18.1 Generalized scheme of ligand and receptor interaction and trafficking processes

and the whole body. There are a plethora of mediators involved in cell-to-cell
communications such as small molecules, peptides, cytokines, growth factors, lipid
hormones, and physical signals. These molecules bind to specific cell surface
receptors, which initiate signal transmission by linking extracellular cues to intra-
cellular cascades of signaling molecules. Integration of different signal transduction
networks via crosstalk of intersecting pathways processes the information and
finally leads to appropriate phenotypic responses of the cell such as proliferation,
differentiation, migration, survival, or apoptosis.

Aberrations in signaling cascades are linked to various disease types including
cancer, infections, as well as immunological and metabolic disorders. In the advent
of targeted therapeutics, cell surface receptors have become prime objectives in drug
discovery [1], and various antibodies impeding ligand binding or small molecule
inhibitors interfering with the enzymatic activity of receptor proteins undergo
development or are already used in cancer therapy.

However, to efficiently apply targeted therapeutics, it is crucial to understand
the complex regulation of the underlying biochemical networks [2–4]. Therefore,
the identification of design principles for cell surface receptor signaling holds great
promise in furthering rational drug discovery and personalized therapy strategies.
Mathematical models have been established to aid the understanding of how
ligand–receptor interaction and trafficking shape receptor activation kinetics [5–
8]. In a generalized scheme (Fig. 18.1), ligand undergoes binding to receptor
proteins with distinct association .kon/ and dissociation .koff/ rates. Trafficking of
receptors can be both ligand-independent and ligand-induced. Receptor transport
to the plasma membrane .kt � Bmax/ can be described by ligand-independent
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endocytosis .kt/ and the receptor abundance in the absence of ligand .Bmax/, i.e. at
steady state. Endocytosis of ligand–receptor complexes .ke/ can either be followed
by recycling .kex/ or by degradation processes .kd/. This generalized model varies
with the receptor system under study, and additional processes might be taken into
account such as ligand-induced mobilization of newly synthesized receptor from
intracellular pools to the plasma membrane.

In this review, we will discuss information processing at the receptor level, exem-
plified by the erythropoietin receptor (EpoR), the interleukin 3 receptor (IL3R), the
epidermal growth factor receptor (EGFR), and the receptor for transforming growth
factor beta (TGF“).

2 Cytokine Receptors

Cytokine receptors are involved in diverse physiological processes such as the devel-
opment of the hematopoietic system or in pro- as well as anti-inflammatory cellular
responses [9, 10]. Members of the cytokine receptor family are single membrane-
spanning proteins that lack intrinsic enzymatic activity and, therefore, associate with
cytoplasmic Janus kinases (JAK). Mutations that constitutively activate cytokine
receptors have been described for a variety of hematological disorders, and they are
found either in receptor proteins such as the EpoR [11, 12], the granulocyte colony-
stimulating factor (GCSF) receptor [13], and the thrombopoietin receptor [14], or in
receptor-associated kinases such as JAK2 [15] and JAK1 [16].

2.1 Erythropoietin Receptor

Erythropoietin (Epo) signaling [17] is crucial for the survival, proliferation, and
differentiation of erythroid progenitors at the colony-forming unit-erythroid
(CFU-E) stage [18]. Crystallographic studies revealed that the EpoR is expressed
as a preformed homodimer [19]. The majority of receptor protein resides in
intracellular compartments of the endoplasmic reticulum and the Golgi apparatus
as shown for both endogenous EpoR in CFU-E cells as well as exogenous EpoR
expression in various cell lines [20–24].

Endocytosis and subsequent degradation of ligand–receptor complexes have been
proposed to downregulate EpoR activity [25]. Using a kinetic model, ligand-induced
endocytosis could be identified as a mechanism to clear Epo from the extracellular
space, and differences in clearance rates between Epo derivatives were assigned to
distinct ligand binding rates [26].

By combining time-resolved quantitative data for ligand-independent and ligand-
induced endocytosis with ordinary differential equation-based modeling, design
principles of EpoR signaling could be further refined [8]. Whereas ligand-induced
endocytosis plays a major role in shaping early-response kinetics of EpoR phos-
phorylation, ligand-independent EpoR turnover at the plasma membrane is crucial
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for a linear conversion of extracellular Epo levels into receptor activation. Both
computational and experimental evidence showed that intracellular EpoR pools
constitute a reservoir for a continuous replenishment of cell surface receptor, a
process that is key to linear information processing. While peak levels of EpoR and
JAK2 phosphorylation are saturated at higher ligand concentrations, the duration
and thereby the integral of signaling activity of these proteins is increased under
such conditions.

This principle of dose-to-duration signaling has been analyzed as a means to
decode ligand levels beyond saturation and subsequently shown for pheromone sig-
naling in yeast at the level of mitogen-activated protein kinases [27]. In light of this,
it will be interesting to examine if the linear relation between extracellular ligand
concentration and activation of signaling molecules might be abrogated downstream
of the EpoR. Such an observation could indicate at which level EpoR-mediated
signaling interacts with other signaling networks through pathway crosstalk, thereby
allowing for integration and interpretation of the cellular signaling status.

2.2 Interleukin 3 Receptor

In contrast to the EpoR, the IL3R consists of a cytokine-specific alpha chain and
the common beta chain, which is shared with cytokine receptors for IL5 and the
granulocyte–macrophage colony-stimulating factor (GM-CSF) [28].

Studying the characteristics of IL3R activation showed that, comparable to the
EpoR system, IL3 is rapidly depleted from the medium within the early phase
of stimulation [8]. A second key feature shared by the EpoR and the IL3R is
the restimulation capacity of both the receptor and the receptor-associated JAK2,
demonstrating that cells remain ligand-responsive (Fig. 18.2). However, treatment
of cells with IL3 resulted in a massive degradation of the common beta chain and
JAK2 (Fig. 18.2b). This observation indicates that in contrast to the EpoR, the
majority of IL3R resides at the plasma membrane where it is accessible for ligand
binding. Another key difference between these receptor systems is the IL3-induced
increase of beta chain expression, which may compensate for dramatic receptor
degradation after ligand engagement and prevent a refractory state of the cell.

In summary, the EpoR and the IL3R reveal comparable characteristics of
signaling at the receptor level, i.e. (1) rapid clearance of ligand from the medium
and (2) receptor recovery at the plasma membrane. However, both receptor systems
evolved distinct strategies to accomplish this systems behavior, either employing
a constant rapid ligand-independent turnover of the EpoR or a massive ligand-
stimulated synthesis of the IL3R (Fig. 18.2). Rapid uptake of ligand from the
medium by ligand-induced endocytosis has been discussed to facilitate temporal
fidelity of receptor signaling [29, 30]. Thus, the combination of rapid ligand
depletion with fast cell surface recovery of the EpoR or the IL3R enables the cell
to stay in a ligand-responsive state and at the same time promotes a high temporal
resolution of extracellular signaling cues.
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Fig. 18.2 Comparison of overall systems behavior and strategies employed in (a) the EpoR and
(b) the IL3R system. Immunoblot analysis shows that both receptor systems stay in a ligand-
responsive state as judged by receptor and JAK2 phosphorylation after re-addition of ligand.
(b) Left panel adapted from [8]

3 Epidermal Growth Factor Receptor

Members of the receptor tyrosine kinase (RTK) family are single-pass trans-
membrane proteins that regulate multiple cellular processes such as proliferation,
differentiation, migration, angiogenesis, and metabolism [31]. Conversely, deregu-
lation of RTK signaling pathways has been assigned to various human cancers as
well as non-malignant diseases [32, 33]. After completion of the Humane Genome
Project, 58 RTKs have been identified [34] including ErbB receptors, vascular
endothelial growth factor receptor, and c-Met. The EGFR (ErbB1, Her1) is a
member of the ErbB receptor family and as the prototypical RTK probably the best-
studied receptor, also from a systems point of view [6]. EGFR signaling regulates
proliferation and survival in a variety of epithelial cell types, and deregulated
signaling through the EGFR is associated with numerous solid tumors [35].
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Biochemical studies showed that the EGFR is rapidly internalized from the
plasma membrane upon epidermal growth factor (EGF) stimulation and subse-
quently degraded in the lysosomal compartment. This downregulation is proposed
to contribute to signal attenuation [36, 37]. However, this observation is context-
dependent since stimulation of the EGFR with transforming growth factor ’ (TGF’)
results in receptor recycling rather than in downregulation [38] due to a higher pH
sensitivity of ligand–receptor binding [39]. Differential binding and trafficking of
EGF and TGF’ have been shown to result in distinct mitogenic potency of EGFR
signaling [40]. This knowledge has also been employed to engineer a more effective
variant of EGF [41], and a similar study has been carried out for the cytokine GCSF
[42]. Distinct receptor trafficking or binding properties also account for the altered
biology of IL2 [43] and Epo [26] derivatives, respectively.

Comparing the regulatory role of endocytosis in EGFR and EpoR signaling
shows that the contribution of endocytic downregulation D, i.e. the ratio of ligand-
induced .ke/ to ligand-independent .kt/ receptor endocytosis, is approximately
threefold higher for EGF-stimulated EGFR .D D 7:5/ [30] than for the EpoR
system .D D 2:3/ [8]. This is due to both a lower rate of ligand-independent
endocytosis and a higher rate for ligand-induced endocytosis of the EGFR compared
to the EpoR. Whereas EGF mediated a substantial decrease in half-life and total
expression of its receptor [44], neither higher levels of Epo nor prolonged exposure
to ligand resulted in a change of total EpoR expression [8]. Thus, ligand-mediated
loss of receptor protein at the plasma membrane is much more likely to play
a role in attenuation of EGF-stimulated EGFR signaling [36, 37] compared to
EpoR signaling. In addition, the ratio of ligand-induced endocytosis ke to ligand–
receptor dissociation koff is considerably higher for Epo–EpoR compared to
EGF–EGFR complexes [30]. This, in combination with a rapid constitutive receptor
turnover, allows the EpoR system to reach a high temporal resolution of sampling
extracellular cues, while, at the same time, staying in a ligand-responsive state.

4 Transforming Growth Factor “ Receptor

In contrast to cytokine receptors and the EGFR, the TGF“ receptor belongs
to the serine/threonine kinase receptor family. Binding of TGF“ ligand induces
cooperative complex formation of two receptor subunits, the TGF“ type I and type II
receptors. The type II receptor is a constitutively active serine/threonine kinase that,
upon ligand binding, activates the dormant TGF“ type I receptor. The type I receptor
in turn phosphorylates serine residues of receptor-associated SMAD2 and SMAD3
transcription factors [45]. TGF“ is mainly involved in the development as well as
homeostasis of tissues. Although TGF“ signaling is typically thought of mediating
anti-proliferative cues and, therefore, being a tumor suppressor, it can fuel tumor
progression at later stages by stimulation of tumor angiogenesis and metastasis [46].

Signaling through SMAD transcription factors is promoted by clathrin-mediated
endocytosis, whereas endocytosis via caveolae mediates receptor turnover [47, 48].
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A recent study suggested that caveolae are also involved to differentially trigger
the mitogen-activated protein kinase cascade [49]. Thus, receptor trafficking pos-
sesses the capacity to induce distinct biological responses, thereby establishing an
additional layer of regulation to TGF“ signal transduction. Mathematical analysis
of the TGF“ pathway showed that the connection of receptor activation and
trafficking processes allows for sensing absolute and temporal changes in ligand
concentrations, regulating signal duration, and controlling cellular responses upon
stimulation with multiple ligands [7]. Another study suggested that the ratio of
clathrin- and caveolae-mediated endocytosis controls transient versus sustained
responses [50]. Similar to the TGF“ receptor, signaling from endosomes has
also been proposed for signaling downstream of RTKs as well as G-protein
coupled receptors (GPCR) as a mechanism to facilitate temporal and spatial
regulation [51].

5 Concluding Remarks

The examples discussed in this review show that various strategies have evolved
to shape signal initiation at the receptor level by ligand–receptor interaction and
trafficking kinetics. The physiological impact of distinct trafficking routes and
signaling endosomes is still not fully explored as illustrated by controversial results
for caveolae-mediated EGFR internalization [52, 53]. Deciphering these processes
might give rise to an even more complicated picture of how receptor dynamics set
the stage for selective regulation of downstream signaling. However, despite these
distinct strategies, a unifying regulator of signal transduction at the receptor level
appears to be the ratio of ligand-independent and ligand-induced endocytosis and
subsequent receptor degradation [7, 8, 30].

Different from homodimeric EpoR, many cytokine receptors are composed of
heterotypic subunits. Besides the IL3R that shares its common beta chain with
receptors for IL5 and GM-CSF, another subset of cytokine receptors including
receptors for IL2, IL4, IL7, IL9, IL13, IL15, and IL21 have a common gamma
chain, whereas receptors for e.g. IL6, IL11, or LIF engage the gp130 subunit
[28]. This gives rise to potential competition between different receptors for their
common chain and additionally, these receptors often signal through the same JAK–
STAT cascade. Moreover, induced feedback regulators, for instance members of
the suppressor of cytokine signaling (SOCS) family, can affect multiple cytokine
receptors either directly or indirectly at the level of JAKs or downstream pathway
components. Thus, there are numerous layers of cross-regulation in cytokine
signaling as exemplified by studies of IL7 signaling [54]. These phenomena create
the necessity to generate complex data and mathematical models, studying the
effects of multiple cytokine stimuli or of a specific stimulus on the activity of various
cytokine receptors.

Crosstalk also plays a crucial role for EGFR signaling in cancer. The EGFR does
not only form hetero-oligomeric structures with other members of the ErbB receptor
family, but it is also suggested to directly interact with c-Met [55,56] and to exhibit
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transactivation with c-Met [57] and GPCRs [58] at multiple levels. Such interactions
are relevant for both drug resistance and cancer progression.

Although studies of cell lines exposed to single stimuli give rise to important
insights, it will be crucial to expand the analysis of cell signaling towards more phys-
iological conditions of multi-factor stimulation for understanding in vivo signaling
through cell surface receptors. This also holds true for the repertoire of stimulation
schemes: bolus stimulation is a rather non-physiological, yet practical means to
examine signal transduction in cell lines. However, the investigation of autocrine
or paracrine signaling in the cellular microenvironment or the administration of a
constant stimulus at physiological concentrations promises to advance the field of
signaling research. Here, technical developments such as microfluidics [59, 60] in
combination with mathematical modeling may greatly impact the success of such
endeavors and finally refine strategies for drug discovery [3].
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