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Dynamical models of cellular processes promise to yield new insights into the underlying systems
and their biological interpretation. The processes are usually nonlinear, high dimensional, and
time-resolved experimental data of the processes are sparse. Therefore, parameter estimation faces
the challenges of structural and practical nonidentifiability. Nonidentifiability of parameters induces
nonobservability of trajectories, reducing the predictive power of the model. We will discuss a
generic approach for nonlinear models that allows for identifiability and observability analysis by
means of a realistic example from systems biology. The results will be utilized to design new
experiments that enhance model predictiveness, illustrating the iterative cycle between modeling
and experimentation in systems biology. © 2010 American Institute of Physics.
�doi:10.1063/1.3528102�

Ordinary differential equations are frequently used to in-
vestigate the dynamic properties of cellular processes
such as signaling pathways. The aim is to match the
mathematical model with the experimentally observed
time-series data to reconstruct and validate the network
structure and to predict system dynamics that is not ac-
cessible by experiments directly.15 An important step is
the estimation of beforehand unknown model parameters
that determine the dynamical behavior. Intrinsically, the
outcome of model predictions depends on the estimated
model parameters and their identifiability. If model pa-
rameters are nonidentifiable, meaning that they are not
well determined, some parts of the predicted model dy-
namics are also not, i.e., some components of the model
may be nonobservable. Consequently, it might not be pos-
sible to infer the dynamical behavior of the system given
the experimental data available. Inferring how identifi-
ability and observability problems can be resolved by
generating additional experimental data is the subject of
experimental design.

I. INTRODUCTION

In this article, we will introduce identifiability and its
connection to observability and experimental design from
a perception of parameter estimation. To this end, we
discuss a generic approach that investigates identifiability by
calculating the profile likelihood.11 For illustration of the

applicability of the approach, an illustrative case study uti-
lizing an application2 from cell biology is presented.

Assuming that diffusion is fast compared to the reaction
rates of molecular interactions and the volume of the cell,
cellular processes can be described by systems of ordinary
differential equations �ODEs�. The model equations

x�̇�t,�� = f��x��t,��,u��t�,�� , �1�

y��ti,�� = g��x��ti,��,�� + ��i �2�

describe, via the ODE system �1�, the dynamics of n species
x� such as concentrations of proteins in different phosphory-
lation states. Their dynamical behavior may depend on an
input function u��t�, such as treatment with ligands, and
model parameters �= ��1 , . . . ,�l�, such as rate constants or
species initial concentrations. Parameter values will be given
on a log10 scale. The species x� are mapped to m model ob-
servables y�, the quantities accessible by experiments at dis-
crete times ti, via an observation function g� in Eq. �2�. They
may depend on additional parameters such as scaling or off-
set parameters included in �. Often, only a subset or combi-
nations of the modeled species are accessible by experi-
ments, meaning that m�n. The distribution of the
measurement noise �ki�N�0,�ki

2 � is assumed to be known.

II. METHODS

Commonly, many model parameters � are unknown and
have to be estimated from experimental data. The agreement
of experimental data yk

†�ti� with the observables predicted
by the model yk�ti ,�� for parameters � is measured by an
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objective function, commonly the weighted sum of squared
residuals

�2��� = 	
k=1

m

	
i=1

dk 1

�ki
2 �yk

†�ti� − yk�ti,���2, �3�

where dk denotes the number of data points for each observ-
able k=1, . . . ,m measured at time points ti with i=1, . . . ,dk.
The variances �ki

2 of the corresponding measurement errors
are assumed to be known. The parameters can be estimated

by finding the parameter values �̂ that minimize �2���. For
normally distributed measurement noise, �2��� is propor-
tional to the log-likelihood and minimizing Eq. �3� corre-
sponds to maximum likelihood estimation.12 Therefore,
�2��� will be termed likelihood in the following.

The key point of our argument is that it is not sufficient
to rely on the mere estimated parameter values and their
corresponding prediction for the system dynamics. It is im-
portant to consider the uncertainties in the parameter estima-
tion procedure: from measurement uncertainties, to param-
eter uncertainties and possibly nonidentifiabilities, to
uncertainties in the predicted model dynamics and possibly
nonobservabilities. Uncertainties in the parameter estimates
are usually described by confidence intervals.6 A confidence

interval ��i
− ,�i

+� of a parameter estimate �̂i to a confidence
level 1−� signifies that the true value �i

� is located within
this interval with probability 1−�.

In order to evaluate the appropriateness of confidence
intervals, usually, coverage rates are studied. The coverage
rate �CR� for a parameter signifies how often its true value �i

�

is actually covered by the confidence interval ��i
− ,�i

+�. To
this end, the data are simulated assuming a set of true param-
eter values. If confidence intervals are appropriate, the cov-
erage rate should reflect the desired level of confidence
CR
1−�. If the coverage rate is larger than the desired
level, the confidence intervals tend to be more conservative
than required; if it is smaller, the actual uncertainty in the
estimates is underestimated.

A. Identifiability

The parameter �i is structurally identifiable if its esti-

mate �̂i is a unique minimum of �2���. It is practically iden-
tifiable if the confidence interval of its estimate has finite
size. A nonidentifiable parameter indicates that it cannot be
estimated from the experimental data, and hence its confi-
dence intervals are infinite.

An approach for identifiability analysis utilizing the pro-
file likelihood

�PL
2 ��i� = min

�j�i

��2���� �4�

was proposed by Raue et al.11 The idea of the approach is to
detect flatness of the likelihood by exploring the parameter
space for each parameter in the direction of least increase in
�2���. Therefore, for each parameter �i, individually a sec-
tion along the minimum of the objective function with re-
spect to all of the other parameters � j�i is computed. At the
same time, the profile likelihood enables to calculate

likelihood-based confidence intervals.9,16 Here, a threshold
�� in the likelihood defines a confidence region

����2��� − �2��̂� � ��� , �5�

whose borders represent confidence intervals.8 The threshold
�� is the 1−� quantile of the �df

2 -distribution. The choice of
df yields confidence intervals that hold jointly for df number
of parameters.10 Often, df =1 is applicable, yielding confi-
dence intervals that hold individually for each parameter.

The difference �2����−�2��̂� corresponds to the amount

of overfitting for the estimated parameters �̂. For nonlinear
models and small data samples, the actual distribution of

�2����−�2��̂� may differ from the �df
2 distribution.10 For in-

stance, the distribution can be shifted if the actual degrees of
freedom df consumed by the nonlinear model differs from
the number of model parameters. Since the deviation of the
distribution is dependent on the specific application, the dis-

tribution of �2����−�2��̂� should always be verified by
simulation studies. If deviations are observed, the threshold
�� should be adjusted according to the generated distribution
to obtain appropriate coverage rates for the confidence
intervals.

Structural nonidentifiability. A structural nonidentifiabil-
ity arises from the model structure only and is independent
of the amount and quality of the given experimental data.17

Assuming ideal measurements, with arbitrarily many and
perfectly chosen measurement time points ti and absence of
measurements errors ��i=0, the crucial question is whether
the model parameters � are uniquely estimable from the
model observables y��ti ,��.

The formal analytical solution of y��ti ,�� may contain an
ambiguous parametrization with respect to �, arising from an
insufficient mapping function g� in Eq. �2� that is character-
ized by functional relations h���sub�=0 of a subset of param-
eters �sub��. In terms of likelihood, a structural nonidenti-
fiability manifests as iso-�2 manifold

���h���sub� = 0� ⇒ �2��� = const. �6�

For a two-dimensional parameter space, a structural noniden-
tifiability can be visualized by a perfectly flat valley that is
infinitely extended along the corresponding functional rela-
tion, as illustrated in Fig. 1�a�. Correspondingly, this can be
detected by a flat line of the profile likelihood for each pa-
rameter of �sub �see Fig. 1�b��. Consequently, structural non-
identifiable parameters are not uniquely identified by mea-
surements of y��ti ,�� and confidence intervals of �i��sub

are infinite. A parameter is structurally identifiable if a
unique minimum of �2��� with respect to �i exists �see
Figs. 1�c�–1�f��.

Practical nonidentifiability. A parameter that is structur-
ally identifiable may still be practically nonidentifiable. This
can arise due to insufficient amount and quality of experi-
mental data or the chosen measurement time points. It mani-
fests in a confidence interval that is infinite, although the
likelihood has a unique minimum for this parameter.

A parameter is practically nonidentifiable if the
likelihood-based confidence region �5� is infinitely extended
in the direction of �i indicated by the likelihood staying be-
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low a desired ��.11 Similar to structural nonidentifiability,
the flattening out of the likelihood can continue along a func-
tional relation. For a two-dimensional parameter space, a
practical nonidentifiability can be visualized as a relatively
flat valley, which is infinitely extended �see Fig. 1�c��. This
can be detected by the corresponding profile likelihood in
Fig. 1�d�, indicating that the height distance of the valley

bottom to the lowest point at �̂ never exceeds ��. By increas-
ing the amount and quality of the measured data and/or the
choice of measurement time points ti, stricter conditions on
the parameter estimation are imposed. This leads to a tight-
ening of confidence intervals that ultimately will remediate a
practical nonidentifiability, yielding finite confidence inter-
vals �see Figs. 1�e� and 1�f��.

B. Observability

The uncertainty in parameter estimates �̂ indicated by
nonidentifiability directly translates to uncertainty in model
trajectories indicated by nonobservability. For structurally
nonidentifiable parameters, those components of x� affected
by �sub can be nonobservable, whereas the model observ-
ables y� are, by definition, invariant. In contrast, for practical
nonidentifiable parameters, the model observables y� are af-
fected but stay in agreement with the uncertainties in the
experimental data because the likelihood stays below the
threshold ��. Nevertheless, some components of x� might be
affected strongly by a practical nonidentifiability and hence
might be nonobservable. Also, confidence intervals of pa-
rameter estimates translate to confidence intervals of model
trajectories. Similar to coverage rates for confidence intervals
of parameter estimates, coverage rates for confidence inter-
vals of model trajectories can be assessed.

C. Experimental design

Since structural nonidentifiability is independent of the
accuracy of experimental data, it cannot be resolved by in-
creasing the amount and quality of the existing measure-
ments. The only remedy is a qualitatively new measurement,
which alters the mapping function g� in Eq. �2�, usually by
increasing the number of the observed species. For practical
nonidentifiability, increasing the amount and quality of the
existing measurements may be sufficient but is often not very
efficient.

To plan new experiments that efficiently resolve non-
identifiability problems, the set of trajectories along the pro-
file likelihood of �i can be investigated.11 This corresponds to
the observability of the trajectories and reveals spots where
the uncertainty in �i has the largest impact. Additional mea-
surements at these spots promise to resolve both structural
and practical nonidentifiabilities and narrow confidence in-
tervals most efficiently. Furthermore, the amplitude of vari-
ability of the trajectories at these spots allows to assess the
necessary measurement precision to provide adequate data.

III. APPLICATION

To demonstrate the usage of identifiability and observ-
ability analysis for experimental design, the profile likeli-
hood approach will be applied to the core model of erythro-
poietin �Epo� and Epo receptor �EpoR� interaction and
trafficking with the corresponding subset of the experimental
data.2 Briefly, in erythroid progenitor cells the dynamical
properties of EpoR determine how signals encoded in the
concentration of the ligand Epo are processed at the receptor
level and how subsequently downstream signaling cascades
such as the JAK2-STAT5 pathway are activated. This leads

FIG. 1. �Color online� Assessing parameter identifiability of parameter �1 from the profile likelihood �PL
2 ��1� indicated by the solid lines in �b�, �d�, and �f�

and its corresponding trace in parameter space in �a�, �c�, and �e�. Shades from black to white in �a�, �c�, and �e� correspond to low and high values of �2���,
respectively. The dashed lines indicate the threshold �� utilized to assess likelihood-based confidence intervals and the asterisk corresponds to the optimal

parameters �̂ if available.
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to cellular responses such as differentiation and proliferation
of erythrocytes. A mathematical model is used to infer the
dynamical characteristics of ligand binding and ligand as
well as receptor trafficking because unoccupied EpoR is not
directly accessible by experiments.

Model description. The central processes occurring at
the EpoR level are depicted in Fig. 2. Six species are incor-
porated in the model: Epo, EpoR, Epo_EpoR complex, inter-
nalized complex Epo_EpoR_i, degraded internalized ligand
dEpo_i, and degraded extracellular ligand dEpo_e. All inter-
actions are modeled by mass-action kinetics. Briefly, Epo can
bind to the extracellular domain of EpoR with association
rate kon �see v1� and dissociates with rate koff=kon·kD �see
v2�, where kD is the equilibrium dissociation constant. EpoR
is constitutively replenished at the cell surface independently
of ligand binding with turnover rate kt �see v3 and v4�. The
maximal amount of receptor at the cell membrane is Bmax.
Receptor-ligand complexes are internalized ligand-
dependently with rate ke by endocytosis14 �see v5�. The in-
ternalized complex can either be recycled back to the plasma
membrane or undergo degradation inside the cell. Recycling
with rate kex returns the ligand to the extracellular medium in
its active form �see v6�. Degradation either leaves the ligand
inactive inside the cell with rate kdi �see v7� or deposits it to
the extracellular medium in its inactive form with rate kde

�see v8�. Initial concentrations are assumed to be zero, except
for �Epo��t=0�=Epo0 and �EpoR��t=0�=Bmax that will be
estimated from the experimental data. The reaction fluxes
corresponding to each interaction are given by

v1 = kon · �Epo� · �EpoR� ,

v2 = kon · kD · �Epo _ EpoR� ,

v3 = kt · Bmax,

v4 = kt · �EpoR� ,

v5 = ke · �Epo _ EpoR� ,

v6 = kex · �Epo _ EpoR _ i� ,

v7 = kdi · �Epo _ EpoR _ i� ,

v8 = kde · �Epo _ EpoR _ i� ,

and yield with

d/dt�Epo� = − v1 + v2 + v6,

d/dt�EpoR� = − v1 + v2 + v3 − v4 + v6,

d/dt�Epo _ EpoR� = + v1 − v2 − v5,

d/dt�Epo _ EpoR _ i� = + v5 − v6 − v7 − v8,

d/dt�dEpo _ i� = + v7,

d/dt�dEpo _ e� = + v8,

the ODE system describing the time evolution of species
concentration.

Experimental technique. By employing radio labeled
ligand,4 the dynamics of Epo concentration can be observed
in BaF3-EpoR cells1 in various compartments of the biologi-
cal system. The unknown calibration factor scale links the
activity of 125I given in cpm to concentration scale of Epo
given in pM.

Numerical techniques. The ODE systems was solved nu-

cytoplasm

extracellular medium
plasma

membraneEpoR

Epo

dEpo_e

dEpo_i

EpoR

Epo

EpoR_i

Epo

kt

kt Bmax

kex ke

kdi

kex kde

kon / koff
y1

y2

y3

FIG. 2. Model for ligand binding as well as EpoR and ligand trafficking. The dashed boxes correspond to the quantities accessible by measurement of
radioactively labeled ligand.
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merically by CVODES.5 The algorithm simultaneously com-
putes the variational equations.7 This allows to supply de-
rivatives for the estimation of the parameters by the
lsqnonlin-algorithm of MATLAB.3

A. Initial setup

In a first experiment, Epo concentration was recorded in
triplicates in two compartments: in the extracellular medium
�y1� and bound to EpoR on the cell membrane �y2�,

y1 = scale · ��Epo� + �dEpo _ e�� ,

y2 = scale · �Epo _ EpoR�

�see the dashed boxes in Fig. 2�. After parameter estimation,
a good model to data agreement with a value of the objective
function �2=6.55 for 16 data points and 10 free parameters
is obtained. To investigate the uncertainty in the parameter
estimates, the profile likelihood of each parameter was

evaluated, as displayed in Fig. 3�a�. The calculation takes
about 30 s per parameter on a normal office computer.

The flatness of the profile likelihood reveals that param-
eters Bmax, Epo0, kD, kon, and scale are structurally noniden-
tifiable. The change of the other parameters along the profile
likelihood of one of these parameters indicates functional
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(a): initial setup

(b): with information about the initial Epo concentration

(c): with measurements of intra-cellular Epo

FIG. 3. �Color online� The profile likelihood �PL
2 of the model parameters are displayed in combination with the thresholds �0.95 yielding with df =1

confidence intervals that hold for each parameter individually. The optimal parameter value is indicated by an asterisk, if unique. �a� The flatness of the profile
likelihood reveals that five parameters are structurally nonidentifiable, given the initial setup. �b� By including information about the initial Epo concentration,
the structural nonidentifiability can be resolved. Parameter kex remains practically nonidentifiable. �c� By including measurements of intracellular Epo, all
parameters are structurally and practically identifiable.
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FIG. 4. Initial setup: the change of the other parameters along the profile
likelihood �PL

2 �kon� indicates functional relations between all five structural
nonidentifiable parameter, indicated by the solid lines.

045105-5 Identifiability and observability analysis Chaos 20, 045105 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



relations linking the five structural nonidentifiable param-
eters, see, e.g., for �PL

2 �kon� in Fig. 4. The corresponding
effect on the model trajectories of this concerted change in
the parameters can be illustrated by plotting the model tra-
jectories for parameter value along the profile likelihood of
one of these parameters, see, e.g., for �PL

2 �kon� in Fig. 5�a�.
As expected, the model observables y� are not affected, but
the trajectories of species concentration x� are shifted by a
common factor. The structural nonidentifiability represents a
freedom in the choice of the concentration scale and is a

result of missing information about absolute concentration in
the experimental setup. Consequently, all parameters con-
taining concentration in their unit are affected. Similar re-
sults were obtained in Raue et al.11 for a model published by
Swameye et al.13

B. Including absolute concentrations

In order to resolve the structural nonidentifiability, the
observability analysis presented in Fig. 5�a� suggests to in-
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FIG. 5. �Color online� The figure shows dependency of the trajectories of the model observable y� and of species concentration x� on uncertainties in the
parameter estimates. �a� The concerted change of parameters along the structural nonidentifiability of kon �see Fig. 4� does not affect the model observables
but shift the trajectories of species concentration by a common factor. �b� The practical nonidentifiability of kex only slightly affects the model observables y�,
staying in agreement with the measurement precision of the experimental data. Nevertheless, the trajectories of species EpoR, Epo_EpoR_i, and dEpo_i are
affected. �c� The remaining uncertainties in the identifiable parameters, as displayed in Fig. 3�c�, translate to confidence intervals of the model trajectories.
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clude information about the absolute concentration of one of
the species. For the experiment, the cells were treated with
2100	210 pM of 125I-Epo. Therefore, a prior distribution
of the parameter Epo0�N�2100,2102� is assumed by penal-
izing the objective function of Eq. �3� with an additional
summand �Epo0−2100�2 /2102. Recalculating the profile
likelihood verifies that the structural nonidentifiability is re-
solved �see Fig. 3�b��. Nevertheless, the parameter kex re-
mains practically nonidentifiable. Its upper confidence bound
is determined at �+=−2.230 but its lower confidence bound
is not feasible.

C. Including measurement of intracellular Epo

In order to efficiently resolve the practical nonidentifi-
ability of kex, additional measurements need to be planned.
Therefore, the variability of the model trajectories along the
profile likelihood �2�kex� is investigated, as displayed in Fig.
5�b�. The available model observables y1 and y2 show only
slight variations and hence are not suitable for additional
measurements. However, the trajectories of Epo_EpoR_i and
dEpo_i show much larger variations and suggest an addi-
tional measurement of 125I-Epo inside the cell,

y3 = scale · ��Epo _ EpoR _ i� + �dEpo _ i�� ,

which was recorded in triplicates as well. After including the
additional data, the profile likelihood of all model parameters
indicate their structural and practical identifiability, as dis-
played in Fig. 3�c�.

Confidence intervals. The resulting confidence intervals
of the now identifiable parameters are finite and their values
are given in Table I. Finally, the remaining uncertainties can
be translated to confidence intervals of the model trajecto-
ries. Therefore, the trajectories corresponding to all accept-
able parameter value according to the profile likelihood are
evaluated. The resulting upper and lower confidence bands
are displayed in Fig. 5�c� for the threshold �0.95 that is also
indicated in Fig. 3�c� for the derivation of confidence inter-
vals of the model parameters. Based on a confidence thresh-
old with df =1, the confidence bands have to be interpreted
pointwise for each time point individually.

In order to ensure the appropriateness of the derived
confidence intervals, we performed a simulation study by
assuming that the estimated parameter values given in Table
I are the true values. Using these values and the same model
outputs, measurement time points and measurement noise as
in the original experimental data set, 450 independent data
sets were generated. After estimating the parameters for each
of these data sets, the resulting distribution of the overfitting
is in line with the �df

2 -distribution with df =10, the number of
estimated parameters �see Fig. 6�a��. This verifies that the
threshold �� utilized to derive the likelihood-based confi-
dence intervals was assessed correctly.

Coverage rates. In order to compute coverage rates for
the parameter estimates, for each of the simulated data sets,
95% individual confidence intervals were calculated. Ac-
cording to the 0.05 and 0.95 quantiles of the binomial distri-
bution, the coverage rates �CRs� for 450 simulated data sets
and a 95% confidence level are expected to be between
93.33% and 96.66%. For all parameters, this is fulfilled �see
in Table I�. Coverage rates can also be assessed for the time
pointwise confidence bands on the model trajectories shown
in Fig. 5�c� �see Fig. 6�b��. The coverage rates are, in most

TABLE I. Individual confidence intervals ��− ,�+� of the model parameter
to a confidence level of 95%. Values are given on a log10 scale. The CRs of
the estimates are in line with the expected values �93.33% and 96.66%�.

Name �̂ �− �+ Unit
CR
�%�

Bmax +2.821 +2.710 +2.932 pM 95.78
Epo0 +3.322 +3.227 +3.400 pM 92.44
kD +2.583 +1.641 +2.993 pM 95.78
kde 
1.884 
1.941 
1.829 1/min 95.78
kdi 
2.730 
3.083 
2.535 1/min 95.56
ke 
1.177 
1.203 
1.150 1/min 97.33
kex 
2.447 
2.764 
2.225 1/min 96.44
kon 
4.091 
4.208 
3.973 1 / �pM min� 95.56
kt 
1.758 
1.828 
1.683 1/min 97.33
Scale +2.210 +2.133 +2.305 cpm/pM 92.89
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(a): amount of over-fitting

(b): coverage rates
χ2(θ∗)− χ2(θ̂) FIG. 6. The appropriateness of confidence intervals was

assessed by a simulation study with 450 generated data
sets. �a� Comparison of the amount of overfitting to the
expected �df

2 distribution with df =10. �b� The solid
lines indicate the CRs for the time pointwise confidence
bands on the model trajectories shown in Fig. 5�c�. The
dashed lines are the desired 95% level of confidence,
while the gray shades are the expected coverage rates.
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cases, in line with their expected values described by the
0.05 and 0.95 quantiles of the binomial distribution. Too low
coverage rates are observed for species Epo at t
20 min,
for Epo_EpoR at t�300 min, and for Epo_EpoR_i between
150 and 250 min. Here, increase attention is indicated when
interpreting the results. The deviations occur because the
high-dimensional confidence region in parameter space
was not sampled densely but approximated by the profile
likelihood.

IV. SUMMARY

By using a mathematical model of Epo/EpoR interaction
and trafficking, the iterative cycle between modeling and ex-
perimentation in systems biology was demonstrated. Based
on an initial data set, parameter identifiability and observ-
ability was successively improved by applying the profile
likelihood approach. This general and efficient approach al-
lows to investigate both the structural and practical identifi-
ability of the model parameters and the observability of
model trajectories. The results of the analysis were used to
plan additional experiments to resolve nonidentifiabilities in-
herent in the initial data set. Finally, a fully identifiable
model was obtained that allows for reliable prediction of the
system dynamics.
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