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Identifiability of parameters in dynamical systems is a funda-
mental concept of mathematical modelling in systems biology
and systems medicine. Both the structurally inherent identifi-
ability of parameters in models and the practical identifiability
of parameters, which arises from insufficient available data,
play crucial roles in the development of useful models.
Here, we provide an overview of recent developments in the
field of structural identifiability analysis of models based on
ordinary differential equations, emphasising its importance for
accurate parameter estimation. We extend an existing
benchmark study by comparing the methods for structural
identifiability analysis with the recently developed StrucID,
showing it to be a fast, efficient and intuitive algorithm.
Furthermore, this review highlights the challenges in practical
identifiability analysis and the need for benchmarking with real-
world models using experimental data. The potential benefits
of standardising documentation for benchmarking models with
experimental data and practical non-identifiabilities are
stressed.
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Introduction
Mathematical modelling of biological and medical
questions and understanding of complex dynamical
www.sciencedirect.com
systems and their behaviour is highly dependent on the
identifiability of the used system. Since “On structural
and practical identifiability” [1] was published in 2021,
the topic gained popularity, both in the theoretical and
in the experimental community. Several mathematical

algorithms have been developed and extended to anal-
yse identifiability for distinguishing bad, good and useful
models. Identifiability constitutes one property of a
(partially observed) dynamical system, represented by a
system of ordinary differential equations (ODEs)

_x ¼ f ðx; q; uÞ; (1)

with n model states x(t), a set of p unknown parameters
q that have to be estimated from experimental data, and
external and possibly unknown stimuli u(t). To map the
model states to time-resolved experimental data yD, the
observation function

y ¼ gðx; q; tÞ (2)

is employed yielding the model trajectories y. Typically,
the number of observables m is smaller than the number
of states n, rendering the system partially observed.

Comparing the experimental data yD with the model
trajectories y yields a measure of agreement between the
model and the data. Commonly, a likelihood using

normally or log-normally distributed noise is defined and
maximum likelihood estimation is performed to esti-
mate the model parameters.

Structural identifiability plays an important role in the
development of informative models. It is especially
linked to parameter estimation. Non-identifiable pa-
rameters can greatly hamper parameter estimation per-
formance, create a flat likelihood landscape leading to
feeble or impossible maximum likelihood estimation
and can cause inefficient or infeasible Markov chain

Monte Carlo sampling [2]. More importantly it often
leads to biased, inaccurate and coupled estimates of the
parameters. Even estimates of identifiable parameters
can be biased if other parameters are non-identifiable.
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A parameter qi is globally structurally identifiable, if for
all parameter sets, q

yðqÞ ¼ yðq0Þ0qi ¼ q0i (3)

holds [3,4]. Thus, a parameter qi is structurally non-
identifiable if one can change it without any influence
on trajectories y as all possible changes can be fully
compensated by the other parameters. Local structural
identifiability is defined similar to global structural
identifiability, with the difference in limiting the con-
dition to a local neighbourhood h(q).

Structural identifiability analysis is ideally conducted a

priori as it requires no experimental data. This proactive
approach can substantially enhance model development
and experimental design.

The concept of structural identifiability is strongly
related to the concept of observability of a dynamical
system. While a system is identifiable if its trajectories
are unique for differing parameters, observability of a
system refers to the ability of determining the model
states uniquely given the measured observables [5e10].
A state x(t) is called observable if it can be uniquely

determined from the output vector y(t) and known
input vector u(t) in the interval t0 � t � tf, where tf is a
finite time. This concept is more commonly used in the
field of engineering [11,12].

In contrast to structural identifiability, practical identi-
fiability is a data-dependent property, which compli-
cates the definition of the problem itself, and in turn
also the analysis of this property. One approach defines a
parameter as practically identifiable, if, for a given con-
fidence level a, confidence intervals based on the c2-
distribution are finite [13]. This definition has faced
criticism due to the inherent arbitrariness of choosing
the confidence level that designates a parameter as
practically non-identifiable [14]. Nevertheless, it re-
mains the sole definition that offers a clear criterion
while considering the actual data. Other definitions
tend to not answer the question of practical identifi-
ability binary but by use of a degree of practical iden-
tifiability. This degree of practical identifiability is to
some extend comparable with the confidence level
chosen in the first definition. The most common in-

fluences on the degree of identifiability are the noise
level, the amount of available data and the information
content and dynamics in the sampled time points. In-
dependent of the different definitions, a model or a
parameter that is practically identifiable is always
structurally identifiable. In the case of infinite, noiseless
and highly informative data, practical identifiability
analysis results in structural identifiability analysis.

Here, we discuss recent developments and extend the
existing work on structural identifiability analysis. We
Current Opinion in Systems Biology 2025, 41:100546
further highlight the importance of practical identifi-
ability. Our aim is to foster a collaborative effort within
the research community to facilitate the analysis of
practical identifiability, ultimately enabling it to be as
straightforward to assess as structural identifiability in
the coming years.

On recent developments in structural
identifiability research
In the review “On structural and practical identifi-
ability” [1], it is discussed that the analysis of structural
identifiability is no longer a major bottleneck for the
development of dynamical models. Various methods
have been developed [10,15e35] and previously been
reviewed [36e38].

In the past two years, further methods have been

developed [11,12,39e41]. Furthermore, some previ-
ously published methods have been refined, including
StrucID and STRIKE-GOLDD [42e48]. StrucID and
STRIKE-GOLDD have already been discussed in “On
structural and practical identifiability” [1]. Several of
the methods and toolboxes cannot only be used to
analyse structural identifiability, but also to find iden-
tifiable parameter combinations to reparameterise an
initially non-identifiable model [8,22,23,41,45].

In addition to these methodological advances, the

analysis of structural identifiability has been performed
in various applications, often motivated by the study of
infectious disease models in the wake of the COVID-19
pandemic [49e52], but not limited to this [53e56].
The analysis of structural identifiability in these appli-
cations suggests a welcome shift towards a more rigorous
study of this model property in model development.
This can both benefit model reduction [54] as well as
experimental design [55] and should be standard prac-
tice in any model development process.

In general, we would like to emphasise that the analysis
of structural identifiability is no longer a bottleneck in
the development of useful models. The existence of fast
and reliable methods for the identification of structurally
non-identifiable parameters allows scientists to perform
this analysis frequently within the model development
process across multiple programming languages.

The most notable challenges in using structural iden-
tifiability methods in the past have been the limited
applicability of some methods to specific problem and

model conditions and the computational effort neces-
sary for assessing the structural identifiability of realis-
tically large models. A comprehensive assessment of the
different methods mentioned above is so far lacking;
however, Rey Barreiro et al. [57] have recently
published a study comparing twelve different methods
in seven different programming languages. In the
following, this analysis will be extended.
www.sciencedirect.com
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On efficient and fast identification of
structural identifiability
The benchmark study by Rey Barreiro et al. [57] com-
pares the applicability and computational effort of
twelve different methods ([12,21e23,26,27,31,35,41,
45,48]) written in seven different programming lan-
guages. The authors give an overview of the underlying
theoretical aspects, software accessibility and
user-friendliness of each tool and evaluate their perfor-
mance using 25 case studies based on 21 models with
varying inputs.

The authors decided to exclude numerical or data-based

methods from their analysis. Specifically, two methods
mentioned in “On structural and practical identifi-
ability” [1] are missing: the data-based profile likelihood
and a method called StrucID [58] utilising the sensi-
tivity matrix that does not need any experimental data.

Analogous to the presentation of the other tools in the
mentioned study, we shortly summarise the theoretical
background behind StrucID [42,43,58,59] and discuss
software accessibility and user-friendliness. Further-
more, the results of the existing benchmark study are

collected and compared with StrucID.

The sensitivity matrix approach
The definition of structural identifiability in Eq. (3)
suggests analysing it with the help of output sensitiv-
ities. The model is not identifiable if the output is not
sensitive to the parameters, meaning the trajectory does
not change when a parameter changes. Using the model
definition from before in Eqs. (1) and (2), this property
is checked by calculating the so-called sensitivity matrix
S of size (N , m) � p that contains changes of the m
different observations in dependence on p parameters
for N discrete time points:

S ¼

0
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(4)

The sensitivity matrix entries are given by
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vy

vq
¼ vg

vx

vx

vq
þ vg

vq
: (5)

The only term not directly given by the model equations
is vx

vq
as only the differential equations are known. But, as

v
vq
ðdxdtÞ ¼ d

dt ðvxvqÞ in this case, one can obtain vx
vq

by nu-
merical integration over time with randomly chosen
parameters. Due to the numerical integration, the
calculated sensitivity matrix is a local property, to extend
the analysis it is advised to calculate several sensitivity
matrixes for different parameter values.

Once the sensitivity matrix is determined, three

different cases can occur.

1. The sensitivity matrix S is of full rank, thus the rank
equals the number of parameters. In this case, the
model is locally structurally identifiable as the nu-
merical integration is based on local conditions.

2. A complete column of S is zero. In this case, the
observable is completely independent of the param-
eter belonging to that column, hence the model is
structurally non-identifiable.

3. Different columns of S are linearly dependent and

the matrix does not have full rank. In this case, the
contributing parameters are coupled and the model is
structurally non-identifiable.
All of these three cases can be found by calculating the

rank of the matrix and in the implementation of StrucID
this is achieved by means of singular value decomposi-
tion. Here, a threshold is used to determine if a singular
value is zero as due to numerics, no singular value will be
exactly zero.

The sensitivity matrix approach by itself does not give
the option to automatically calculate an identifiable
reparametrization. Nevertheless, one can determine the
groups in which the non-identifiable parameters show
up as each group belongs to one zero-valued singular

value. In addition, the results of the identifiability
analysis can be used to perform a reduced symbolic
computation of identifiable parameter combinations,
which now can be evaluated quickly in comparison with
an analysis of the whole problem [59].

Software accessibility and usability
StrucID is written in Matlab and the source code as well
as a compiled version to accommodate users without
Matlab access are available on Github (https://github.
com/jdstigter/StrucID). Furthermore, the StrucID
analysis is integrated in the D2D framework (https://
Current Opinion in Systems Biology 2025, 41:100546
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github.com/Data2Dynamics/d2d). The software does
cover rational and non-rational models with known and
unknown analytic inputs. Identifiability of initial con-
ditions can be tested, but for known initial conditions
these can be provided in the input file and are used to
inform the numeric integration. The input needed for a
StrucID analysis is easily readable and user-friendly and
the complete model structure has to be provided in a

single .txt file.
Figure 1

Comparison of performance of different structural identifiability methods includ
states and states over observables for each model, the parameters are given
lower panel, the run times of StrucID (red) for the different benchmark model
significantly lower and show less dependence on the structure of the model. Fo
longer than the limit of 36 h. In grey, the run times for the different methods as
Maple (green) [22] also achieves fast run times but is only suitable for rationa
Comparing the quantities in the upper panels with the run times shows that the
mostly independent of model size or complexity is advantageous. (For interpre
to the Web version of this article.)

Current Opinion in Systems Biology 2025, 41:100546
Benchmarking StrucID
To test, whether we will be able to compare our run
times for StrucID with the values published in
Ref. [57], the STRIKE-GOLDD FISPO algorithm was
used to compare computational setups. Using the same
setup as for StrucID, sixteen models of different
complexity were analysed. The calculations with Stru-
cID and the run times were compared with those
documented in the benchmark study [57]. In Appendix
Current Opinion in Systems Biology

ing StrucID. The upper panels show the number of parameters, number of
in Table A.2. The models are ordered by states over observables. In the
s as presented in Ref. [57] are plotted. The run times for StrucID are
r the PK_2 model, the analysis in STRIKE-GOLDD was stopped as it took
given in the benchmark study are plotted. The observability test written in
l models. The two non-rational models are marked with an asterisk.
re is no way to easily predict the run time beforehand, thus a method that is
tation of the references to colour in this figure legend, the reader is referred

www.sciencedirect.com
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A, the results of the comparison are shown in detail and
it shows that the two setups are sufficiently comparable
to compare the StrucID results with all other methods
analysed in the benchmark study.

In Figure 1 and Table A.1, a comparison between the run
times of StrucID and the methods analysed in the
benchmark study is shown. A detailed presentation of the

usedmodels is given in Ref. [57], themodels cover a wide
range of states and amount ofmeasured outputs, as well as
different inputs.Most of themodels are rational, thus also
feasible with the second STRIKE-GOLDD algorithm,
but the competition and the mitogen-activated protein
kinase model have been included as non-rational models.
For the analysis, each model was analysed once and the
time was measured via the Matlab function tic-toc using
one core. The results were compared in terms of detected
non-identifiabilities and computational time.

For all models, StrucID yields fast results and for the
models analysed in this paper, the results were checked
in terms of detected non-identifiable parameters and no
false results, neither false positive nor false negative
results were found. For most of the models, the
observability test written in Maple, based on the prob-
abilistic algorithm presented in Ref. [22] yields
comparably fast results as StrucID but for the non-
rational competition and MAPK model, the probabi-
listic algorithm is not suitable. For these non-rational
models, none of the other benchmarked algorithms

gives comparable run times to StrucID.

We conclude that adding this method to the already
known methods solves the problem of analysing struc-
tural identifiability in ODE models fast enough so it can
be integrated in the modelling workflow and a priori
assist with model design.

Besides the fast identifiability analysis, StrucID can also
assist in fast reparametrization of models. After the
identifiability analysis, the analytic calculations that are,
for example, performed by STRIKE-GOLDD can be

reduced to only include the parameters that cause the
model to be non-identifiable. This leads to a smaller
number of Lie derivatives that need to be calculated and
highly improves the analysis.
On the still challenging problem of practical
identifiability analysis
While structural identifiability analysis no longer ham-
pers model development, it becomes more and more
apparent that proper practical identifiability analysis can
be a challenge for typical tasks of dynamical modelling. A

model parameter is termed practically non-identifiable
when it’s structurally identifiable but does not have
finite confidence intervals. Approaching a biological
question with a practically non-identifiable model can be
www.sciencedirect.com
cumbersome for the interpretation of results and quality
of model predictions, although for several cases predic-
tive power can still be given [60]. Most prominently, the
iterativemodel development process, includingmultiple
parameter optimisation runs for each iteration, can be
problematic and time-consuming when parameters are
practically non-identifiable, which is why practical
identifiability analysis has become standard inside the

systems biology modelling community [1,61]. Moreover,
importance of practical identifiability was shown in the
fields of growth models [62,63], ecological population
models [64] or animal science [65]. Recently, in the
context of partial differential equation models, practical
identifiability was even suggested as an additional cri-
terion for model selection [66].

During the last couple of years, several approaches to
address practical identifiability analysis in dynamical
models have been reported [14]. However, both

computationally fast and comprehensive solution remains
elusive. In particular, we see three challenges to be faced:

(i) Performance trade-off of practical identifiability
methods: Profile likelihood [13] remains the most
accurate practical identifiability method but is often
computationally expensive since step-wise optimi-
sation is necessary. Approximate alternatives, such
as the method of Lagrangian multipliers [67e70], or
the Cluster GausseNewton method [71] in the
context of physiologically based pharmacokinetic

models, offer faster solutions. However, by con-
struction, these approaches may lead to wrong
conclusions regarding the practical identifiability of
a parameter. Similar to the Fisher’s information
matrixebased confidence intervals, the approxima-
tion typically leads to confidence intervals that are
computed to be smaller than by the true profile
likelihood obtained by step-wise optimisation.

(ii) Benchmark problems for practical identifiability
analysis: Following current scientific standards, the
final results of a research project are reported and the
potentially long way of achieving these results is

typically not documented. In the field of mathemat-
ical modelling, this means that publicly available
model collections, as for example [72], are already in a
reasonable state concerning the issue of practical
identifiability. While this is in general desirable, it
implies a situation with a lack of well-documented
problems for testing and developing new approaches
for practical identifiability analysis. Generation of
such a practical identifiability oriented benchmark
collectionwould not only support the development of
new algorithms but also comparing them with each

other as it has already become the standard for
structural identifiability analysis. To provide quick
access for as many as possible modelling environ-
ments that provide practical identifiability ap-
proaches, project documentation should orient on the
Current Opinion in Systems Biology 2025, 41:100546
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PEtab structure [73]. Although real-world scenarios
apparently are the best for testing approaches in real-
world application, a recent idea of simulating realistic
data sets based on given model structures and pa-
rameters [74] could be helpful to create practical
identifiability test scenarios. In particular, this could
be combined with models from the BioModels data-
base [75] where the focus is typically not on providing
proper data sets along with the model definition.

Given a practical identifiability benchmark collection and
proper analysis tools, the next step is to distinguish and
classify typical scenarios of practical identifiability. One
basic step of documenting such problems was taken with
the main focus of showing how to cure them in a statis-
tically sound manner by means of the profile likelihood
[76]. The usage of 2D profile likelihoods [77,78] can be
very helpful to understand and describe the interdepen-
dence of model parameters connected to a practical non-
identifiability. However, most informative is the analysis
of parameter paths, i.e. the set of parameter values along the

profile likelihood [13,79]. As demonstrated in Ref. [76],
parameter paths are essential for proper interpretation of
non-identifiabilities and model reduction. To our eyes,
the information content of the parameter paths is
currently undervalued by the community.

(iii) A priori prediction of practical identifiability: The
practical identifiability of a model is only defined in
conjunction with experimental data. Nevertheless,
there are approaches that aim to assess the expected
results of the practical identifiability analysis of a

model without experimental data [80,81], meaning
purely based on the model’s structure as it is typi-
cally done for structural identifiability analysis.
Although these approaches are in early stages of
development, we expect the task of a priori practical
identifiability analysis to be intensively discussed in
the near future. Within the iterative process of
model generation [1], it will constitute a remarkable
milestone. It will not only guide a priori selection of
useful models but also support experimental design
regarding potential parameters of the model that are

cumbersome to determine with precision.
To summarise, the development of tools for practical
identifiability analysis is still in its infancy. It is concep-
tually challenging because of the mathematical and sta-
tistical complexity of the task. Furthermore, the data-

based problem statement needs biological interpreta-
tion and the amount of reported case scenarios is low.
Conclusion
Structural identifiability of nonlinear dynamic models
can be analysed efficiently with currently available
methods. The recent development in benchmarking of
Current Opinion in Systems Biology 2025, 41:100546
these methods further shows that methods for various
model types exist. Adding up to this, the here presented
analysis of StrucID shows that there is a method avail-
able that is able to perform analyses of the vast majority
of currently used models in less than a minute. Thus,
the problem of structural identifiability analysis is
effectively solved for all practical purposes. It should be
a standard part of the model development workflow in

systems biology and no longer constitutes a bottleneck.

As stated in the last review [1], the actual challenge lies in
the analysis of practical identifiability. The recent review
on practical identifiability [14] also highlights the
importance of that topic and summarises advances and
newmethodology.Despite these novel approaches, a both
fast and reliablemethod to analyse practical identifiability
is still lacking. We are also missing a set of real-world
scenarios, i.e. models with experimental data, where
newmethods for practical identifiability analysis could be

tested on and compared with each other. Without such a
collection, benchmarking of methods that are designed to
analyse identifiability issues that occur only when data are
involved sounds ambiguous. We hope that the aspects
highlighted in this section will help to circumvent this
situation and foster the development of efficient and
comprehensive tools in the near future.
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Appendix A. Comparison of the
computational setups
Toanalysewhether our computational setup is comparable
with the one used in the benchmark study [57], our own

calculations with the STRIKE-GOLDDFISPO algorithm
were compared with the ones reported in the study (also
seeTableA.1). As computational time scales exponentially
with complexity of the model, the two run time series
should show a linear dependence on the log-log scale. For
comparable results, the slope of the linear dependence
should be close to one and the offset close to zero.

To determine slope and offset, both data series were
logarithmised and fitted with a linear regression; the
results are shown in Figure A.1. We find
www.sciencedirect.com
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logðruntimesbench:Þ ¼ 0:18ð13Þ s
Number of parameters and states, as well as calculated states
over observables for the analysed models. These properties are
also plotted in Figure 1 as different measures for the size of the
models.

Model Parameters States States/observables

HIV_1a 5 3 1.5
C2Ma 4 2 2
C2Mb 4 2 2
ruminal 4 5 1.67
PK_1 9 4 2
phos 6 6 3
tumour 5 5 5
JAKSTAT1 23 10 1.25
HIV_2 10 4 2
sirs 13 5 2.5
MAPK 14 3 1
Cholera 7 4 2
competition 6 2 2
HIV_3 10 5 2.5
NFKB1 29 15 2.5
PK_2 9 4 4

MAPK, mitogen-activated protein kinase; SIRS, systemic inflammatory
þ 1:07ð3Þ,logðruntimesownÞ:
(A.1)

that the slope is close to one and shows that the setups
produce comparable results.

Figure A.1

Comparison of the run times for STRIKE-GOLDD FISPO as given in the
benchmark study with our own calculations. As expected, the run times
show a linear dependence on the log-log scale and the slope is close to
one, thus the setups give comparable results.
Table A.1

Run times for the different methods in seconds. Strike-Goldd
(own) refers to the local computations made to compare the
local StrucID results with the ones from the benchmark study.
Strike-Goldd (benchmark) lists the results from the bench-
marking paper [57]. For the PK_2 model, the Strike-Goldd com-
putations took longer than 36 h and were terminated. In the
table, this is denoted by None.

Model StrucID Strike-Goldd
(own)

Strike-Goldd
(benchmark)

HIV_1a 0.256 0.41 0.74
C2Ma 0.09 0.71 0.63
C2Mb 0.05 0.79 1.17
Ruminal 0.06 1.50 0.74
PK_1 0.11 2.04 2.69
Phos 0.13 2.18 1.87
Tumour 0.1 13.1 24.86
JAKSTAT1 1.84 16.98 31.26
HIV_2 0.08 17.92 29.79
SIRS 0.09 48.11 87.98
MAPK 0.07 54.47 94.219
Cholera 0.07 83.53 162.26
Competition 0.06 881.14 1696.29
HIV_3 0.07 5030.162 8528
NFKB1 0.26 15 931.81 33 345
PK_2 0.07 None None

MAPK, mitogen-activated protein kinase; SIRS, systemic inflammatory
response syndrome.

www.sciencedirect.com
response syndrome.
Data availability
Data will be made available on request.
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21. S Ligon T, Fröhlich F, Chiş OT, Banga JR, Balsa-Canto E,
Hasenauer J: GenSSI 2.0: multi-experiment structural identi-
fiability analysis of SBML models. Bioinformatics 2017, 34:
1421–1423, https://doi.org/10.1093/bioinformatics/btx735.

22. Sedoglavic A: A probabilistic algorithm to test local algebraic
observability in polynomial time. J Symbolic Comput 2002, 33:
735–755, https://doi.org/10.1006/jsco.2002.0532.

23. Karlsson J, Anguelova M, Jirstrand M: An efficient method for
structural identifiability analysis of large dynamic systems.
IFAC Proc Vol 2012, 45:941–946, https://doi.org/10.3182/
20120711-3-BE-2027.00381.

24. Ljung L, Glad T: On global identifiability for arbitrary model
parametrizations. Automatica 1994, 30:265–276, https://doi.org/
10.1016/0005-1098(94)90029-9.

25. Saccomani MP, Audoly S, D’Angiò L: Parameter identifiability
of nonlinear systems: the role of initial conditions. Automatica
2003, 39:619–632, https://doi.org/10.1016/s0005-1098(02)
00302-3.

26. Bellu G, Saccomani MP, Audoly S, D’Angiò. Daisy L: A new
software tool to test global identifiability of biological and
physiological systems. Comput Methods Progr Biomed 2007,
88:52–61, https://doi.org/10.1016/j.cmpb.2007.07.002.
Current Opinion in Systems Biology 2025, 41:100546
27. Meshkat N, Kuo CE-Z, DiStefano J: On finding and using
identifiable parameter combinations in nonlinear dynamic
systems biology models and COMBOS: a novel web imple-
mentation. PLoS One 2014, 9, e110261, https://doi.org/10.1371/
journal.pone.0110261.

28. Thomaseth K, Saccomani MP: Local identifiability analysis of
nonlinear ODE models: how to determine all candidate so-
lutions. IFAC-PapersOnLine 2018, 51:529–534, https://doi.org/
10.1016/j.ifacol.2018.03.089.

29. Varghese A, Narasimhan S, Bhatt N: A priori parameter iden-
tifiability in complex reaction networks. IFAC-PapersOnLine
2018, 51:760–765, https://doi.org/10.1016/j.ifacol.2018.09.162.

30. Saccomani MP, Bellu G, Audoly S, d’Angió L: A new version of
daisy to test structural identifiability of biological models. In
Lecture notes in computer science. Springer International Pub-
lishing; 2019:329–334, https://doi.org/10.1007/978-3-030-31304-
3_21.

31. Hong H, Ovchinnikov A, Pogudin G, Yap C: SIAN: software for
structural identifiability analysis of ODE models. Bioinfor-
matics 2019, 35:2873–2874, https://doi.org/10.1093/bioinformat-
ics/bty1069.

32. Hong H, Ovchinnikov A, Pogudin G, Yap C: Global identifiability
of differential models. Commun Pure Appl Math 2020, 73:
1831–1879, https://doi.org/10.1002/cpa.21921.

33. Bates DJ, Hauenstein JD, Meshkat N: Identifiability and nu-
merical algebraic geometry. PLoS One 2019, 14, e0226299,
https://doi.org/10.1371/journal.pone.0226299.

34. Karabutov N: Structural identifiability of nonlinear dynamic
systems under uncertainty. Int J Intell Syst Appl 2020, 12:
12–22, https://doi.org/10.5815/ijisa.2020.01.02.

35. Villaverde AF, Barreiro A, Papachristodoulou A: Structural
identifiability of dynamic systems biology models. PLoS
Comput Biol 2016, 12, e1005153, https://doi.org/10.1371/
journal.pcbi.1005153.

36. Villaverde AF: Observability and structural identifiability of
nonlinear biological systems. Complexity 2019, 2019,
e8497093, https://doi.org/10.1155/2019/8497093.

37. Chis OT, Banga JR, Balsa-Canto E: Structural identifiability of
systems biology models: a critical comparison of methods.
PLoS One 2011, 6, e27755, https://doi.org/10.1371/
journal.pone.0027755.

38. Raue A, Karlsson J, Saccomani MP, Jirstrand M, Timmer J:
Comparison of approaches for parameter identifiability
analysis of biological systems. Bioinformatics 2014, 30:
1440–1448, https://doi.org/10.1093/bioinformatics/btu006.

39. Gerbet D, Röbenack K: An algebraic approach to identifiability.
Algorithms 2021, 14:255, https://doi.org/10.3390/a14090255.

40. Karabutov N: Structural identifiability of systems with multiple
nonlinearities. Contemp Math 2021, 2:140–161, https://doi.org/
10.37256/cm.222021763.

41. Dong R, Goodbrake C, Harrington HA, Pogudin G: Differential
elimination for dynamical models via projections with appli-
cations to structural identifiability. SIAM Journal on Applied
Algebra and Geometry 2023, 165, 108345, https://doi.org/
10.1137/22M1469067.

42. Stigter JD, Joubert D: Computing measures of identifiability,
observability, and controllability for a dynamic system model
with the StrucID app. IFAC-PapersOnLine 2021, 54:138–143,
https://doi.org/10.1016/j.ifacol.2021.08.348.

43
*
. van Willigenburg LG, Stigter JD, Molenaar J: Extending a

sensitivity based algorithm to detect local structural identi-
fiability. IFAC-PapersOnLine 2022, 55:343–348, https://doi.org/
10.1016/j.ifacol.2022.09.119.

An extension to the classical sensitivity-based algorithm is presented.
The extension aims to solve cases where sensitivity-based algorithms
failed before.

44
* *
. Van Willigenburg LG, Stigter JD, Molenaar J: Sensitivity

matrices as keys to local structural system properties of
large-scale nonlinear systems. Nonlinear Dyn 2022, 107:
2599–2618, https://doi.org/10.1007/s11071-021-07125-4.
www.sciencedirect.com

https://doi.org/10.1016/j.ifacol.2020.12.1312
https://doi.org/10.1002/stc.1690
https://doi.org/10.1002/stc.1690
https://doi.org/10.1016/j.ymssp.2021.107633
https://doi.org/10.1016/j.ymssp.2021.107633
https://doi.org/10.1016/j.ymssp.2021.108345
https://doi.org/10.1016/j.ymssp.2021.108345
https://doi.org/10.1093/bioinformatics/btp358
https://doi.org/10.1016/j.matcom.2022.03.020
https://doi.org/10.1016/j.automatica.2009.07.009
https://doi.org/10.1016/j.automatica.2009.07.009
https://doi.org/10.1103/PhysRevE.92.012920
https://doi.org/10.1103/PhysRevE.92.012920
https://doi.org/10.1109/LCSYS.2018.2868608
https://doi.org/10.1109/LCSYS.2018.2868608
https://doi.org/10.3390/sym12030469
https://doi.org/10.3390/sym12030469
https://doi.org/10.1016/0025-5564(78)90063-9
https://doi.org/10.1016/0378-4754(82)90645-0
https://doi.org/10.1016/0378-4754(82)90645-0
https://doi.org/10.1093/bioinformatics/btx735
https://doi.org/10.1006/jsco.2002.0532
https://doi.org/10.3182/20120711-3-BE-2027.00381
https://doi.org/10.3182/20120711-3-BE-2027.00381
https://doi.org/10.1016/0005-1098(94)90029-9
https://doi.org/10.1016/0005-1098(94)90029-9
https://doi.org/10.1016/s0005-1098(02)00302-3
https://doi.org/10.1016/s0005-1098(02)00302-3
https://doi.org/10.1016/j.cmpb.2007.07.002
https://doi.org/10.1371/journal.pone.0110261
https://doi.org/10.1371/journal.pone.0110261
https://doi.org/10.1016/j.ifacol.2018.03.089
https://doi.org/10.1016/j.ifacol.2018.03.089
https://doi.org/10.1016/j.ifacol.2018.09.162
https://doi.org/10.1007/978-3-030-31304-3_21
https://doi.org/10.1007/978-3-030-31304-3_21
https://doi.org/10.1093/bioinformatics/bty1069
https://doi.org/10.1093/bioinformatics/bty1069
https://doi.org/10.1002/cpa.21921
https://doi.org/10.1371/journal.pone.0226299
https://doi.org/10.5815/ijisa.2020.01.02
https://doi.org/10.1371/journal.pcbi.1005153
https://doi.org/10.1371/journal.pcbi.1005153
https://doi.org/10.1155/2019/8497093
https://doi.org/10.1371/journal.pone.0027755
https://doi.org/10.1371/journal.pone.0027755
https://doi.org/10.1093/bioinformatics/btu006
https://doi.org/10.3390/a14090255
https://doi.org/10.37256/cm.222021763
https://doi.org/10.37256/cm.222021763
https://doi.org/10.1137/22M1469067
https://doi.org/10.1137/22M1469067
https://doi.org/10.1016/j.ifacol.2021.08.348
https://doi.org/10.1016/j.ifacol.2022.09.119
https://doi.org/10.1016/j.ifacol.2022.09.119
https://doi.org/10.1007/s11071-021-07125-4
www.sciencedirect.com/science/journal/24523100


On structural and practical identifiability Heinrich et al. 9
The power of a sensitivity-based algorithm as in StrucID is shown. The
algorithm is utilised to quickly analyse identifiability and observability of
various models.

45
* *
. Díaz-Seoane S, Rey Barreiro X, Villaverde AF: Strike-goldd 4.0:

user-friendly, efficient analysis of structural identifiability and
observability. Bioinformatics 2022, 39, btac748, https://doi.org/
10.1093/bioinformatics/btac748.

STRIKE-GOLDD 4.0 is the latest version of the Lie-derivative based
structural identifiability software STRIKE-GOLDD. In this version a new
algorithm, intendet for rational models, is presented. On rational
models this algorithm performs extremely fast and accurate.

46. Villaverde AF: Symmetries in dynamic models of biological
systems: mathematical foundations and implications. Sym-
metry 2022, 14:467, https://doi.org/10.3390/sym14030467.

47. Villaverde AF, Massonis G: On testing structural identifiability
by a simple scaling method: relying on scaling symmetries
can be misleading. PLoS Comput Biol 2021, 17, e1009032,
https://doi.org/10.1371/journal.pcbi.1009032.

48. Rostro D, StrikePy AF Villaverde: Nonlinear observability analysis
of inputs, states, and parameters in Python. Servizo de Publica-
cións da UDC; 2022:430–435, https://doi.org/10.17979/
spudc.9788497498418.0430.

49. Massonis G, Banga JR, Villaverde AF: Structural identifiability
and observability of compartmental models of the COVID-19
pandemic. Annu Rev Control 2021, 51:441–459, https://doi.org/
10.1016/j.arcontrol.2020.12.001.

50. Zhang C, Zhang X, Bai Y, Lau EHY, Pei S: The structural
identifiability of a humidity-driven epidemiological model of
influenza transmission. Viruses 2022, 14:2795, https://doi.org/
10.3390/v14122795.

51. Dankwa EA, Brouwer AF, Donnelly CA: Structural identifiability
of compartmental models for infectious disease transmission
is influenced by data type. Epidemics 2022, 41, 100643, https://
doi.org/10.1016/j.epidem.2022.100643.

52. Ciupe SM, Tuncer N: Identifiability of parameters in
mathematical models of SARS-CoV-2 infections in humans.
Sci Rep 2022, 12, 14637, https://doi.org/10.1038/s41598-022-
18683-x.

53. Karabutov N: Structural identifiability of feedback systems
with nonlinear adulterating. Contemp Math 2022:257–269,
https://doi.org/10.37256/cm.3220221258.

54. White C, Rottschäfer V, Bridge L: Classical structural
identifiability methodology applied to low-dimensional
dynamic systems in receptor theory. J Pharmacokinet
Pharmacodyn 2023, https://doi.org/10.1007/s10928-023-
09870-y.

55. Haus ES, Drengstig T, Thorsen K: Structural identifiability
of biomolecular controller motifs with and without
flow measurements as model output. PLoS Comput Biol
2023, 19, e1011398, https://doi.org/10.1371/
journal.pcbi.1011398.

56. Díaz-Seoane S, Sellán E, Villaverde AF: Structural identifi-
ability and observability of microbial community models.
Bioengineering 2023, 10:483, https://doi.org/10.3390/
bioengineering10040483.

57
* *
. Rey Barreiro X, Villaverde AF: Benchmarking tools for a priori

identifiability analysis. Bioinformatics 2023, 39, btad065, https://
doi.org/10.1093/bioinformatics/btad065.

At the moment largest benchmark study of tools for analysing structural
identifiability. 13 tools in 7 different languages are compared using 25
case studies.

58. Stigter JD, Molenaar J: A fast algorithm to assess local
structural identifiability. Automatica 2015, 58:118–124, https://
doi.org/10.1016/j.automatica.2015.05.004.

59. Joubert D, Stigter JD, Molenaar J: An efficient procedure to
assist in the re-parametrization of structurally unidentifiable
models. Math Biosci 2020, 323, 108328, https://doi.org/10.1016/
j.mbs.2020.108328.

60. Grabowski F, Nalecz-Jawecki P, Lipniacki T: Predictive power of
non-identifiable models. Sci Rep 2023, 13, 11143, https://
doi.org/10.1038/s41598-023-37939-8.
www.sciencedirect.com
61
* *
. Villaverde AF, Pathirana D, Fröhlich F, Hasenauer J, Banga JR:

A protocol for dynamic model calibration. Briefings Bioinf
2022, 23, bbab387, https://doi.org/10.1093/bib/bbab387.

The authors provide a protocol to guide even uneexperienced mod-
elers through all steps of model cobration. The presented methods can
be applied in any framework and the steps of calibration are explained
in great detail.

62
*
. Simpson MJ, Browning AP, Warne DJ, Maclaren OJ, Baker RE:

Parameter identifiability and model selection for sigmoid
population growth models. J Theor Biol 2022, 535, 110998,
https://doi.org/10.1016/j.jtbi.2021.110998.

Classical sigmoid growth models are used to discuss identifiability
analysis and fitting procedures.

63. Murphy RJ, Maclaren OJ, Calabrese AR, Thomas PB, Warne DJ,
Williams ED, Simpson MJ: Computationally efficient frame-
work for diagnosing, understanding and predicting biphasic
population growth. J R Soc Interface 2022, 19, 20220560,
https://doi.org/10.1098/rsif.2022.0560.

64. Simpson MJ, Walker SA, Studerus EN, McCue SW, Murphy RJ,
Maclaren OJ: Profile likelihood-based parameter and predic-
tive interval analysis guides model choice for ecological
population dynamics. Math Biosci 2023, 355, 108950, https://
doi.org/10.1016/j.mbs.2022.108950.

65
*
. Muñoz-Tamayo R, Tedeschi LO: Asas-nanp symposium:

mathematical modeling in animal nutrition: the power of
identifiability analysis for dynamic modeling in animal sci-
ence: a practitioner approach. J Anim Sci 2023, 101, skad320,
https://doi.org/10.1093/jas/skad320.

Good read and introduction for people from the Animal Science related
modeling community. Structural and practical identifiability is discussed
and used to propose a workflow for experimental design.

66. Liu Yx, Suh K, Maini PK, Cohen DJ, Baker RE: Parameter iden-
tifiability and model selection for partial differential equation
models of cell invasion. 2023.

67. Venzon DJ, Moolgavkar SH: A method for computing profile-
likelihood-based confidence intervals. J Roy Stat Soc: Series
C (Applied Statistics) 1988, 37:87–94, https://doi.org/10.2307/
2347496.

68. Chen Jian-Shen, Jennrich Robert I: Simple accurate approxi-
mation of likelihood profiles. J Comput Graph Stat 2002, 11:
714–732. 0.1198/106186002493.

69. Kreutz Clemens, Raue Andreas, Kaschek Daniel, Timmer Jens:
Profile likelihood in systems biology. FEBS J 2013, 280:
2564–2571, https://doi.org/10.1111/febs.12276.

70. Kaschek Daniel, Mader Wolfgang, Fehling-Kaschek Mirjam,
Rosenblatt Marcus, Timmer Jens: Dynamic modeling, param-
eter estimation, and uncertainty analysis in r. J Stat Software
2019, 88:1–32, https://doi.org/10.18637/jss.v088.i10.

71
* *
. Aoki Y, Sugiyama Y: Cluster Gauss-Newton method for a

quick approximation of profile likelihood: with application to
physiologically-based pharmacokinetic models. CPT Phar-
macometrics Syst Pharmacol 2023, https://doi.org/10.1002/
psp4.13055.

The authors present the Clustter-Gauss-Newton method as an alter-
native to the profile likelihood. The method is applied to 3 models and
shows promising results. This seems to be an interesting candidate for
fast practical identifiability analysis.

72. Hass H, Loos C, Raimúndez-Álvarez E, Timmer J, Hasenauer J,
Kreutz C: Benchmark problems for dynamic modeling of
intracellular processes. Bioinformatics 2019, 35:3073–3082,
https://doi.org/10.1093/bioinformatics/btz020.

73. Schmiester L, Schälte Y, Bergmann FT, Camba T, Dudkin E,
Egert J, Fröhlich F, Fuhrmann L, Hauber AL, Kemmer S,
Lakrisenko P, Loos C, Merkt S, Müller W, Pathirana D,
Raimúndez E, Refisch L, Rosenblatt M, Stapor PL, Städter P,
Wang D, Wieland F-G, Banga JR, Timmer J, Villaverde AF,
Sahle S, Kreutz C, Hasenauer J, Weindl D: Petab—
interoperable specification of parameter estimation problems
in systems biology. PLoS Comput Biol 2021, 17, e1008646,
https://doi.org/10.1371/journal.pcbi.1008646.

74. Egert J, Kreutz C: Realistic simulation of time-course mea-
surements in systems biology. Math Biosci Eng 2023, 20:
10570–10589, https://doi.org/10.3934/mbe.2023467.
Current Opinion in Systems Biology 2025, 41:100546

https://doi.org/10.1093/bioinformatics/btac748
https://doi.org/10.1093/bioinformatics/btac748
https://doi.org/10.3390/sym14030467
https://doi.org/10.1371/journal.pcbi.1009032
https://doi.org/10.17979/spudc.9788497498418.0430
https://doi.org/10.17979/spudc.9788497498418.0430
https://doi.org/10.1016/j.arcontrol.2020.12.001
https://doi.org/10.1016/j.arcontrol.2020.12.001
https://doi.org/10.3390/v14122795
https://doi.org/10.3390/v14122795
https://doi.org/10.1016/j.epidem.2022.100643
https://doi.org/10.1016/j.epidem.2022.100643
https://doi.org/10.1038/s41598-022-18683-x
https://doi.org/10.1038/s41598-022-18683-x
https://doi.org/10.37256/cm.3220221258
https://doi.org/10.1007/s10928-023-09870-y
https://doi.org/10.1007/s10928-023-09870-y
https://doi.org/10.1371/journal.pcbi.1011398
https://doi.org/10.1371/journal.pcbi.1011398
https://doi.org/10.3390/bioengineering10040483
https://doi.org/10.3390/bioengineering10040483
https://doi.org/10.1093/bioinformatics/btad065
https://doi.org/10.1093/bioinformatics/btad065
https://doi.org/10.1016/j.automatica.2015.05.004
https://doi.org/10.1016/j.automatica.2015.05.004
https://doi.org/10.1016/j.mbs.2020.108328
https://doi.org/10.1016/j.mbs.2020.108328
https://doi.org/10.1038/s41598-023-37939-8
https://doi.org/10.1038/s41598-023-37939-8
https://doi.org/10.1093/bib/bbab387
https://doi.org/10.1016/j.jtbi.2021.110998
https://doi.org/10.1098/rsif.2022.0560
https://doi.org/10.1016/j.mbs.2022.108950
https://doi.org/10.1016/j.mbs.2022.108950
https://doi.org/10.1093/jas/skad320
http://refhub.elsevier.com/S2452-3100(25)00006-X/sref66
http://refhub.elsevier.com/S2452-3100(25)00006-X/sref66
http://refhub.elsevier.com/S2452-3100(25)00006-X/sref66
https://doi.org/10.2307/2347496
https://doi.org/10.2307/2347496
http://refhub.elsevier.com/S2452-3100(25)00006-X/sref68
http://refhub.elsevier.com/S2452-3100(25)00006-X/sref68
http://refhub.elsevier.com/S2452-3100(25)00006-X/sref68
https://doi.org/10.1111/febs.12276
https://doi.org/10.18637/jss.v088.i10
https://doi.org/10.1002/psp4.13055
https://doi.org/10.1002/psp4.13055
https://doi.org/10.1093/bioinformatics/btz020
https://doi.org/10.1371/journal.pcbi.1008646
https://doi.org/10.3934/mbe.2023467
www.sciencedirect.com/science/journal/24523100


10 COISB most cited/downloaded (2020-2023)
75. Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M,
Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL,
Hucka M: Biomodels database: a free, centralized database of
curated, published, quantitative kinetic models of biochem-
ical and cellular systems. Nucleic Acids Res 2006, 34:
D689–D691, https://doi.org/10.1093/nar/gkj092.

76. Maiwald T, Hass H, Steiert B, Vanlier J, Engesser R, Raue A,
Kipkeew F, Bock HH, Kaschek D, Kreutz C, Timmer J: Driving
the model to its limit: profile likelihood based model reduc-
tion. PLoS One 2016, 11, e0162366, https://doi.org/10.1371/
journal.pone.0162366.

77. Brastein OM, Lie B, Sharma R, Skeie N-O: Parameter estima-
tion for externally simulated thermal network models. Energy
Build 2019, 191:200–210, https://doi.org/10.1016/
j.enbuild.2019.03.018.
Current Opinion in Systems Biology 2025, 41:100546
78. Litwin T, Timmer J, Kreutz C: Optimal experimental design
based on two-dimensional likelihood profiles. Front Mol Biosci
2022, 9, 800856. 10.3389%2Ffmolb.2022.800856.

79. Raman Dhruva V, Anderson James, Papachristodoulou Antonis:
Delineating parameter unidentifiabilities in complex models.
Phys Rev 2017, 95, 032314, https://doi.org/10.1103/
PhysRevE.95.032314.

80. Joubert D, Stigter JD, Molenaar J: Determining minimal output
sets that ensure structural identifiability. PLoS One 2018, 13,
e0207334, https://doi.org/10.1371/journal.pone.0207334.

81. Poole M, Murray R, Davidson SM, Docherty PD: The quadratic
dimensional reduction method for parameter identification.
Commun Nonlinear Sci Numer Simulat 2019, 73:425–436,
https://doi.org/10.1016/j.cnsns.2019.03.001.
www.sciencedirect.com

https://doi.org/10.1093/nar/gkj092
https://doi.org/10.1371/journal.pone.0162366
https://doi.org/10.1371/journal.pone.0162366
https://doi.org/10.1016/j.enbuild.2019.03.018
https://doi.org/10.1016/j.enbuild.2019.03.018
http://refhub.elsevier.com/S2452-3100(25)00006-X/sref78
http://refhub.elsevier.com/S2452-3100(25)00006-X/sref78
http://refhub.elsevier.com/S2452-3100(25)00006-X/sref78
https://doi.org/10.1103/PhysRevE.95.032314
https://doi.org/10.1103/PhysRevE.95.032314
https://doi.org/10.1371/journal.pone.0207334
https://doi.org/10.1016/j.cnsns.2019.03.001
www.sciencedirect.com/science/journal/24523100

	On structural and practical identifiability: Current status and update of results
	Introduction
	On recent developments in structural identifiability research
	On efficient and fast identification of structural identifiability
	The sensitivity matrix approach
	Software accessibility and usability
	Benchmarking StrucID

	On the still challenging problem of practical identifiability analysis
	Conclusion
	Declaration of competing interest
	Acknowledgements
	Appendix A. Comparison of the computational setups
	Data availability
	References


