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a  b  s  t  r  a  c  t

A  Matlab®-based  software  package,  EPILAB,  was  developed  for supporting  researchers  in  performing
studies  on  the  prediction  of  epileptic  seizures.  It  provides  an  intuitive  and  convenient  graphical  user  inter-
face.  Fundamental  concepts  that  are  crucial  for epileptic  seizure  prediction  studies  were  implemented.
This  includes,  for example,  the  development  and  statistical  validation  of  prediction  methodologies  in
long-term  continuous  recordings.

Seizure  prediction  is  usually  based  on  electroencephalography  (EEG)  and  electrocardiography  (ECG)
signals.  EPILAB  is  able  to  process  both  EEG  and  ECG  data  stored  in  different  formats.  More  than  35 time
EG/ECG processing
rtificial neural networks
upport vector machines
eizure prediction characteristic

and  frequency  domain  measures  (features)  can  be extracted  based  on univariate  and  multivariate  data
analysis.  These  features  can  be post-processed  and  used  for prediction  purposes.  The  predictions  may  be
conducted  based  on  optimized  thresholds  or by applying  classifications  methods  such  as  artificial  neural
networks,  cellular  neuronal  networks,  and  support  vector  machines.

EPILAB proved  to be an  efficient  tool  for seizure  prediction,  and aims  to  be a way  to  communicate,
evaluate,  and  compare  results  and  data  among  the  seizure  prediction  community.
. Introduction

Between 30% and 40% of the epilepsy patients cannot be treated
uccessfully either by anti-epileptic drugs or by resective surgery
Kwan and Brodie, 2000). The life of these patients is extremely
ffected by the occurrence of sudden and apparently unpredictable
eizures, which are a cause of disability (Devinsky et al., 1995) and
ortality (Cockerell et al., 1994). Hence, the development of a reli-
ble seizure prediction method could improve the quality of life of
hose patients considerably.
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In recent years, several time series analysis techniques were
developed (Mormann et al., 2007) in order to identify a pre-seizure
state, the so-called preictal state. Aiming to detect this preictal
state, a large number of methods to analyze electroencephalogram
(EEG) and electrocardiogram (ECG) time series were developed
(Mormann et al., 2005; Valderrama et al., 2010). These methods
are based on single- and multi-channel analysis, and enable the
extraction of measures, i.e., features, in the time and frequency
domain. The first methods were based on thresholds optimized
for a given feature. Here, an alarm is triggered when a prede-
fined feature crosses some predefined threshold (Schelter et al.,
2006a). More recent studies suggested circadian dependencies. It
was found that more false predictions per hour occur during night
times (Schelter et al., 2006b).  Hence, different thresholds for night
and day were introduced. The seizure prediction challenge has
also been faced as a classification problem during the past decade

(Dourado et al., 2008; Costa et al., 2008; Mirowski et al., 2008; Chisci
et al., 2010). The application of classification techniques has been
based on the assumption that the different features extracted over
time can be separated into two or more classes corresponding to
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ifferent cerebral states. Computational intelligence methods such
s support vector machines (SVMs) (Cortes and Vapnik, 1995) have
een applied to address this classification problem (Mirowski et al.,
008; Chisci et al., 2010).

Several Matlab® toolboxes for EEG processing are available,
or example: EEGLAB (Delorme and Makeig, 2004), BSMART (Cui
t al., 2008), MEA-Tools (Egert et al., 2002), ERPWAVELAB (Mörup
t al., 2007), and eConnectome (He et al., 2011). EEGLAB is an
pen-source Matlab® platform developed for researchers inter-
sted in event related potentials, to process collections of single
EG data epochs. ERPWAVELAB (Mörup et al., 2007) is an exten-
ion of EEGLAB and enables data analysis and visualization of the
ost common event related measures, e.g., evoked spectral per-

urbation (ERSP) and inter-trial phase coherence (ITPC), and data
ecomposition through non-negative matrix and multi-way fac-
orization. The toolbox MEA-Tools (MicroElectrode Array tools) is

 Matlab®-based open source toolbox developed for the analy-
is of multi-channel microelectrode data. BSMART (Brain-System
or Multivariate AutoRegressive Timeseries) (Cui et al., 2008) is

 Matlab®/C software developed for brain connectivity analy-
is based on EEG, magnetoencephalography (MEG) or functional
agnetic resonance imaging (fMRI) data. The recently released

Connectome toolbox (He et al., 2011) was developed for brain con-
ectivity studies based on Granger causality measures (Granger,
969).

However, none of the mentioned toolboxes was  developed
pecifically for seizure prediction studies. Specific software for
eizure prediction should enable long-term EEG/ECG processing,
ncompassing long-term feature extraction and prediction. Guide-
ines crucial for the quality of epileptic seizure prediction studies
hould be considered (Mormann et al., 2007):

algorithms should be tested on long-term continuous data cov-
ering several days, including a sufficient number of seizures and
a sufficient duration of interictal data;
a given predictor should be evaluated in terms of sensitivity and
specificity for a given seizure occurrence period, i.e., the time
interval after an alarm within which a seizure is expected. For
specificity, the false prediction rate can be used but it should
be related to only those time intervals in which false alarms are
possible;
predictors should be statistically validated to assess if a given
predictor performs above chance level;
the performance should be evaluated prospectively on out-of-
sample data.

We developed EPILAB, a Matlab® toolbox, for epileptic seizure
rediction that allows studying seizure prediction based on a high
imensional feature space. The software was developed for Win-
ows (Microsoft Corporation), Linux, and Mac  OS X (Apple Inc.)
perating systems. Threshold- and classification-based prediction
lgorithms are considered and evaluated following the guide-
ines above. It was designed to support researchers in performing
eizure prediction studies based on long-term EEG/ECG recordings
n an efficient and user-friendly graphical user interface (GUI). In
ddition, the object-oriented base of EPILAB enables the easy inte-
ration of new methodologies.

EPILAB is a product of the European project EPILEPSIAE, and will
e freely available by the end of 2011. All the documentation and
ode will be available at http://www.epilepsiae.eu

The first four sections describe the five main modules of EPI-
AB, as presented in Fig. 1. The process to create a new study

s presented in Section 2. The features that can be extracted and
heir computation setup are described in Section 3. The possibil-
ties to perform feature selection and dimensionality reduction
n high-dimensional feature spaces are presented in Section 4.
nce Methods 200 (2011) 257– 271

The prediction algorithms that are considered and their setup in
EPILAB are described in Section 5. In Section 6, an example for
an application to a long-term recording is reported. Final con-
clusions, limitations, and future improvements are described in
Section 7.

2. Creating a new study

A new study can be created based on raw EEG/ECG data files
or on previously computed features. When beginning a new study
from raw data (Fig. 2A), different binary formats are supported,
including Mat-Files (The Mathworks, Inc.), TRC files (Micromed
S.p.A., Italy), and Nicolet Files. Raw data in a single file or dispersed
in several files can be accessed. In the case of a multi-file organi-
zation, EPILAB is able to assess recursively directories of files, and
create an internal mapping such that all the data can be processed as
if they were in a single file. During the study creation, the informa-
tion necessary for future processing is retrieved such as sampling
frequencies, temporal gaps between files, events occurring during
the recording (e.g., seizure times), and electrode description.

After study creation, EEG/ECG signals can be displayed using the
raw data navigation tool integrated in EPILAB (Fig. 2B). The user can
visualize a data window with a specified time-length. The two main
modes of navigation are by time and by EEG annotation events. The
latter enables the user to easily locate the events like seizure onsets
and offsets marked in a given file. Optionally, the visualized data
can be filtered.

A study can also be based on features computed previously. The
user has the possibility to integrate more than one file of features
that were computed using the same computation parameters. The
user can navigate over the feature data by using a tool similar to
the one developed for raw data.

3. Feature extraction

EPILAB includes several measures for raw EEG and ECG signals
that have been shown to be useful in seizure prediction. Measures
are either based on one channel (univariate) or on multiple chan-
nels (multivariate), and are computed in a window-by-window
basis. Prior to feature computation the user may  decide to apply
filters. Three infinite impulse response (IIR) forward–backward
Butterworth filters can be applied: low-pass, high-pass, and notch
(to minimize power line interferences). Butterworth filters, or
maximally flat magnitude filters, present no ripple (oscillations)
in the pass- and stop-bands, producing a uniform acceptance of
the wanted EEG frequencies. When compared to other IIR filters
they present a larger transition band, which can be minimized by
increasing the filter order.

Table 1 summarizes the features that are presently included in
EPILAB, which are briefly presented below.

3.1. Univariate EEG features

The “prediction error”, derived from an autoregressive model of
the EEG signal, has been suggested for both detection (Altunay et al.,
2010) and prediction purposes (Rajdev et al., 2010). As seizures
approach, the EEG signals are claimed to be better predictable by
an autoregressive model of order p (AR(p)), i.e., the mean squared
error (MSE) in the preictal phase decreases. With the onset of the
seizure, this decrease in the MSE  is assumed to disappear.
The “decorrelation time” is defined as the time of the first zero
crossing of the autocorrelation sequence of a given EEG signal
(Mormann et al., 2005). If the decorrelation time is lower, the signal
is less correlated. Prior to seizures, a decrease in the power related

http://www.epilepsiae.eu
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Fig. 1. EPILAB flowchart, organized according to the five main groups of functionalities. (A) A new study should be created from raw data or from previously computed
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eature  data. (B) To proceed with a study created from raw data, EEG and/or ECG
lgorithms can be developed and evaluated. (D) The features imported or computed
e  graphically or textually visualized.

o the lower frequencies of the EEG has been reported, which leads
o a drop in the decorrelation time (Mormann et al., 2005).

Hjorth’s parameters (normalized slope descriptors) of mobility
nd complexity (Hjorth, 1970, 1973, 1975) quantify the root-mean-
quare frequency and the root-mean-square frequency spread of a
iven signal, respectively. The decrease in the power of the lower
requencies with the proximity of the seizure onset has also been
hown to increase the Hjorth mobility and complexity (Mormann
t al., 2005).

Non-linear univariate measures are often based on the recon-
truction (time-delay embedding) of the state space trajectory
rom a given univariate time series. EPILAB considers the corre-
ation dimension (Grassberger and Procaccia, 1983) and the largest
yapunov exponent (Lmax) (Wolf et al., 1985), computed with the
STOOL toolbox (Merkwirth et al., 1998). Lmax is assumed to quan-
ify the divergence or convergence of nearby reconstructed state
pace trajectories. Contradictory results have been reported on how
max changes preictally. Iasemidis and Sackellares (1991) found a
ecrease several minutes before the seizure, however; Mormann
t al. (2005) report an increase on Lmax 30 min  before seizure onset.
orrelation dimension is an estimate of the number of active states
f the dynamic system (Grassberger and Procaccia, 1983). Again,
ontradictory results were reported. In Elger and Lehnertz (1998)
nd Lehnertz and Elger (1998) a decrease 5–25 min  before the onset

as identified while Mormann et al. (2005) found an increase.

The spectral power in different frequency bands of the EEG
as also considered for seizure prediction. Mormann et al. (2005)

eported a preictal shift in power from lower to higher frequencies.
es should be computed. (C) Based on features computed or imported, prediction
e subjected to dimensionality reduction. (E) During the study data and results can

The “spectral edge frequency” is a quantification of the power
distribution along the spectral range of a given signal. Usually, most
of the power of an EEG signal is contained in the range 0–40 Hz, and
the spectral edge frequency is defined as the minimum frequency
up to which 50% of the total power is contained in a given signal,
considering the 0–40 Hz range (Stanski et al., 1984).

EPILAB also includes the first four statistical moments: mean,
variance, skewness, and kurtosis. The variance is equivalent to
the energy of the signal; skewness is a measure of the symme-
try of the amplitude distribution and kurtosis is a quantification
of the relative peakness or flatness of the amplitude distribu-
tion (Mormann et al., 2007). It was  reported that variance and
kurtosis vary significantly in the preictal phase. A decrease in
variance and an increase in kurtosis were observed in the pre-
ictal time when compared with interictal data (Aarabi et al.,
2009). Wavelet transform enables a time–frequency decomposi-
tion of a given signal in several sub-bands (Adeli et al., 2003).
This enables quantification of the energy in different frequency
ranges. In EPILAB it is possible to select several mother wavelets
(prototype functions) and to choose the number of decomposition
levels.

3.2. Multivariate EEG features
EPILAB supports the extraction of linear and nonlinear multi-
variate measures. These features are derived from the combination
of two  or more channels.
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Fig. 2. New study from raw data. (A) GUI that enables the creation of a new study from raw data. The user should select the data format in the popup menu “Format” and
choose the respective files. The box “Data Information” shows the main proprieties of the data such as number of loaded files, sampling frequency, number of EEG/ECG
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hannels, total recording time, time without data (gaps) and events (e.g., seizure 

avigation by time enables the user to scroll the predefined window forward or back
he  easy location of the events in a given file and jump between events.

Linear coherence (LC) (Carter, 1987) is a measure for the inter-
ction based on the auto-spectrum and cross-spectrum between
wo time series at a given frequency.

Mutual information (MI) is a non-linear measure for interde-
endence based on entropy and joint-entropy of two time series.

The directed transfer function (DTF) (Kaminski and Blinowska,
991) and the partial directed coherence (PDC) (Baccalá and
ameshima, 2001) are methods quantifying the direction of inter-
ctions. They model the EEG signals by a vector autoregressive
VAR) model. So far, DTF and PDC have been mainly applied to study
he interaction between neural structures (Sameshima and Baccalá,
999) and for the localization of the epileptic focus and seizure

ropagation (Franaszczuk and Bergey, 1998; Swiderski et al.,
009).

Mean phase coherence (MPC) (Mormann et al., 2000) is a statis-
ical measure for phase synchronization between two time series.
). (B) Raw data navigation tool. Two main modes of navigation are available. The
 in time, by a step size defined in the text box “Step(s)”. Navigation by event enables

Variations in MPC  were reported minutes and even hours before
the seizure onset (Mormann et al., 2003).

The correlation on the probability of recurrence (CPR) is a mea-
sure to detect interactions between two time series based on
recurrence probabilities of recurrence plots (Romano et al., 2005).
It was reported that this measure could be applied to non-phase-
coherent and noisy time series (Tokuda et al., 2008), like the ones
observed in EEG.

3.3. ECG features

Concerning ECG, temporal and spectral features are considered.

The use of ECG-based features is supported by clinical findings
that have shown that heart rate varies before seizures (Delamont
et al., 1999). Recently, the usefulness of combining EEG and ECG
features was described in Valderrama et al. (2010).  The temporal
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Table 1
Features that are possible to extract from raw data and related computation time information. (♠) The computation time information is presented as the number of times
that  a group of features is faster to compute relative to a window duration of 5 s. In the univariate and ECG cases the computation time refers to feature extraction from one
channel, the multivariate case considers the combination of two  channels. The raw data was acquired at 1024 Hz. (♣) For the energy of the wavelet coefficients a Daubechies-4
mother wavelet and six decomposition levels were considered. For this quantification EPILAB was  executed in a computer with a Intel® Core 2 Duo 2.4 GHz processor with
4  GB of RAM.

Feature Comp. time (×Fast. Win. Dur.)(♠)

Univariate AR modelling predictive error 1000.0
Decorrelation time 1162.8
Energy 6250.0
Hjorth Mobility 357.1

Complexity
Non-linear Largest Lyapunov exponent (Lmax) 5.0

Correlation dimension
Relative power Delta band (0.1–4 Hz) 384.6

Theta band (4–8 Hz)
Alpha band (8–15 Hz)
Beta band (15–30 Hz)
Gamma  band (30–2000 Hz)

Spectral edge Power 609.8
Frequency

Statistics 1st moment (mean) 943.4
2nd moment (variance)
3rd moment (skewness)
4th moment (kurtosis)

Energy of the wavelet coefficients Several mother wavelet and
decomposition levels

192.3 (♣)

Multivariate Coherence 9.4
Correlation on the prob. of recurrence 0.8
Directed transfer function 2.4
Mean phase coherence 56.8
Mutual information 0.5
Partial directed coherence 2.5

ECG  RR-statistics Mean 13.2
Variance
Minimum
Maximum

BPM-statistics Mean 13.2
Variance
Minimum
Maximum

Frequency domain Very low freq. (<0.04 Hz) 12.8
Low freq. (0.04–0.15 Hz)
High freq. (0.15–0.4 Hz)
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Approximate entropy (describing complexity a

easures considered are the statistics of the inter-beat (R-R) inter-
al and beats per minute (BPM) signal, and approximate entropy
escribing the complexity and irregularity of the R-R intervals. The
pectral measures are the power of the very low (<0.04 Hz), low
0.04–0.15 Hz) and high frequency (0.15–0.4 Hz) bands of both BPM
nd R-R signals.

.4. Computation times

Table 1 presents information about the time needed to compute
 group of features for 5 s of data. The information is presented as
he number of times that a group of features is faster to compute
elative to the window duration. A number smaller than one means
hat the related group of features takes more time to compute than
he window duration. Otherwise, it means that a group of features
an be computed in a portion of time smaller than the window
uration, i.e., faster than real-time.

The raw data used was acquired at 1024 Hz. For the energy of
he wavelet coefficients a Daubechies-4 mother wavelet and six
ecomposition levels were considered. We  used a computer with
n Intel Core 2 Duo 2.4 GHz processor with 4 GB of RAM. For the

nivariate case one channel was considered. In the multivariate
ase data from two channels was analyzed exemplarily.

For a modern personal computer, all the univariate EEG and ECG
eatures alone can be obtained multiple times faster than real-time
egularity of the RR intervals) 12.8

for one channel. Simultaneous real-time analysis of more than 100
channels is feasible for the univariate features. The exception is for
the non-linear features that allow real-time computation of only 5
channels simultaneously.

For multivariate features, most of them can also be computed in
real-time. The MPC  alone, for two channels, can be derived approxi-
mately 57 times faster than real-time. This means that the MPC  can
be computed in real-time for the combination of about 11 chan-
nels. CPR and MI  are the multivariate features that cannot be used
for real-time operation on currently available personal computers,
even for the combination of only two  channels.

3.5. Feature computation setup

The first step for feature extraction is the selection of electrodes
that should be analyzed (Fig. 3A). After electrode selection the user
can define the window size and the step size used for a sliding
window calculation (Fig. 3B). The windows may  overlap if the step
size is smaller than the window size. Gaps within the recording are
automatically detected.
For each window, a feature sample is derived for each channel
in the univariate case or for each possible combination among the
different channels in the multivariate case. The feature samples
can be saved to a binary file. Features stored in binary files can then
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Fig. 3. Feature extraction windows: (A) Window that enables the selection of the
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lectrodes to be involved in the feature extraction procedure. (B) Window that
nables the selection of the feature to be computed, as well as the window and
tep  size used for the features computation.

e used to create studies based directly on features, as referred in
ection 2.

. Dimensionality reduction and feature selection

The development of seizure predictors based on a high number
f features may  suffer from the curse of dimensionality (Bellman,
957). Among all extracted features some may  be redundant and/or
ay not contain predictive information. These features should be

dentified and removed or transformed. Therefore, a key point is
he reduction of the feature space into another, trying to preserve
s most as possible the predictive information.

EPILAB implements several strategies for dimensionality reduc-
ion based mainly on Principal Component Analysis (PCA) and

ulti-Dimensional Scaling (MDS).
PCA (Pearson, 1901; Hotelling, 1933) is a widely applied statis-

ical procedure that performs dimensionality reduction of a given
ata set by projecting it onto an orthogonal space, and then by
electing the projections with higher variances.

MDS  (Borg and Groenen, 2005) performs dimensionality reduc-

ion by preserving pairwise distances between data points, i.e.,
y preserving the similarity/dissimilarity between points. The
educed set is obtained by optimization techniques that try to mini-
ize the difference between a original dissimilarity matrix and one
nce Methods 200 (2011) 257– 271

corresponding to the reduced set. Usually the Euclidean distance is
applied, however other metrics of distance can also be used.

Feature selection by two different preselection methods was
implemented, one supervised, i.e., based on a target classification,
and one non-supervised.

The minimum redundancy–maximum relevance (mRMR) (Ding
and Peng, 2005) ranks a set of features by minimizing the redun-
dancy among the features while maximizing their relevance to a
desired target classification. The first step of mRMR algorithm is
based on a F-test, as a relevance measure, and computation of the
Pearson’s correlation among features as a redundancy measure.
After selecting the first feature, i.e., the feature with maximum
value of relevance with the target, the remaining set of features
is iteratively selected based on the mRMR  score (Ding and Peng,
2005). In EPILAB the F-test correlation difference (FCD) was selected
as the relevance measure (Ding and Peng, 2005). Since mRMR
considers the predictive performance of each feature, i.e., it is
supervised; this method may  only be applied on a training dataset.

The non-supervised method enables features ranking by
computing the ratio between the global and local variances
(Feldwisch-Drentrup et al., 2011b). For a given feature fk, its vari-
ance ratio is given by

Sk = 2
�2

k,global

�2
k,local

, (1)

where �2
k,global is the global variance of the length N sequence fk,

defined by

�2
k,global = 1

N − 1

N∑
i=1

(f i
k − fk)

2
. (2)

�2
k,local is the local variance, i.e., the variance of the first order dif-

ferences of fk and is described by

�2
k,local = 1

N − 2

N−1∑
i=1

(�f i
k − �fk)

2
, (3)

with �f i
k

given by

�f i
k = f i+1

k
− f i

k. (4)

A potential feature for seizure prediction must present long-term
fluctuations before seizures, i.e., a high value of Sk (Feldwisch-
Drentrup et al., 2011b). Based on the S values for all the features
it is possible to sort them in descending order and then to select
the top ones. Since this method does not consider the predictive
performances, it also may  be applied to testing data.

Both the mRMR  and variance ratios methods showed appropri-
ate performance for feature selection in previous seizure prediction
studies (Feldwisch-Drentrup et al., 2011b; Direito et al., in press-a).

The implemented algorithms are preselection methods, i.e., they
are not related to the prediction methodology. Feature selection
methods based on a given prediction approach will be considered
in future EPILAB releases. For example, SVM based recursive feature
elimination (SVM-RFE) (Guyon et al., 2002; Direito et al., in press-
b), and feature selection based on input set sensitivity analysis or
structure parameters of trained predictors (Mirowski et al., 2008)
will be considered.

EPILAB also integrates a tool that visualizes to which extent a
given feature can be used to discriminate between patterns belong-
ing to the different classes. For defined preictal and postictal periods
the amplitude distribution of a selected feature according to the dif-

ferent classes is presented. Fig. 4A and B shows an example of the
amplitude distribution of the relative power in the Gamma  sub-
band for electrode Cz, considering a preictal and postictal period of
30 and 10 min, respectively.
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Fig. 4. Amplitude distribution plotting. (A) Histograms of the four considered classes. (B) Overlapped histogram envelopes that allow visual inspection about the separability
between classes.
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Fig. 5. Time series encoding the classification of the cerebral states for three
seizures. (A) Four-class encoding and (B) two-class encoding. The preictal and postic-
tal  epochs were 40 min and 10 min, respectively, and the early detection prevention
time 10 s. The preictal epochs are represented by red time slots. In A interictal epochs
are  represented by green time slots while the yellow time slots represent the ictal
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lus  postictal epochs. In B the green time slots represent the non-preictal epochs.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web  version of the article.)

Other options for feature selection are available through a con-
ection to the VISRED (Data Visualisation by Space Reduction)
Dourado et al., 2007) application. VISRED is an advanced tool for
ata classification and clustering which includes in addition to PCA
nd MDS  also non-linear PCA and several clustering techniques,
uch as hierarchical, k-means, subtractive, fuzzy C-means, and SOM
Self-Organizing Maps). It allows the application of several meta-
euristics for optimization in MDS, such as genetic algorithms and
imulated annealing.

. Seizure prediction

Two types of prediction schemes are integrated into EPILAB,
hich are based on thresholds or classification algorithms. For the
rst, the predictive power of features is analyzed by using thresh-
lds such that alarms are given at threshold crossings. For the latter,
lassification algorithms are applied that are optimized to separate
pochs related to several brain states.

.1. Threshold based analysis

In threshold based analyses, for each feature a threshold is deter-
ined such that the alarms triggered at threshold crossing yield

ptimal predictive performances. This approach can be extended
y the possibility to combine two or more features by using logical
ND and OR operations (Feldwisch-Drentrup et al., 2010). Addi-

ionally, independent thresholds can be optimized for day and
ight, such that circadian rhythms can be accounted for (Schelter
t al., 2006b).

In order to evaluate the performance of a given seizure
rediction method, the seizure prediction characteristics was pro-
osed, which is based on clinical and statistical considerations
Winterhalder et al., 2003). In contrast to quantifications of the
istribution of interictal and preictal features by means of a ROC
nalysis (Mormann et al., 2005), the seizure prediction char-
cteristics allows an evaluation of quasi prospective prediction

erformances by assessing the alarms triggered. Here, an alarm is
egarded correct if it is triggered at a specified time before seizure
nset. In order to quantify the time during which the seizure has to
e expected, the seizure occurrence period (SOP) was  defined. Aim-
nce Methods 200 (2011) 257– 271

ing to allow an intervention to be applied, the alarm has to precede
the SOP by a certain time, the intervention time (IT). Similarly, the
minimum IT and maximum SOP should be defined (Schelter et al.,
2007). If an alarm following a first alarm during a short time period
would be considered to prolong the first alarm (Snyder et al., 2008),
this could lead to excessively long prediction windows. Instead, we
consider only the first alarm and discard all further alarms during
IT and SOP after the first alarm. Hence, these intervals do not enter
in the calculation of the false prediction rate (FPR).

The seizure prediction characteristics also includes an approach
for the statistical validation of prediction performances. Based on
an analytical random predictor, critical performance values can
be calculated which could be achieved by chance (Schelter et al.,
2006a). Only if the observed performances exceed these critical
performances, the results can be considered statistically signifi-
cant. The analytical random predictor allows direct calculation of
the performance level achieved by chance. Furthermore, it provides
valid results for small numbers of seizures, which are quite common
in seizure prediction studies (Feldwisch-Drentrup et al., 2011a).

5.2. Classification

EPILAB enables the application of three types of classifiers: artifi-
cial neural networks (ANNs), support vector machines (SVMs), and
cellular neural networks (CNNs).

5.2.1. Artificial neural networks
ANNs are adaptive, generally non-linear structures that imple-

ment a distributed computation of a given set of input signals
(Principe et al., 2000). The distributed processing is accomplished
by a set of processing elements, called neurons, organized in one
or several processing stages (layers). Each neuron receives connec-
tions from other neurons, from the network inputs or from its own
output (feedback). If no internal feedback is considered, the ANN
is a feedforward network, otherwise a recurrent one. At each neu-
ron, the signals are multiplied with adjustable parameters called
weights. The output of a given neuron is the sum of all the weighted
connections transformed by a function (usually non-linear), named
activation function. The supervised training of an ANN is the esti-
mation of the weights in an iterative way, trying to approximate
the network output as most as possible to a predefined optimal
output, called target. The degree of approximation is given by an
error function (criterion), which usually is the mean squared error.
EPILAB enables the consideration of feedforward and recurrent
networks trained by a variety of algorithms, ranging from the stan-
dard error backpropagation (BP) (Rumelhart et al., 1986) to more
robust strategies, such as the Levenberg–Marquardt algorithm (LM)
(Levenberg, 1944; Marquardt, 1963).

5.2.2. Support vector machines
The structure of a SVM (Cortes and Vapnik, 1995) is similar to

an ANN; the way it is constructed is very different. The idea behind
SVM is that data can be transformed into a higher-dimensional
space in which elements belonging to two different classes can be
linearly separated. The dimension of the high-dimensional space
should be substantially larger than the input space, enabling the
definition of a hyperplane with the largest margin separating the
two classes. By definition, a SVM is a binary classifier, i.e., it is able
to solve a two-class problem. However, there are situations where
more than two  classes are needed to solve a given classification
problem. For this purpose the SVMs were also adapted to perform
classification in more than two classes. The standard approach is

to reduce a multi-class problem to several two-class problems, for
which the standard SVM algorithm can be applied. The different
approaches differ in the way in which single SVM is combined to
give rise to a multi-class classifier. The most popular methods are
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Fig. 6. Methodology used to transform a classification output in a series of alarms.
(A)  Four-class classification. (B) Normalized two-class classification. (C) Firing
power. (D) Alarm series. In A the green time slots represent interictal periods, red
slots represent preictal samples, and yellow slots ictal plus postictal samples. In D
the vertical black lines represent the seizures onset epoch, the vertical red lines the
alarms raised as the firing power crosses the specified threshold, and the blue area
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he  preictal time considered. (For interpretation of the references to color in this
gure legend, the reader is referred to the web version of the article.)

one-versus-all” using the “winner-takes-all” strategy, and “one-
ersus-one” using the “max-wins” voting. EPILAB uses the Matlab®

nterface to the LibSVM library (Chang and Lin, 2001), enabling the
election of different SVM parameterizations. These are the selec-
ion of the kernel type (linear, polynomial, radial basis function
r sigmoid), the value of the regularization parameter (cost), the
alue of Gamma  (for polynomial, radial basis function and sigmoid
ernels), among others. The one-versus-one strategy is applied by
efault.

.2.3. Cellular neural networks
Proposed by Chua and Yang (1988),  cellular neural network

CNN) consists of a two-dimensional lattice of non-linear process-

ng units, commonly referred as cells or neurons. Each cell has

ultiple inputs and a single output, and is locally interconnected
o cells whose topological distance is less than r elements, defining

 uniform r-neighborhood. Similar to an ANN, the dynamical state
ce Methods 200 (2011) 257– 271 265

of one specific cell is defined as a non-linear activation function
applied to the linear combination of weighted inputs and outputs
from neighbor units, and a bias. The configuration of the CNN in
two dimensions is intended for a parallel processing of an input
matrix. As a result, single outputs from each element of the net-
work, also form an output matrix. Furthermore, the Heaviside step
function is applied to the average of this output matrix, in order
to obtain a single binary output that can be used for classifying
the inputs in two class. Additionally, if the desired class of each
input variable is previously known for a subset of the data, the
parameters of the network (weights and bias) that minimize the
error between the network classification and the target class can
be calculated. This process is known as supervised classification,
and aims to optimize the network performance over this train-
ing set. An iterative genetic algorithm performs the optimization
process (Holland, 1992), using the MATLAB Genetic Algorithm Tool-
box developed by Chipperfield et al. (1994).  Parameters of the
algorithm such as the population size, number of generations, the
termination condition (epsilon), and selection, recombination and
mutation probabilities can be modified by the user in the EPILAB
interface.

5.2.4. Classification procedure
The first step for the development of a seizure predictor based on

classification methods encompasses the decision about the inputs
of the classifier and about the temporal division of the overall
data into training and testing (out-of-sample) sets. EPILAB allows
training on one part of the data (training dataset) and prospec-
tive evaluation in a second part of the data (testing dataset), i.e.,
holdout cross-validation is used. The training data should contain
data of all the cerebral states, i.e., it should integrate a number of
seizures and interictal data, allowing a proper optimization of the
classifiers. Simultaneously, the out-of-sample data should be long
enough and have at least one seizure, enabling performance evalu-
ation. In addition to the input time series, a target output is needed
for the training of the classifiers. The target output is a time series
that discriminates the cerebral state for each input sample. EPILAB
considers two  or four cerebral states, resulting in a classification
in two or four classes. The four-class approach considers that the
input samples can be classified as:

• interictal – the “normal” brain state,
• preictal – the time interval just previous to the seizure onset,
• ictal – the time interval during a seizure,
• postictal – the time interval between a seizure and a “normal”

brain state (interictal).

The number of preictal and postictal samples depends on the
preictal and postictal epochs defined by the user. The number of
ictal samples is dependent on the seizures onset and offset, which
are set by the neurophysiologists in the raw EEG.

When considering only the two-class problem, the preictal sam-
ples are classified against all the other samples.

The target output for a four-class classification is a sequence
of samples, where the values 1, 2, 3, or 4 stand for the interictal,
preictal, ictal, or postictal classes, respectively (Fig. 5A). In the two-
class case, the target output has only two  levels, i.e., 2 for preictal
and 1 for the other samples (Fig. 5B).

5.2.5. Alarm generation
The classifiers are trained considering that samples are inde-

pendent between them, i.e., no temporal dynamics is considered

during training. Optimally, a well-trained classifier should be able
to classify correctly all samples in testing data, and thus reproduce
the desired output. However, in reality a classifier will not classify
all the samples correctly (Fig. 6A). In testing, if the output of trained
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Fig. 7. (A) Window that enables the setting of the parameters for the training of an ANN. The user selects the network type and defines the parameters accordingly. The
modality for data selection can be chosen in the list box “Data Selection”. Data can be selected by using the GUI or by applying a previous selection. After training, the obtain
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esults  are listed in table “ANN Results”. (B) Window that enables the data selection
Train”  and “Test”, respectively. The user can select a random number of channels 

an  be chosen by using the list box “Features”.

lassifiers is considered directly to predict seizures, it may  happen
hat for each sample misclassified as preictal a false alarm may  be
enerated. To improve prediction performance, EPILAB accounts for
he temporal dynamics of the classification in the testing phase. EPI-
AB generates alarms by implementing the methodology presented
n Fig. 6. If four classes are considered, the output of the classi-

ers is mapped into only two classes, i.e., preictal and non-preictal
Fig. 6B). Then a sliding window with size related to the consid-
red preictal time is considered. In each window a measure that
uantifies how many samples are classified as preictal is computed
he training of an ANN. The training and testing data can be selected by the buttons
n “Rand Chan.”) or select specific channels (button “Sel. Chans”). Specific features

(Fig. 6C). This measure is called the firing power of the classifiers
output, and is defined as:

fp[n] =

n∑
k=n−�

o[k]

, (5)

�

where fp[n] is the firing power at the discrete time n, � is the num-
ber of samples related with the considered preictal time, and o[·]
is the two-class classifier output. For example, if features were
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Table 2
Characteristics of the recording used to demonstrate EPILAB

Parameter Value

Duration ≈92 h (3 days, 19 h and 29 min)
Time without data ≈ 3 min
Sample frequency 400 Hz

Electrodes 27 (10-20 System)

⎧⎨ FT10, T10, TP10, F8, T4, T6, FP2,
F4,  C4, P4, O2, FPZ, FZ, CZ,
PZ, OZ, FP1, F3, C3, P3, O1,

F
.

C.A. Teixeira et al. / Journal of Neu

omputed using a step of 5 s, and if the preictal time is 30 min,
 is equal to 360 samples. This means that the firing power at
ach instant is computed by considering the past 360 classifica-
ion outputs. If o[·] is one for samples classified as preictal and zero
therwise, fp[n] is a normalized function between zero and one.

 firing power of one means that all the past samples in the past
reictal time were classified as preictal. Alarms are then raised if

p[n] exceeds a threshold value in an ascending way (Fig. 6D). The
hreshold is defined as a percentage of the full firing power.

.2.6. Performance descriptors
The performance of the obtained predictors can be assessed by

wo types of descriptors. Descriptors related to the classification
erformance, i.e., related with the sample-by-sample classification,
nd descriptors related with the alarms generated. The classifica-
ion descriptors for sample-by-sample classification are: sensitivity
SS), specificity (SP) and accuracy (AC), defined as:

S = TP

TP + FN
, (6)

P = TN

TN + FP
, (7)

C = TN + TP

TN + FN + TP + FP
. (8)

ere, TP and FP are the numbers of correctly (true positives)
nd incorrectly (false positives) classified preictal samples, respec-
ively. TN and FN are the numbers of correctly and incorrectly
lassified interictal samples, respectively. Sensitivity measures the
roportion of the true classified preictal samples, while specificity
uantifies the proportion of correctly classified non-preictal sam-
les. Accuracy accounts for the proportion of correctly classified

amples on all classes.

The descriptors related to the alarms generated are sensitivity,
hich is the ratio of correctly predicted seizures, and the false pre-
iction rate. These descriptors are the base to compute the seizure

ig. 8. Feature navigation window with the input dataset and respective training/testing
 . ., #5).
⎩
F7, T3, T5, FT9, T9, TP9

Number of seizures 5

prediction characteristics (Section 5.1) for the methods based on
classification approaches. A seizure is considered to be correctly
predicted if its onset occurs in the subsequent preictal time (exclud-
ing the early detection period). The false prediction rate is given
by:

FPR = number of false alarms
prediction time − (number of seizures × preictal time)

. (9)

For the calculation of the FPR, only those periods are considered
during which alarms could be triggered (Mormann et al., 2007).

Based on the true alarms, EPILAB can also be used to compute
the anticipation time statistics. The anticipation time is the dura-
tion between a raised alarm and the subsequent seizure onset. The
minimum, maximum, average and standard deviation values are
provided for each predictor.

5.2.7. GUI based setup
The GUI of EPILAB allows choosing the necessary parameters for

the prediction procedures. For example, the window presented in
Fig. 7A enables the setting of the parameters for ANN training and

testing. It is possible to define, for example the network type and
topology, training algorithm, and all the parameters necessary to
create the target output. The data that are used for training and test-
ing can be visually selected, using the GUI presented in Fig. 7B. The

 division. The vertical black lines represent the different seizures onset epoch (#1,
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Fig. 9. Results. (A) View Results Window that enables to remove undesired predictors (button “Remove Selected”), and plot the prediction output of selected predictors
(button  “Plot Selected”). Red arrows mark the predictors selected. (B and C) Prediction output as compared with the seizures onset epoch for one selected MLP  and for one
selected SVM, respectively. The onset epochs are represented by vertical black lines, while the raised alarms by vertical red lines. The blue region represents the preictal
time.  Zoomed regions around the predicted seizures are presented in subfigures B1, B2 and C1. (For interpretation of the references to color in this figure legend, the reader
is  referred to the web version of the article.)
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nputs can be directly selected from a list or selected by channel.
he possibility to randomly select a defined number of channels
nd consequently the associated features was also implemented.
his allows comparing the predictive power of a user-defined set
f channels to a set of randomly selected ones. EPILAB also enables
nput selection by using the feature ranking methods reported
n Section 4, i.e., by minimum redundancy–maximum relevance
mRMR) (Ding and Peng, 2005) and by a method based on variance
atios (Feldwisch-Drentrup et al., 2011b).

For a set of selected features the user is also able to plot their
mplitude distributions according to the different classes, as rep-
esented in Fig. 4A and B.

The classifier can then be validated on the out-of-sample data
nd the performance measures described in Section 5.2.6 can be
omputed. The alarms generated can be visualized against the
eizure onsets.

. Case study

In this section, the process to perform a seizure prediction study
ased on classification methods is explained as an example of
PILAB’s capabilities. A scalp recording with the characteristics pre-
ented in Table 2 was considered.

All the univariate features were extracted for all the 27 elec-
rodes, with exception of the nonlinear-based ones. For the wavelet
oefficients a Daubechies-4 mother wavelet, and six decomposi-
ion levels were selected. Twenty-two univariate features were
xtracted per electrode, i.e., a total of 594 time series were obtained.
or the multivariate features, the mean phase coherence (MPC)
as extracted. The total number of MPC  time series computed was
27
2

)
= (27!/2!(27 − 2)!) = 351. Both feature types were com-

uted using a window of 5 s without overlap.
Using the features computed, predictors based on multilayer

erceptrons neural networks (MLPs) and support vector machines
SVMs) were developed. The inputs for the classifiers were all
he feature time series derived from three electrodes. Electrodes
ere selected based on the seizure origin and propagation for the

elected patient. One was located at the seizures origin region (FZ),
nd two were located in regions not related to the seizure origin (F7,
8). Therefore, 66 (3 electrodes × 22 features) inputs were related to

nivariate features and 3

((
3
2

))
related with MPC, leading to an

nput dimension of 69. The separation of the data into training and
esting subsets was performed according to the number of seizures.
or this demonstration the first three seizures were considered
or training and the remaining two for out-of-sample testing
Fig. 8). Approximately 33 h were used for training and 59 h for
esting.

A classification in four classes was used and implemented as
xplained in Section 5.2.4. The intervention time was defined as
0 s and the postictal time as 10 min. Preictal times of 30 and
0 min  were assumed. Two different structure parameterizations
ere considered for each classifier type. After training, alarms were

enerated considering three threshold values of 0.25, 0.5 and 0.75.
onsidering all the possible combinations a total of 24 predictors
ere developed, i.e., 2 classifier types × 2 structure parameteriza-

ions × 2 preictal times × 3 threshold values. The values pointed
efore were chosen in order to exemplify the training of several
redictors in EPILAB. They were not based on any a priori informa-
ion.
Each developed predictor was stored internally. EPILAB inte-
rates a functionality that enables the analysis of all saved results
Fig. 9A). This functionality displays the results from feature com-
utation process and from the predictor’s development. For a
ce Methods 200 (2011) 257– 271 269

selected predictor, it enables its removal or the plotting of its pre-
diction output in comparison with the seizure onset epoch.

Fig. 9B and C presents the prediction output for one selected
MLP  and for one selected SVM predictor, respectively. The selected
predictors are marked in Fig. 9A, and were selected because of their
good performance in terms of sensitivity and FPR. The selected MLP
predicted the two  seizures, i.e., it achieves a sensitivity of 100%,
with a FPR of 0.17/h. The selected SVM predicted one out of two
seizures, but the FPR is only 0.017/h. In the MLP  case a preictal
time of 40 min  was  used, and the two seizures were predicted with
15.0 and 8.4 min  in advance (Fig. 9B-B1 and B2), by considering
a threshold value of 0.25. The SVM predictor raises just one false
alarm in approximately 59 h of testing. The seizure was predicted
13.8 min  before seizure onset (Fig. 9C1), considering a preictal time
of 30 min  and an alarm threshold of 0.5.

Both selected predictors were subjected to statistical validation,
considering a significance level of 0.05. If all the predictors are con-
sidered independent, i.e., if 24 free parameters are taken in account,
both predictors are considered statistically non-significant. Other-
wise, if predictors are considered completely inter-dependent, the
SVM based predictor is classified statistically significant.

7. Concluding remarks

EPILAB was developed as a toolbox for the computation of a
variety of univariate and multivariate features, which allows apply-
ing algorithms based on thresholds and classification for seizure
prediction. The guidelines pointed out in Mormann et al. (2007)
were considered, namely: performance evaluation in long-term
continuous out-of-sample data; false prediction rates computed
accounting only the seizure-free intervals; and statistical valida-
tion.

EPILAB was applied for long-term data analysis and prediction,
and proved to be a very useful and user-friendly tool. It is more
than a subset of Matlab® functionalities: it was  designed to com-
municate, evaluate, compare, and to share results and data among
the seizure prediction community. Moreover, the object oriented
approach used in EPILAB allows users to easily include his/her own
algorithms in a straightforward manner.

As a free software the user can change it to perform other types
of EEG/ECG processing. An immediate application would be seizure
detection. To this end the user has mainly to implement two mod-
ifications. The first one is to adjust the performance evaluation
methodologies. Secondly, sliding windows for alarm generation in
the order of the seizure duration should be considered.

Methods for the detection or prediction of other types of events
can be implemented if the target, threshold values, and perfor-
mance evaluation functions are adjusted accordingly.

EPILAB is, of course, also applicable to analyze neurophysiolog-
ical measurements concerning other types of diseases. No major
changes would have to be applied in order to do such analyses. For
example, Alzheimer’s disease is characterized by inducing slowing,
enhanced complexity and synchrony perturbations on the EEG sig-
nals (Dauwels et al., 2010). EPILAB is able to evaluate these changes,
and in a first approach could be used to early detection of this
disorder.
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