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a b s t r a c t

In this work we present results of a detailed Bayesian parameter estimation for an analysis of ordinary
differential equation models. These depend on many unknown parameters that have to be inferred from
experimental data. The statistical inference in a high-dimensional parameter space is however conceptu-
ally and computationally challenging. To ensure rigorous assessment of model and prediction uncertain-
ties we take advantage of both a profile posterior approach and Markov chain Monte Carlo sampling.

We analyzed a dynamical model of the JAK2/STAT5 signal transduction pathway that contains more
than one hundred parameters. Using the profile posterior we found that the corresponding posterior dis-
tribution is bimodal. To guarantee efficient mixing in the presence of multimodal posterior distributions
we applied a multi-chain sampling approach. The Bayesian parameter estimation enables the assessment
of prediction uncertainties and the design of additional experiments that enhance the explanatory power
of the model.

This study represents a proof of principle that detailed statistical analysis for quantitative dynamical
modeling used in systems biology is feasible also in high-dimensional parameter spaces.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Quantitative mathematical models can be used to describe the
dynamics of cellular processes such as signal transduction. The
mathematical description facilitates the understanding of complex,
intertwined responses of the underlying networks of molecular
reactions. The models can be employed to predict and understand
features of the processes in a quantitative manner.

For building and calibrating dynamical models prior knowledge
from the literature as well as quantitative experimental data is
used. However, both, prior knowledge and experimental data, are
limited and usually come with an associated uncertainty. These
limitations and uncertainties translate to uncertainties in the
mathematical model and subsequently to uncertainties of the pre-
dictions. To assess the predictive power of a model as well as its
limitations, the model uncertainties have to be evaluated. As the

models are often high dimensional and possess a large number of
unknown parameters, this uncertainty evaluation can pose severe
computational challenges. In this work we illustrate that a rigorous
statistical assessment is also feasible for nonlinear high-dimen-
sional dynamical models with over 100 parameters. For this we
consider Epo-induced JAK2/STAT5 signaling, a process which has
been studied extensively in recent years.

The hormone Erythropoietin (Epo) regulates erythropoesis, the
production of red blood cells. Binding of Epo to its cognate receptor
leads to rapid activation of JAK2 phosphorylation followed by
phosphorylation of the latent transcription factor STAT5, see
Fig. 1 for illustration of the model. The quantitative link between
the integral STAT5 response in the nucleus and survival of ery-
throid progenitor cells has recently been elucidated [1]. The broad
dynamical range of Epo concentrations up to 1000-fold in vivo [2]
require a stringent regulatory system. In [1], it was shown that
STAT5 responses are controlled by a dual feedback consisting of
two inhibitory proteins, CIS and SOCS3. The two proteins adjust
STAT5 phosphorylation levels over the entire range of Epo concen-
trations, where CIS regulates predominantly the upper concentra-
tions range and SOCS3 the lower range. Model predictions
showed that the absence (knock-out) of CIS resulted in an increase
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of STAT5 phosphorylation at low Epo concentrations, whereas the
absence of SOCS3 caused an increase in the phosphorylation level
at high Epo concentrations. This observation revealed division of
labor by the two feedback proteins as the key property to control
STAT5 responses.

In this work we analyze the Epo-induced JAK2/STAT5 signaling
using a combination of maximum likelihood based parameter esti-
mation for model calibration, identifiability analysis using the pro-
file likelihood or profile posterior approach, and Bayesian inference
using Markov chain Monte Carlo sampling (MCMC) for the transla-
tion of uncertainties to model parameters and to model predic-
tions. Compared to the original publication [1], we carry out a
refined analysis of parameter and prediction uncertainty by evalu-
ating and interpreting posterior distributions using a Bayesian ap-
proach. The results show a second mode in the posterior that
corresponds to an alternative parameterization of the model. Fur-
thermore, the Bayesian approach reveals non-standard parameter
dependency structures. The combination of high-dimensional
parameter space and bimodal posterior shape represents a difficult
setting for MCMC sampling. Our results indicate deficiencies of sin-
gle-chain sampling schemes occurring for this high-dimensional
problem with bimodal and partially flat posterior distribution. To
ensure good performance for this challenging setting we instead
apply a multi-chain scheme, namely Parallel Hierarchical Sampling
in combination with Adaptive Metropolis Sampling, which pro-
vides improved mixing properties. Using this MCMC scheme,
which is of general relevance, we can efficiently sample multi-
modal posterior distributions. The sampling results enable us to
study the effects of the additional posterior mode on the model
predictions and propose additional experiments that would allow
to distinguish between both modes.

2. Methods

In this section, we present an overview of the mathematical
methods applied to our biological question. First of all, this refers

to modeling biological pathways as dynamical systems with ordin-
ary differential equations. As these systems are determined by
their parameters, we next present Bayesian inference as a means
to inferring these parameters given the measurement data. We will
then shortly introduce the profile posterior approach for identifi-
ability analysis, which we use as a basis and complement to the
Markov chain Monte Carlo (MCMC) approach. In the last section
of the methods part, several of these MCMC sampling techniques
which are used to sample from the complex distributions of the
parameters are presented. Finally, we describe how to use the ob-
tained samples to gain insight into the model.

2.1. Dynamical systems

Understanding cellular mechanisms has always been a key
challenge of systems biology. Much effort has gone into the infer-
ence of biochemical reaction networks, such as signaling pathways,
which are the main focus of this paper. All of these biochemical
processes may be described by systems of biochemical reactions,
where reactants are transformed into products [3]. There are vari-
ous approaches for modeling the evolution of such a system over
time, most common is the modeling as a dynamical system de-
scribed by N ordinary differential equations (ODEs), one for each
of the N modeled species, cf. e.g. [4–9]. They are characterized by
a functional relationship between the current state of the system
xðtÞ 2 RN at time point t and its time derivative _xðtÞ:

_xðtÞ ¼ f t; xðtÞ;uðtÞ; fð Þ: ð1Þ

This may depend on an external stimulus uðtÞ 2 RL such as adding a
biochemical species whose time course is not included in the model
(in our case, this is e.g. stimulation of the pathway by adding Epo) as
well as the dynamical parameters f, which are in this case e.g. the
rate constants of the biochemical reactions [10]. In this approach,
the dynamical parameters f do not depend on t and are thus con-
stant over time. Usually, not all states of the system can actually
be directly measured, so that there exists a mapping g of the

Fig. 1. Dynamical model of the Epo induced JAK2/STAT5 signal transduction pathway, adopted from [1]. The hormone Erythropoietin (Epo) binds to its membrane receptor
(EpoR) and subsequently leads to receptor phosphorylation (pEpoR) and to phosphorylation of its associated Janus kinase (JAK2, pJAK2). Receptor phosphorylation is balanced
by activation of a phosphatase (SHP1, SHP1act). Active EpoR/JAK2 complexes lead to phosphorylation of the Signal Transducer and Activator of Transcription (STAT5, pSTAT5)
that transmits the signal to the nucleus (npSTAT5). In the nucleus, STAT5 leads to target gene expression that induces pro-survival signals and self-regulating negative
feedbacks. In this case, two regulator proteins and their respective mRNAs are involved, Suppressor Of Cytokine Signaling (SOCS3) and the Cytokine-Inducible SH2-containing
protein (CIS).
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internal states xðtÞ to the external states yðtÞ 2 RM , sometimes also
called the observables of the system:

yðtÞ ¼ gðxðtÞ;gÞ; ð2Þ

where g are scaling and offset parameters which are often due to
relative measurements, e.g. when using immunoblots. In biological
systems, it is most common to have M < N. Observations of the sys-
tem at discrete time points tj; j ¼ 1; . . . ; J, i.e. the measurement data,
are overlaid with noise �, which we take to be independent nor-
mally distributed, �ðtjÞ � N ð0;RÞ, such that we have:

~yj ¼ yðtjÞ þ �ðtjÞ: ð3Þ

Usually, the positive definite noise covariance matrix R is as-
sumed to be diagonal, such that noise on the observables is inde-
pendent, and we only need to estimate the diagonal elements
r1; . . . ;rM of R. The noise parameters describe the deviations of
the measured data from the actual dynamics of the ODEs, which
are due to biological variability as well as to measurement errors.
Setting h ¼ ff;g;R; xð0Þg, where xð0Þ are the initial conditions of
the system, the parameter vector h 2 RK completely determines
the model, while the subset ff;g;xð0Þg is sufficient to uniquely
identify the dynamics of the system. We use logarithmic param-
eter values, mostly in order to be able to apply global optimiza-
tion algorithms. Otherwise we would have to use constrained
optimization, since all original parameter values are only defined
on Rþ. Furthermore, also the data Y we base our inference on is
the logarithm of the actually measured data, since it is commonly
believed that biochemical reactions mostly show lognormally
distributed multiplicative noise, so that the logarithm of the data
shows normally distributed additive noise [11]. Neither of these
two transformations changes the general dynamics of the
system.

For evaluating the deviations of the measurements from the
dynamics of the system, a nonlinear system of ODEs has to be
solved. In most cases, finding an analytical solution is impossible,
therefore the system has to be solved numerically. Some care has
to be taken when choosing a solver, since many ODE systems show
stiffness or other numerical issues. Here, SUNDIALS CVODEs [12]
algorithm was used.

2.2. Bayesian inference

Bayesian inference is a tool for examining complex systems
[3,8,13] due to its ability to combine measurement uncertainties
for the experimental data with previously available prior informa-
tion for the parameters. These systems are often highly nonlinear,
yet they are deterministic, i.e. they are completely characterized by
their parameters. Unlike physical constants, it is however not pos-
sible to compute biological parameters ‘‘once and for all’’. Further-
more, these parameters are not well determined due to limited
knowledge [5] about e.g. the correct model structure or interaction
mechanisms. The uncertainties in the parameters have to be taken
into account when making any predictions or drawing any conclu-
sions from the model because otherwise these might not be prop-
erly justified. Bayesian inference incorporates these uncertainties
in a natural way and estimates all parameters of the system,
whether dynamical, initial condition, scaling or noise parameter,
in a joint fashion.

The Bayesian framework provides a fully probabilistic ap-
proach which builds on the so called posterior distribution [14]
of a problem specific parameter space conditioned on the given
experimental data. This distribution specifies a measure of belief
for all possible parameter values, taking into account both how
well they explain the data and how well they match the existing
knowledge. This can be formalized in Bayes’ theorem, which
states that

p hjYð Þ ¼ L h; Yð Þp hð Þ
p Yð Þ : ð4Þ

Depending on the parameters h and the data Y, this theorem links
the four essential quantities of Bayesian inference to each other,
which are:

� p hjYð Þ, the posterior density of the parameters and thus the
probability density function of the parameters given the data,
� L h; Yð Þ ¼ p Yð jhÞ, the likelihood, i.e. the conditional probability of

the data Y given the parameter h,
� p hð Þ, the prior of the parameter,
� p Yð Þ, the marginal likelihood or evidence for the data, which is

of special importance when doing model selection.

The likelihood can also be seen as a cost function, as it punishes
deviations of the model from the data. Higher likelihood for the
parameters implies smaller deviations between the time course
and the data. The likelihood as such is a straightforward conse-
quence of the error model, so if we assume as before that the noise
follows a normal distribution, then the likelihood can be written
down explicitly as

L h; Yð Þ ¼
YJ

j¼1

YM
m¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

m

p exp � 1
2r2

m
ymðtjÞ � ~ym;j
� �2

� �
; ð5Þ

where ymðtjÞ and ~ym;j are the m-th component of yðtjÞ and ~yj, respec-
tively. Often it is computationally easier to work with the natural
logarithm of the likelihood, also called log-likelihood instead:

log L h; Yð Þð Þ ¼ � J
2

XM

m¼1

log 2pr2
m

� �
� 1

2

XJ

j¼1

XM

m¼1

1
r2

m
ymðtjÞ � ~ym;j
� �2

:

ð6Þ

For known R, maximizing the likelihood is the same as finding the
least squares fit to the data. The parameter set for which the likeli-
hood (or equivalently the log-likelihood) is maximal is called the
maximum likelihood estimate (MLE) of the parameters. In the
Bayesian sense, an often used point estimate is the maximum a pos-
teriori (MAP) estimate, i.e. the parameter value for which the pos-
terior density is maximal. However, both these point estimates
might be unrepresentative, especially if the likelihood and thus
the posterior distribution are multimodal.

The prior specifies our belief in a parameter vector before
observing the data Y. Often values already known from indepen-
dent data in the literature can be used as prior information, for
example by taking them as a mean for a normal distribution of this
parameter. If the prior is normalized to be a probability density
function, it is called proper, otherwise improper. Since usually
parameter dependency structures are not known a priori, it is most
common to set the joint prior p hð Þ to the product of all the individ-
ual p hkð Þ; k ¼ 1; . . . ;K.

2.3. Identifiability and profile posteriors

A related concept to Bayesian inference, yet different, is that of
profile posteriors for identifiability analysis [15,16]. The profile
posterior approach is analog to the profile likelihood approach
[17]. Both approaches are equivalent if the prior is flat. Note that
in this case, the prior is improper. In the case of non-flat priors,
the comparison of profile likelihood and profile posterior can also
be used to assess the information content of the data with respect
to the parameters. Furthermore, this comparison reveals if identi-
fiability is only enforced by the prior distribution. This comparison
of the two profile types is thus related to a prior/posterior evalua-
tion in a Bayesian setting.
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The profile posterior allows for the calculation of confidence
intervals which can be compared to the Bayesian credible intervals
obtained from MCMC sampling. Also the histogram of the margin-
alized samples can very well be compared with the posterior pro-
files. Since profile posteriors are computationally less expensive,
they form an optimal basis for any MCMC procedure for Bayesian
inference and thus complement these for gaining thorough insight
into the dynamical system at question.

Structural and practical non-identifiability can be distinguished
and can have several reasons [17]. Structural non-identifiability is
independent of the measurement data and instead due to some
underlying fundamental redundancy in the parametrization of
the model. Practical non-identifiability depends on the amount
and quality of the data. Identifiability analysis is usually based
on the maximum likelihood or, in our case, maximum a posteriori
estimate ĥ of the parameters. A parameter hk is identifiable if the
confidence interval ½q�k ;qþk � of its estimate ĥk is finite. These confi-
dence intervals are computed from the posterior distribution.

The basic idea of the profile posterior approach is to explore the
parameter space for each parameter separately in direction of the
least decrease of the posterior p hjYð Þ. This can be done by calculat-
ing the profile posterior

pPP hkð Þ ¼ max
hj–k

p hjYð Þ½ �; ð7Þ

re-optimizing the posterior with respect to all parameters hj–k ex-
cept hk, for each value of hk. The presence of local optima, i.e. multi-
ple modes in the posterior, can be detected by repeated
optimization runs from different starting values. If such local opti-
ma are detected, the profile calculation has to be initiated in each
of the optima. Note that the calculation of the profiles for different
parameters can be performed independently and simultaneously on
different computer cores. For more details on the implementation,
see [17]. A generalization of this approach to model predictions
by calculating prediction profiles was proposed in [18].

2.4. Markov chain Monte Carlo methods

On first glance, it is straightforward to draw conclusions from
the posterior by simply applying Bayes’ theorem. However, the
marginal likelihood in the denominator is actually very hard to
evaluate, since it represents the integral of the numerator:

p Yð Þ ¼
Z

RK
L h0; Yð Þp h0ð Þdh0 ð8Þ

As this integral is taken over the whole parameter space, it is usu-
ally high-dimensional and analytically mostly intractable and also
daunting to evaluate numerically. Instead, the methods of choice
for inferring the posterior distribution are in many cases Markov
chain Monte Carlo (MCMC) methods, since they only need the
non-normalized numerator in Bayes’ theorem which is the product
of likelihood and prior as input. The marginal likelihood is needed
explicitly for example for model selection, where it can be used
for computing Bayes factors for competing models [19–25]. For
the theory of Markov chains and Monte Carlo methods we refer
the interested reader to the abundant literature [24,26–28], for
example also the excellent books of Marin & Robert [29], or Robert
& Casella [30].

The general idea is to approximate the posterior distribution at
hand with a Markov chain hðiÞ;1 ¼ 1; . . . ; I, whose stationary distri-
bution is the posterior distribution. The elements of the Markov
chain are samples from the parameter space. We now restrict
ourselves to introducing some algorithms, first of all the Metropo-
lis–Hastings (MH) algorithm [31–33] as the basis for many more
involved samplers. The MH algorithm makes use of a proposal
distribution qðhðpÞjhðiÞÞ to suggest moves of the Markov chain

hðiÞ;1 ¼ 1; . . . ; I, from its current state hðiÞ to a proposed next state
hðpÞ to draw samples from, in our case, the posterior distribution
pðhjYÞ. This move is accepted with the Metropolis–Hastings accep-
tance probability

a hðiÞ; hðpÞ
� �

¼min 1;
pðhðpÞjYÞ
pðhðiÞjYÞ

qðhðiÞjhðpÞÞ
qðhðpÞjhðiÞÞ

( )
: ð9Þ

If hðpÞ is accepted, we set the next state of the Markov chain to
hðiþ1Þ ¼ hðpÞ, otherwise we set it to be the old state, hðiþ1Þ ¼ hðiÞ. The
distribution of the samples created in this fashion then converges
to the posterior distribution. Like the sampling distribution pð�jYÞ,
also the proposal distribution qð�j�Þ only has to be known up to a
multiplicative constant, since these cancel in the Metropolis–Has-
tings acceptance probability. For the proposal distribution, a popu-
lar choice is a multivariate Gaussian distribution with mean at the
current state of the Markov chain and to-be-determined covariance
matrix Rq; h

ðpÞ � N hðiÞ;Rq

� �
. We call the MH algorithm then a Ran-

dom Walk Metropolis–Hastings. However, tuning the proposal dis-
tribution is the hardest task when implementing an MH algorithm
[34,35]. If the moves of the chain are too small, it takes impracti-
cally long to explore the whole parameter space and converge to
the stationary distribution. Furthermore, the samples in the Markov
chain show high autocorrelation, which is a problem if independent
samples are required. If the moves are however too large, usually
the acceptance rate suffers since more often moves are proposed
that do not fall into regions of high posterior density and the Mar-
kov chain might get ‘‘stuck’’ for a large number of iterations, which
of course is also disadvantageous for the general autocorrelation
structure of the Markov chain. In the last few years, a large number
of more sophisticated MCMC algorithms has been published.
Among them are more geometric methods like Riemann manifold
Langevin and Hamiltonian Monte Carlo methods [36] or copula-
based methods like the Copula Independence Metropolis Hastings
algorithm [37]. For a more thorough overview, we refer the inter-
ested reader to the contribution by Vanlier and van Riel [38]. How-
ever, in high-dimensional systems, it is our experience that
‘‘simpler’’ sampling algorithms are often more efficient.

The single-chain algorithm used in this paper is a MATLAB
implementation of the Adaptive Metropolis (AM) algorithm as
introduced by Haario et al. [39]. It is especially suitable for sam-
pling high-dimensional parameter spaces since its proposal func-
tion can be continuously adapted to guarantee efficient sampling
of the high-dimensional space. This is a crucial factor for the con-
vergence of the algorithm. In the AM algorithm, the proposal func-
tion is a multivariate normal distribution whose covariance matrix
is updated with the information gained from the obtained samples
by a recursion formula. Newly proposed samples are then accepted
or rejected according to a standard Metropolis–Hastings accep-
tance scheme. This sampling process is strictly speaking
non-Markovian as the samples depend on the past of the sampling
procedure and not just on their immediate predecessor, however
Haario et al. show that the algorithm has the correct ergodic prop-
erties and thus converges correctly to the posterior distribution.

We combined this method with a sampling algorithm using
multiple chains [40] in order to have better mixing properties of
the chain. This is necessary because otherwise one chain would
have to be run for an impractically long time in order to be sure
to have captured the entire mass of the posterior, in particular
when considering high-dimensional parameter spaces of over
100 parameters as in our case.

Different varieties of multi-chain methods have been proposed
such as parallel tempering [41], exchange Monte Carlo [42] or pop-
ulation-based reversible jump MCMC [43]. While these methods
are also advocated for closely related problems, we applied Parallel
Hierarchical Sampling (PHS) adapted from Rigat & Mira [44], see
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also references therein for a more thorough introduction. In this
sampling scheme, several MCMC chains are run in parallel, with
one chain being the mother chain and the others being auxiliary
chains. As opposed to a parallel tempering approach, these chains
all target the posterior distribution and are distinguished by their
starting points and proposal distributions.

In each iteration, an index is randomly chosen, and the current
state of this chosen auxiliary chain is swapped with the mother
chain. This swap is always accepted. All the other auxiliary chains
do a regular Metropolis update step, in our special case with the
Adaptive Metropolis. Each auxiliary chain runs its own Adaptive
Metropolis, such that the covariance matrix for the proposal distri-
bution is adapted to each chain individually. This ensures a good
sampling performance in each chain, while at the same time hav-
ing excellent mixing properties for the mother chain. We will refer
to our algorithm as Adaptive Metropolis Parallel Hierarchical
Sampling (AMPHS). We chose this approach since it is especially
beneficial when the posterior is multimodal or more generally
non-standard shaped, as it increases mixing between the modes,
even though that naturally comes at higher computational costs.
Furthermore, the use of several different proposal settings is espe-
cially beneficial when it is difficult or impossible to analytically de-
rive an optimal proposal scaling. As pointed out by Rigat & Mira, a
single proposal kernel may for example not be optimal for explor-
ing a distribution with both very narrow and very wide peaks.

We started the sampling procedure for the mother chain in the
MAP estimate obtained by an optimization procedure which is de-
scribed in more details in Bachmann et al. [1]. For the auxiliary
chains, we sampled initial values randomly from the prior, and
then let an optimization algorithm run in order to start in a region
with substantial posterior values. Note that this is related to the
multi-start optimization strategy for the profile calculation. As
pointed out by Geyer [45], thinning the chain would increase the
variance, thus we use all samples from the mother chain, except
for a burn-in period. This burn-in period was chosen through visual
inspection of the chain and verified by the Geweke test [46]. A
burn-in period is necessary even though we start in the MAP esti-
mate, i.e. a region of high posterior density, since the MAP estimate
lies at the boundary of the prior parameter space. Likewise, the
Adaptive Metropolis needs quite a number of iterations for tuning
the proposal distribution. The algorithm is furthermore imple-
mented in such a way that it also adaptively tunes the acceptance
probability to be within a desirable range.

From the obtained posterior samples, it is possible to derive
credible intervals, the Bayesian equivalent to confidence intervals.
Even more interesting, it is possible to approximate the distribu-
tion of the single parameters by marginalizing over the samples.
This translates to a density for the time courses of the dynamical
system by solving the ODEs for each accepted sample and then
estimating the density on a grid of time points. Often a range of
possible dynamics is revealed. These predictions may be experi-
mentally verified, since they now relate directly to the modeled
species and not to the parameters by themselves.

3. Results

In this section, we present our results for the high-dimensional
model of Epo-induced JAK2/STAT5 signaling. Using this application
we illustrate problems which can arise when studying high-
dimensional models and outline potential solutions. In this case
study 113 parameter have to inferred, 27 parameters of interest
which are the dynamical parameters and initial conditions and
86 nuisance parameters. The parameters of interest determine
the model predictions, while the nuisance parameters have to be
estimated to compare model observables to the experimental data.

Furthermore, we illustrate how profile posterior methods can be
employed to check the convergence of the MCMC sampling
scheme. In particular if the profile posterior shows multiple modes,
classical convergence test such as the Geweke criterion can be mis-
leading concerning the convergence properties of the MCMC chain.
Based upon the results of the profile posterior analysis, improved
MCMC sampling schemes were selected, namely the previously
introduced AMPHS scheme, that are necessary for efficient sam-
pling of the high-dimensional and nonlinear posterior in this appli-
cation. We compare our results to earlier contributions.
Furthermore, we first motivate the need for a multi-chain ap-
proach by showcasing the issues of a single-chain approach, before
providing a detailed analysis of the multi-chain sampling results.
Afterwards, we show how the samples are used for predictions that
can be made from the model.

3.1. Profile posterior analysis

To evaluate the identifiability of the individual parameters we
perform at first a profile posterior analysis. The results are depicted
in Fig. 2 and 3. Indeed, most parameters are well determined, but
there are also a few which are practically non-identifiable, e.g. CIS-
RNATurn and SOCS3Turn. A closer inspection of the profile poste-
riors reveals that two parameters, namely SOCS3RNADelay and
SOCS3RNATurn, do exhibit a secondary mode, see in Fig. 2. The
higher mode of these is the MAP estimate found by optimization,
while the secondary mode is close to the threshold that defines a
95% confidence region [17].

3.2. Single-chain sampling and its limitations

To sample the posterior distribution of the Epo-induced JAK2/
STAT5 signaling pathway we first employed a single-chain method.
In particular we started with Adaptive Metropolis (AM) sampling
[39]. When initializing the AM at the MAP estimate, we found that
the MCMC chain converged according to the commonly used Gew-
eke test after 500.000 samples (100.000 burn-in and 400.000 re-
tained samples).

To validate the sampling result, we started a second AM chain in
the secondary mode detected using the profile posterior method,
as explained above. It turned out that also this second AM run
seems to converge after 500.000 samples, according to the Geweke
test. However, the sample distributions of the two runs differ se-
verely. The difference is particularly pronounced in the parameters
SOCS3RNADelay and SOCS3RNATurn for which we observe the
bimodality in the posterior profiles. This indicates that the individ-
ual chains indeed sufficiently sample the modes in which they
were started but failed to cover the bimodality of the posterior,
cf. exemplary Fig. 6 in the appendix. We further confirmed the
non-convergence with the Gelman–Rubin statistics [40]. For the
two aforementioned parameters, the value of bR were 2:28 and
2:65 respectively, indicating that the two chains were not sampling
from the same distribution.

To unravel the source of the convergence problems, we ana-
lyzed the distribution of the MCMC samples obtained when start-
ing the chains in the two different modes. In particular we studied
whether or not the MCMC samples from the two chains are
non-overlapping. This would indicate that not only the posterior
profiles are bimodal but also that the corresponding modes of
the posterior distribution are separated.

While this is already visible from the marginalized one-
dimensional samples, we quantified the overlap of the samples
with support vector machines (SVMs) [47], see C. The SVM allows
us to assign the samples to the two modes in the high dimensional
space and thus visualize them accordingly, which will be shown in
Fig. 3.
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Our findings raise doubts concerning the sampling perfor-
mances in high-dimensional parameter spaces. Although the single
adaptive MCMC chains achieved a good sampling performance
within the modes and although the modes are connected, the sam-
pling of the true posterior distribution is very inefficient. To im-
prove upon this and to ensure good mixing of the chain, we
applied the Adaptive Metropolis Parallel Hierarchical Sampling.

3.3. Multi-chain sampling

For the AMPHS we used 20 auxiliary chains, each with 500.000
samples. The AMPHS was initialized with the mother chain and ten
auxiliary chains in the MAP estimate, while the other ten auxiliary
chains were initialized in local optima, also some who are close to
the secondary mode found in the profile posterior. After visual
inspection of the mother chain for the dynamical parameters, we
set the burn-in period to be the first 100.000 samples, so that the
further evaluation could be based on 400.000 samples. Conver-
gence of the chain was again verified by the Geweke test. Although
the test criterion is fulfilled, that alone does not ensure conver-
gence of the sampling procedure. However, convergence is sup-
ported by the good agreement of marginal distributions and the

profile posterior. Note that the Gelman–Rubin statistic is not easily
applicable to the outcome of a single run of AMPHS due to the spe-
cific structure of the chains.

By analyzing the mother chain we found that mixing is much
enhanced in this algorithm, as clearly the mother chain mixes very
well between the two modes. Fig. 2 depicts the sampling results for
the two parameters SOCS3RNADelay and SOCS3RNATurn, which
were chosen here because of the bimodality expected from the
profile posterior. The bottom and right panels clearly show that
the chain mixes very well in the single dimensions. When looking
at the samples in two dimensions, the middle panel indicates that
they visit both modes, although the main mode obviously has more
weight. AMPHS correctly estimates the weight assigned to each
mode, see also Rigat & Mira [44] for additional examples. This
can be observed from the fact that the initialization was in a
weighting of 50% of the auxiliary chains near the main mode and
50% near the secondary mode. Using the SVM trained from the sin-
gle chains (Section 3.2), we found that about 84% of the final sam-
ples in the mother chain belong to the main mode around the MAP
estimate and 16% of samples are classified as belonging to the sec-
ondary mode. Hence, the masses of the modes seem to have a
weight ratio of ca. 5 : 1. This is significantly different from the ini-

Fig. 2. MCMC chains and profiles for SOCS3RNADelay and SOCS3RNATurn. The middle panel shows posterior density over the two parameters in grey. The red line is the two-
dimensional profile, the red stars the two modes. The left and top panels show the one-dimensional profiles, while the bottom and right panels show the MCMC chain for the
two parameters. All panels imply a separation of the two modes in the parameter space, although they are connected by a banana-shaped ridge of high posterior density. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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tial weighting of 1 : 1 and thus together with the convergence of
the sampling indicates correct weighting of the modes. A more sys-
tematic evaluation of the weighting of the modes depending on the
initialization of the chains should be the focus of future work.

To evaluate the AMPHS we considered all chains, even though
for all further analysis, we only use the samples from the mother
chain. Each of the auxiliary chains has at the end an acceptance
rate of about 6:5%, the mother chain has per definition an accep-
tance rate of 100%, since the swap with an auxiliary chain is al-
ways accepted. While 6:5% might sound suboptimal, we believe
that for the AMPHS sampling scheme the acceptance rate is ade-
quate, since the swaps with the mother chain perturb the adaption
of the covariance matrix in the auxiliary chains. This is the price
that has to be payed for the excellent mixing in the mother chain.

3.4. Comparison of MCMC results and profile posterior

To compare the profile posterior and the AMPHS sampling re-
sults, Fig. 3 shows the histograms of the individual parameters
against the corresponding profile posteriors. For most of the
parameters, we find an excellent agreement between the shape
of the profile posterior and the marginalized samples, cf. exem-
plary parameters CISEqc or CISEqcOE. However, especially for
SOCS3RNADelay, we see a much more pronounced bimodality in
the samples than in the profile posterior alone. The same, though
not as clearly, hold true for SOCS3RNATurn. The difference be-
tween sampling result and posterior profile arises from the fact
that the height of the modes – as determined by the posterior pro-
file (maximization) – does not necessarily correspond to the mass
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Fig. 3. MCMC samples and profile posterior for all 27 inferred dynamical parameters. Shown are the histograms of the marginalized MCMC samples, color-coded for mode
membership. The height is scaled such that the area of all bars in each histogram is one. In red: profile posterior pdf, scaled so as to minimize distance to histogram.
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of the mode (marginalization) – as determined by the MCMC sam-
ple. Interestingly, for this example, the ratio between the masses of
the modes is rather similar to the ratio of the maximum posterior
probability density in the individual modes, which is also roughly
5 : 1.

When taking a closer look at Fig. 2, again of the two parameters
SOCS3RNADelay and SOCS3RNATurn against each other, one can
see that the region of high posterior density is not one with two
clear modes with deep valleys in between, but rather a banana-
shaped ridge with one global and one local maximum. This highly
non-elliptical shape also explains the failure of the single chain AM
runs to switch between the two modes adequately fast and often.
Obviously, an elliptically-shaped normal distribution is not ideally
suited as a proposal distribution for inferring a bimodal banana-
shaped distribution. However, in combination with the AMPHS
scheme, it is sufficiently efficient.

3.5. Prediction of inhibitory effects

In Bachmann et al. [1], it was already shown that SOCS3 and CIS
act as a dual negative feedback on the level of nuclear phosphory-
lated STAT5, thus providing regulation over a broad range of Epo
concentrations. The effect of SOCS3 is more pronounced for high
Epo levels, while CIS primarily works as a negative feedback at
low Epo levels. In addition to confidence intervals estimated from
the profile posterior (see in [1]) the obtained MCMC samples now
also allow computing the posterior density of the prediction, see
Fig. 4.

Regarding the previously observed modes in the parameter pos-
terior distribution we found that the differences between the cor-
responding predictions for pSTAT5 are minor, cf. also Fig. 7 in the
appendix. This can be explained by the fact that the two modes
mainly differ in the SOCS3RNADelay and SOCS3RNATurn which
primarily influence SOCS3. As the effect of SOCS3 on pSTAT5 is
indirect, the bimodality has negligible effect on the level of pSTAT5
predictions. The results confirm the role of the dual negative feed-
back. However, the advantage of the sampling-based approach
only becomes fully apparent when considering SOCS3 itself.

When we analyzed the predicted dynamics for SOCS3 we found
that these indeed depend on the mode, as shown in Fig. 5. For the
parameters in the main mode, the model predicts that after stim-
ulation SOCS3 goes directly to a steady state. In contrast, for the
parameters in the secondary mode we observe an overshoot. This
overshoot is caused by the increased delay in the SOCS3 RNA ex-
port from the nucleus, SOCS3RNADelay. Based on this prediction
it would be sufficient to have a better resolved measurement of

SOCS3 between 0 and 100 min to distinguish between the two
modes.

In summary, the obtained MCMC samples allow for a detailed
evaluation of the model. Furthermore, new experiments that allow
to further characterize the model and improve the explanatory
power were designed.

4. Discussion

Statistical inference for high dimensional problems is a chal-
lenging issue. In this paper, we provide a proof of concept that
Bayesian inference in high-dimensional dynamical systems is fea-
sible. MCMC sampling of over 100 parameters is nevertheless a
challenging task. Special care has to be taken when checking and
verifying the results.

We studied two different approaches to such problems, the pro-
file posterior approach and Bayesian Markov chain Monte Carlo
sampling, both having their own strengths and weaknesses. For
the profile posterior approach repeated runs of optimization are nec-
essary. Optimization can pose a computational bottleneck in high
dimensional parameter space. In particular, if several modes are
present in the posterior, multiple runs of profile calculation can be-
come necessary. In the example considered here, optimization is
working efficiently and calculation of the profiles takes about ten
to twenty minutes per parameter on a normal desktop computer.
MCMC sampling of over 100 parameters is a challenging task as well.
Special care has to be taken when checking and verifying the results.
We have shown that single-chain algorithms can run into severe
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Fig. 4. Uncertainty in prediction of the cellular response. Simulation of the steady-state level of phosphorylated STAT5 in the nucleus, with only one transcriptional negative
regulator, CIS or SOCS3, being present and their combined effect. The increase of pSTAT5 steady-state levels was calculated relative to wild-type cells (black dashed line) in
steady state. Grey shading indicates the density calculated from the posterior samples, the red line represents the solution belonging to the MAP estimate, dashed red lines
indicate 95% confidence bands for the prediction taken from [1]. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version
of this article.)
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Fig. 5. Differences in SOCS3 dynamics. Experimental data for SOCS3 (red stars) and
density of the trajectories corresponding to the MCMC samples for main mode (left)
and secondary mode (right). For the parameters in the main mode, the model
predicts that after stimulation SOCS3 goes directly to a steady state. In contrast, for
the parameters in the secondary mode we observe an overshoot. (For interpretation
of the references to colour in this figure caption, the reader is referred to the web
version of this article.)
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problems in high-dimensional systems, which are furthermore not
easily diagnosed from the MCMC run alone. In the single-chain case,
the Geweke test could not detect that the chains get locked in local
modes of the posterior. If single chains are run repeatedly from dif-
ferent starting points, the Gelman–Rubin statistics can detect non-
convergence. However, this relies on a representative set of starting
points that have to be determined beforehand. For the multi-chain

approach, the selection of representative starting points is important
to ensure convergence to the posterior distribution, i.e. correct
weighting of the posterior modes, in acceptable time. Once reliable
results of MCMC sampling are obtained, uncertainties can easily be
projected on any model prediction including the high-dimensional
correlation structure. In line with results obtained for smaller appli-
cations [15,16,19], we advocate the combination of MCMC sampling
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Fig. 7. Uncertainty in prediction of the cellular response. Simulation of the steady-state level of phosphorylated STAT5 in the nucleus, with only one transcriptional negative
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with the profile posterior approach to ensure the robustness and
reliability of the results.

When breaking down the complexity of the high-dimensional
parameter space both our approaches apply different strategies
that can lead to different results: marginalization for MCMC sam-
pling and maximization for the profile calculation. In the asymp-
totic case, i.e. if a sufficient amount of experimental data is
available, the results of both approaches agree. This is the case
for many parameters considered in this example. However, in the
finite case, the results of both approaches can be quite different,
as was observed for some parameters in this example. To which ex-
tent one or the other approach is preferable remains to be assessed
systematically. Results obtained by [16] indicate that marginaliza-
tion should be used with care in the presence of non-
identifiabilities.

Computing the profile posterior is computationally faster and
more robust than MCMC sampling. The results of the profile pos-
terior computation, e.g., knowledge about local optima and other
structure in the posterior, can then be employed to improve and
check MCMC sampling. Nevertheless, even with this additional
knowledge, efficient MCMC sampling of the posterior distribution
remains an issue. For the JAK2/STAT5 signaling model considered
here, we found that single-chain MCMC runs do not mix well.
Therefore, we introduced an Adaptive Metropolis Parallel Hierar-
chical Sampler which can employ knowledge about local maxima
in the posterior distribution. Instead of using one chain which
starts, e.g., in the MAP estimate, several MCMC chains are started
in the individual modes of the posterior distribution with different
transition kernels. Combined with the swapping of the states of the
chains, this provided better mixing properties. However, even with
the AMPHS some care has to be taken, for example when initializ-
ing the chains. In our experience, drawing the starting values for
the auxiliary chains from the prior is inefficient. Possibly due to
the high dimensionality of the parameter space the chains take
impractically long to reach region of high posterior density. To in-
crease performance the chains can be initialized in local optima
found in the profile posteriors.

In high-dimensional systems it is important to have excellent
mixing in the Markov chain to ensure exploration of the whole
parameter space. Multi-chain approaches are clearly superior to
single-chain sampling schemes from the Metropolis–Hastings fam-
ily with respect to the mixing. Alternatively, other sampling
schemes that provide good mixing could be employed, for example
an Independence Walk, however it is unclear what kind of prob-
lems one could run into when using these.

To check the convergence of MCMC schemes in high-dimen-
sional parameter spaces or multimodal problems in general we
used a combination of approaches. During our studies we found
that the complementation of classical convergence criteria [48]
with information about the modes is beneficial. This information
can be obtained using e.g. multi-start optimization algorithms. If
a multi-chain sampler is initialized distributed across all detected
modes and the convergence diagnostics indicates convergence, it
is more likely that all modes of the posterior distribution have been
adequately sampled, compared to the single-chain approach. As
multi-start optimization is often used to determine the MAP esti-
mate [1], all necessary information is readily available and does
not require additional computational effort.

The sampling of high-dimensional posterior distributions is
methodologically and computationally challenging. One might ask
whether the additional effort compared to the computation of pro-
file posteriors is justified. The amount of data collected during the
analysis is often enormous. To handle these data and to actually al-
low for additional insight exploration-based visualization methods
[49] as well as automated tools, such as (un) supervised learning ap-
proaches [47] are necessary. Using the sampling results we could

show that the posterior distribution is bimodal and that the two
modes correspond to alternative parameterization of the model.
Either the turnover rates of SOCS3 RNA can be high and the RNA ex-
port in the cytosol low, or vice versa. By inspection of the predictions
corresponding to the individual modes it is possible to verify one of
the models experimentally. The sampling results were used for the
prediction of the inhibitory effect of SOCS3 and CIS for different
Epo levels, as well as for the dynamics of SOCS3. The two modes of
the posterior clearly manifest in the SOCS3 dynamics. This is due
to the fact that the two parameters showing the bimodality most
prominently, namely SOCS3RNADelay and SOCS3RNATurn, are di-
rectly linked to SOCS3.

The methods presented in this paper are applicable to many
dynamical systems, not only from systems biology. Especially in
nonlinear and high-dimensional systems relying on a single method
or convergence test can be misleading. Combining several ap-
proaches should yield a robust procedure for similar inference
problems.
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Appendix A. ODE system and experimental data

The ODE system for the JAK2/STAT5 is described by 29 dynam-
ical variables and was solved for these parameters by using the
CVODES solver with an absolute and relative accuracy of 10�8.
The ODE equations and the solver were compiled into C-executable
files for MATLAB. Experimental data is available for 24 different
experimental conditions. As these evaluations of the ODE systems
are independent, they could be parallelized for numerical effi-
ciency. After all suitable transformations etc. described in more de-
tails in Bachmann et al. [1], 115 unknown parameters remain, of
these two more could be fixed to a scale. All in all, like for the anal-
ysis in [1], 113 parameters are sampled by our approach. The
experimental data for the dynamics of the system consists of 541
data points which are the basis of our inference.

Appendix B. Prior and sampling setup

For one of the parameters, the absolute concentration of the
EpoR_JAK complex, we found a literature value that could be in-
cluded as prior information for the concentration scale of the
receptor complex into the sampling. For all other parameters, uni-
form priors in logarithmic parameter space were used. The range of
these priors was determined already for the optimization done in
Bachmann et al. [1]. It is especially important for those of the
parameters that are non-identifiable. The prior in this case pre-
vents the sampler from going to infinity in these parameters which
would be detrimental for the complete exploration of the parame-
ter space.
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For the sampling of the JAK2/STAT5 pathway system via the
AMPHS sampling scheme, we chose to use 20 auxiliary chains for
500.000 samples each. We do not thin the Markov chains, but save
all generated samples. Still, the computational cost for such a large
system is quite heavy, the sampling run took about three days on a
standard AMD Opteron 2.4 GHz multicore machine using 5 cores.
Higher degrees of parallelization are possible and would reduce
the run time.

Furthermore, the AMPHS requires the specification of a starting
covariance matrix. We found it sufficient to take an identity matrix
in each auxiliary chain. Alternatively, one could run a short chain
initialized with an identity matrix and then calculate an initial
covariance matrix from these prerun samples. Since it is a special
advantage of the Parallel Hierarchical sampling scheme that differ-
ent proposals can be used in each chain, we chose different scaling
factors for the identity matrix ranging from 10�6 to 10�9.

Appendix C. Support vector machine

For a rigorous assessment of the bimodality of the posterior, we
used a two-step procedure based on support vector machines. In
the first step a SVM is trained with the first 250.000 MCMC sam-
ples of both individual AM chains. In the second step the classifica-
tion performance of the trained SVM is evaluated on the remaining
250.000 samples of each chain. The percentage of misclassification
provides an estimate of the overlap of the two chains as an optimal
support vector classification would only misclassify the points in
the overlapping region. To obtain the best possible estimate for
the overlap we evaluated the classification performance for differ-
ent kernel functions, i.e. linear, polynomial, and radial basis func-
tion, and a variety of different kernel parameters and penalty
parameters. This comparison has been carried out using the LIB-

SVM toolbox for MATLAB [50].
Our analysis revealed that already a linear SVM achieves a

rather good classification performance with a true-positive rate
of 94:5% and a false-positive rate of 4:7%. The improvement ob-
served when using nonlinear SVMs was negligible. Furthermore,
we found that the classification performance achieved using all
parameters is indistinguishable from the case when using only
the dynamical parameters. Even the mere use of SOCS3RNADelay
and SOCS3RNATurn for the classification ensures a true-positive
rate of 94:0% and a false-positive rate of 5:9%. Altogether this
shows that the overlap of the two MCMC chains is approximately
5% and that the samples seem to be separated well using only
two parameter dimension.

Appendix D. Additional figures

Fig. 6.

Appendix E. Equations of dynamical model

The rate equations of the reactions are

v1¼
½Epo� � ½EpoRJAK2� � JAK2ActEpo
½SOCS3� �SOCS3Inhþ1

v2¼½EpoRpJAK2� � JAK2EpoRDeaSHP1 � ½SHP1Act�

v3¼
½EpoRpJAK2� �EpoRActJAK2
½SOCS3� �SOCS3Inhþ1

v4¼
3 � ½EpoRpJAK2� �EpoRActJAK2

EpoRCISInh � ½EpoRJAK2 CIS�þ1ð Þ � ½SOCS3� �SOCS3Inhþ1ð Þ

v5¼
3 �EpoRActJAK2 � ½p1EpoRpJAK2�

EpoRCISInh � ½EpoRJAK2 CIS�þ1ð Þ � ½SOCS3� �SOCS3Inhþ1ð Þ

v6¼
EpoRActJAK2 � ½p2EpoRpJAK2�
½SOCS3� �SOCS3Inhþ1

v7¼ JAK2EpoRDeaSHP1 � ½SHP1Act� � ½p1EpoRpJAK2�
v8¼ JAK2EpoRDeaSHP1 � ½SHP1Act� � ½p2EpoRpJAK2�
v9¼ JAK2EpoRDeaSHP1 � ½SHP1Act� � ½p12EpoRpJAK2�
v10¼½EpoRJAK2 CIS� �EpoRCISRemove � ½p12EpoRpJAK2�ð

þ½p1EpoRpJAK2�Þ
v11¼½SHP1� �SHP1ActEpoR � ð½EpoRpJAK2�þ½p12EpoRpJAK2�

þ½p1EpoRpJAK2�þ½p2EpoRpJAK2�Þ
v12¼SHP1Dea � ½SHP1Act�

v13¼
½STAT5� �STAT5ActJAK2
½SOCS3� �SOCS3Inhþ1

� ð½EpoRpJAK2�þ½p12EpoRpJAK2�

þ½p1EpoRpJAK2�þ½p2EpoRpJAK2�Þ

v14¼
½STAT5� �STAT5ActEpoR � ½p12EpoRpJAK2�þ½p1EpoRpJAK2�ð Þ2

½CIS� �CISInhþ1ð Þ � ½SOCS3� �SOCS3Inhþ1ð Þ
v15¼STAT5Imp � ½pSTAT5�
v16¼STAT5Exp � ½npSTAT5�
v17¼�CISRNAEqc �CISRNATurn � ½npSTAT5�
v18¼½CISnRNA1� �CISRNADelay
v19¼½CISnRNA2� �CISRNADelay
v20¼½CISnRNA3� �CISRNADelay
v21¼½CISnRNA4� �CISRNADelay
v22¼½CISnRNA5� �CISRNADelay
v23¼½CISRNA� �CISRNATurn
v24¼½CISRNA� �CISEqc �CISTurn
v25¼½CIS� �CISTurn
v26¼�SOCS3RNAEqc �SOCS3RNATurn � ½npSTAT5�
v27¼½SOCS3nRNA1� �SOCS3RNADelay
v28¼½SOCS3nRNA2� �SOCS3RNADelay
v29¼½SOCS3nRNA3� �SOCS3RNADelay
v30¼½SOCS3nRNA4� �SOCS3RNADelay
v31¼½SOCS3nRNA5� �SOCS3RNADelay
v32¼½SOCS3RNA� �SOCS3RNATurn
v33¼½SOCS3RNA� �SOCS3Eqc �SOCS3Turn
v34¼½SOCS3� �SOCS3Turn

Reactions v18 to v22 and v27 to v31 account for a delay that summa-
rize the processing steps of the mRNA by a linear chain of reactions
[51] with common rate constant CISRNADelay and SOCS3RNADelay,
respectively. The ODE systems is composed out of the rate equa-
tions by

d½EpoRJAK2�=dt ¼ �v1 þ v2 þ v7 þ v8 þ v9

d½EpoRpJAK2�=dt ¼ þv1 � v2 � v3 � v4

d½p1EpoRpJAK2�=dt ¼ þv3 � v5 � v7

d½p1EpoRpJAK2�=dt ¼ þv4 � v6 � v8

d½p12EpoRpJAK2�=dt ¼ þv5 þ v6 � v9

d½EpoRJAK2 CIS�=dt ¼ �v10

d½SHP1�=dt ¼ �v11 þ v12

d½SHP1Act�=dt ¼ þv11 � v12

d½STAT5�=dt ¼ �v13 � v14 þ v16 �
0:275

0:4
d½pSTAT5�=dt ¼ þv13 þ v14 � v15

d½npSTAT5�=dt ¼ þv15 �
0:4

0:275
� v16

d½CISnRNA1�=dt ¼ þv17 � v18
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d½CISnRNA2�=dt ¼ þv18 � v19

d½CISnRNA3�=dt ¼ þv19 � v20

d½CISnRNA4�=dt ¼ þv20 � v21

d½CISnRNA5�=dt ¼ þv21 � v22

d½CISRNA�=dt ¼ þv22 �
0:275

0:4
� v23

d½CIS�=dt ¼ þv24 � v25

d½SOCS3nRNA1�=dt ¼ þv26 � v27

d½SOCS3nRNA2�=dt ¼ þv27 � v28

d½SOCS3nRNA3�=dt ¼ þv28 � v29

d½SOCS3nRNA4�=dt ¼ þv29 � v30

d½SOCS3nRNA5�=dt ¼ þv30 � v31

d½SOCS3RNA�=dt ¼ þv31 �
0:275

0:4
� v32

d½SOCS3�=dt ¼ þv33 � v34:

The volume factors vol cyt ¼ 0:4 pl and vol nuc ¼ 0:275 pl account
for transitions between different compartments and are determined
experimentally. The species npSTAT5, CISnRNA1–5 and
SOCS3nRNA1–5 are located in the nuclear compartment, the
remaining species in the cytoplasmatic compartment.

The initial condition are set to zero except for

½EpoRJAK2�ð0Þ ¼ init EpoRJAK2
½SHP1�ð0Þ ¼ init SHP1
½STAT5�ð0Þ ¼ init STAT5:
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