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Many physical systems exhibiting nonlinear spatiotemporal dynamics can be modeled by partial
differential equations. Although information about the physical properties for many of these
systems is available, normally not all dynamical parameters are known and, therefore, have
to be estimated from experimental data. We analyze two prominent approaches to solve this
problem and describe advantages and disadvantages of both methods. Specifically, we focus on
the dependence of the quality of the parameter estimates with respect to noise and temporal
and spatial resolution of the measurements.
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1. Introduction

In recent years nonlinear pattern-forming dynami-
cal systems have drawn much attention to describe
spatiotemporal phenomena in physics, chemistry,
and biology. To better understand these phenom-
ena and to bring together experiment and theory,
much has been achieved to model these systems
with partial differential equations. In most of the
studies, the focus was on the analysis of bifurca-
tion points and chaos [Cross & Hohenberg, 1993;
Aronson & Kramer, 2002]. While these methods are
powerful tools to analyze a given theoretical model,
they are unable to overcome the simulation dilemma
[Timmer et al., 2000]: discrepancies between simu-
lated and measured data can be either the result of
a wrong model or they can stem from inadequate
dynamical parameters. Hence simulation studies for
a given theoretical model cannot be used to assess
the applicability of the model to a specific dataset.

Therefore, to connect the theoretical work to exper-
imental studies it is necessary to adapt the mathe-
matical model to the experiment and to evaluate its
quality. For most systems not all dynamical param-
eters are known with sufficient precision and thus
they have to be estimated from the data.

Currently, there are two main approaches:
first an approach based on regression techniques
[Parlitz & Merkwirth, 2000; Bär et al., 1999; Voss
et al., 1999] and secondly an approach based on
the dynamical behavior [Bock, 1981, 1983; Baake
et al., 1992; Timmer et al., 2000; Müller & Timmer,
2002].

The main purpose of this manuscript is to de-
velop the principal ideas of both approaches and
to highlight advantages and disadvantages. Further-
more we will compare both techniques in a sim-
ulation study which focuses on the dependence on
the measurement noise and on spatial and temporal
resolution of the measured data.
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Throughout the manuscript we will use the fol-
lowing notation: Let the PDE be denoted as

∂tz(t, x) = f(p, z, ∂xz, ∂xxz, . . .) (1)

with dynamical variable z ∈ RQ, parameter vec-
tor p ∈ RP , time t ∈ [t0, tf ] with initial and final
times t0 and tf and spatial variable x ∈ [xlb, xrb]
with left and right boundaries xlb and xrb. Let
zM
ij (p, z(t0, x)) denote the model trajectory, i.e. the

solution of the PDE with parameter p and initial
values z(t0, x), at time ti and space xj and let zD

ij

denote the experimental data at time ti and space
xj . We assume that the true dynamical trajectory
zT
ij is corrupted by noise following a Gaussian dis-

tribution with zero mean and standard deviation
σij :

zD
ij = zT

ij + ηij , ηij ∼ N(0, σ2
ij) .

In the following we assume that all dynamical vari-
ables are observable. For more general situations
including the case with unobserved components see
[Müller & Timmer, 2002].

2. The Regression Approach

To apply the regression approach to the parame-
ter estimation problem, in a first step it is nec-
essary to compute all terms which occur in the
partial differential equations, i.e. the state variable
zij = z(ti, xj), the temporal derivative ∂tzij, the
spatial derivative ∂xzij and derivatives of higher or-
der. This is done by approximating these terms with
help of the measured data zD

ij :

zij ∼ ẑD
ij ,

∂tzij ∼ ∂̂tzD
ij ,

∂xzij ∼ ∂̂xzD
ij ,

∂xxzij ∼ ∂̂xxzD
ij , . . .

ẑD
ij , . . . denotes an estimate of zij computed with

help of the data, e.g. after noise reduction.
Using the partial differential equation Eq. (1)

at every data point at time ti and spatial variable
xj we obtain a set of equations for the dynamical
parameter vector p:

∂tzij = f(p, zij , ∂xzij , ∂xxziv, . . .)

which is approximated by:

∂̂toD
ij = f(p, ẑD

ij , ∂̂xzD
ij , ∂̂xxzD

ij , . . .) .

By minimizing

Υ(p) =
∑

ij

(∂̂tzD
ij − f(p, ẑD

ij , ∂̂xzD
ij , . . .))2

it is now possible to estimate the dynamical pa-
rameter vector p which follows the concept of non-
linear regression, respectively least squares regres-
sion [Cremers & Hübler, 1987; Gouesbet et al., 1996;
Hegger et al., 1998]. The advantages of this method
are clearly the straightforward implementation and
the low computational cost. Especially minimiza-
tion of regression problems is a well-known problem
and programs are readily available. For estimating
derivatives it is possible to use a method based on
the symmetrized form of the finite difference oper-
ator [Press et al., 1992]. In this manuscript we use
a technique based on splines [Hanke & Scherzer,
2001]. It can be shown that the approximation of
the first derivative of a function with cubic splines
is below a certain error bound depending on the true
second derivative, the sampling interval and the
noise level of the data. We found that this method
yields more reliable results than the method based
on the finite difference operator.

The regression approach can be easily extended
to a nonparametric technique where not only pa-
rameters are estimated but also the functional re-
lationship on the right-hand sides [Härdle, 1989;
Breiman & Freeman, 1985; Voss & Kurths, 1997;
Voss et al., 1999].

The major disadvantage of this technique is the
need to estimate temporal and spatial derivatives
from noisy data [Irving & Dewson, 1997]. [Bär et

al., 1999] even state that “noise remains a crucial
problem.” It is important to note that this tech-
nique is also dependent on a sufficient resolution of
the experimental data. If the resolution is too coarse
the estimation of derivatives is simply not possible.
This property will be investigated later in compar-
ison with the dynamical approach.

Finally, one should also note that the estimator
of the parameter vector p obtained by minimizing
Υ(p) is not a maximum likelihood estimator due to
the unknown probability distribution of the com-
puted terms which approximate the variables oc-
curing in the PDE. Hence, the consistency of this
estimator is not guaranteed.
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3. The Dynamical Method

The main idea of this approach is to estimate the
dynamical parameters by modeling the full trajec-
tory of the experimental data set. Thereby it is
possible to circumvent the problem that normally
temporal and spatial resolutions respectively the
noise level do not allow for computing derivatives re-
liably. Moreover, if a trajectory can be found which
describes the experimental data for the whole time
interval, it is possible to apply statistical inference
procedures to assess the quality of the model [Cox
& Hinkley, 1974]. Therefore the aim is to estimate
the dynamical parameters p and the initial condi-
tion z(t, x) by minimizing

χ2(p, z(t, x)) =
∑

ij

1

σ2
ij

(zD
ij − zM

ij (p, z(tn, x)))2 .

(2)

In ordinary differential equations this minimiza-
tion problem is well known [Richter et al., 1992;
Schittkowski, 1995; Edsberg & Wedin, 1995; Tim-
mer et al., 1998; Schittkowski, 1999] and a spe-
cial minimization routine, the multiple shooting
method (MSM), is available to circumvent the prob-
lem of local minima [Bock, 1983; Baake et al., 1992;
Timmer et al., 1998]. However, for partial differen-
tial equations, this method does not work as reliably
as in the ordinary differential equation case and it
has to be advanced to the extended multiple shoot-
ing method (eMSM), [Müller & Timmer, 2002]. In
the following we will shortly describe the algorith-
mic approach to solve the minimization problem
Eq. (2). Additionally, in Fig. 1 we display the idea of
the method for the Lotka–Volterra system, a special
ordinary differential equation [Murray, 1993].

In a first step we choose an initial guess for pa-
rameter vector p with available a priori knowledge
or by estimating it by the regression approach. Af-
terwards, we divide the data set into N subsets,
n = 1, . . . , N , with N = 10 in Fig. 1. In every
subset, we apply a further subdivision of the time
interval [tn−1, tn] into K segments (with K = 2 for
N = 10 in Fig. 1) and choose initial values of the
dynamical variables z(tkn

, x) for each segment with
help of the data by using a Savitzky–Golay filter in
the time domain [Savitzky & Golay, 1964]. In this
way all data points may be used to generate esti-
mates of the dynamical variables at the beginning
of each segment. Afterwards, we integrate the par-
tial differential equation in every segment using the
same dynamical parameters for all segments but the

computed specific initial values for each segment.
Since this leads to a discontinuous trajectory con-
sisting of many small time intervals where we inte-
grate the PDE we additionally introduce continuity
constraints which guarantee a continuous trajectory
in every subset while we optimize the parameters
by minimizing the distance between the model tra-
jectory and the data. This procedure leads to an
optimal trajectory for every subset with a global
parameter vector but still represents a discontinu-
ous trajectory for the whole time interval. We finally
reach a continuous optimal solution of the PDE by
slowly reducing the number of subsets from N = 10
to 1 successively applying the above procedure. This
condensing scheme is displayed in Fig. 1: after start-
ing with N = 10 subsets and K = 2 segments and
obtaining convergence to an optimal parameter vec-
tor p for all subsets, we apply the same procedure
to N = 5 and K = 4. Finally, for one subset with
K = 10, this method leads to a continuous trajec-
tory for the whole data set.

The differences between applying the eMSM
to ODE and PDE are not only the computational
cost, but especially the algorithmic implementation
of both optimization problems. In ODE there is a
fixed number of variables which implies that the
number of starting values to be estimated is inher-
ent in the problem. In contrast, the initial condition
of the PDE is a function of space which has to be
parameterized in some way to allow for numerical
implementation. This parameterization has to be
chosen carefully to ensure that the approximation
is sufficiently close to the initial state of the prob-
lem. Additionally, in ODE the number of continuity
constraints is fixed. In contrast, in PDE it is nec-
essary during the optimization procedure to allow
for different numbers of continuity constraints since
the actual number of grid points which is used for
the numerical integration may have to be increased.
This may be necessary to guarantee that the numer-
ical solution of the PDE has a negligible a posteriori

error [Adjerid et al., 1999]. Moreover, local minima
occur more often in PDE than in ODE when min-
imizing Eq. (2). This makes the extension of the
multiple shooting method to the eMSM necessary.

It is noteworthy that, in principle, this opti-
mization procedure slowly reduces the degrees of
freedom of our theoretical model. While in the
beginning the model comprises the possibility of
choosing starting values in every segment for ev-
ery subset to obtain a trajectory close to the data,
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Fig. 1. Application of the extended multiple shooting method (eMSM) to an ODE example: for a decreasing number of
subsets the MSM is applied in each subset leading to piecewise continuous trajectories after convergence. By reducing the
number of subsets and thus the number of degrees of freedom during the fitting procedure, we obtain a continuous trajectory
for the whole data set.

in the end only the initial values for the first time
point remain.

In contrast to the regression approach, this
method is not critically dependent on high resolu-
tion and low noise and works also in the case of un-
observed components, see [Müller & Timmer, 2002].
Furthermore the estimator of the dynamical param-
eters is a maximum likelihood estimator and guar-
antees the consistency of the estimator. This also

enables comparing different models using statisti-
cal inference methods.

A major disadvantage of this method is its com-
putational cost. One has to perform many integra-
tions of the partial differential equations since it
is necessary to compute derivatives of the solution
of the PDE with respect to initial values and pa-
rameters. This leads roughly to a factor of 103 in
comparison to the regression method.
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4. Comparison of Both Methods

In the following simulation study we will compare
both approaches and will focus on the dependency
on temporal and spatial resolutions and on noise
level. As an example problem we take a typical ex-
ample of the complex Ginzburg–Landau equation
[Bär et al., 1999; Argentina & Coullet, 1997]. The
PDE of this system reads

∂tz1 = z2

∂tz2 = (µ − z2
1)z2 − z1 − az2

1 − z3
1

+ ∂xxz1 + κ∂xxz2

with parameter values as in [Bär et al., 1999],
µ = 0.2, a = 2.08, κ = 1.0. A typical solution
of this PDE is displayed in Fig. 2. For numeri-
cal integration of the PDE we used the method
of lines [Schiesser, 1991; Ames, 1992] with suffi-
ciently accurate spatial discretizations so that the
a posteriori error was below 0.01 using a method
of [Adjerid et al., 1999]. For a more detailed dis-
cussion of this system and the simulation technique
see [Müller & Timmer, 2002]. The system length is
100.0 (xlb = 0.0, xrb = 100.0) while the integra-
tion time is 20.0 (t0 = 0.0, tf = 20.0). The sys-
tem comprises periodic boundary conditions which
reflect a common situation for many experiments
where annular containers are used [Kolodner, 1992;
Andersen et al., 2002]. To analyze the dependency
of the results on different spatial and temporal reso-
lutions of the observed data and on the noise level,
we investigated the performance of both methods
for resolutions ranging from 64 × 100, i.e. 64 ob-
served spatial grid points and 100 observed time
points, to 32×40. The noise levels of the added ob-
servational noise are σ = σ0σsignal with σ0 = 0.02,
0.1, 0.2, 0.3 and σsignal the standard deviation of the
data. These settings resemble realistic situations ob-
served in different experiments [Fullana et al., 1997;
Valette et al., 1997; Voss et al., 1999]. The initial
values for the dynamical parameters in the dynam-
ical approach were µ = 1.0, a = 1.5, κ = 5.0, while
for the regression approach we used the true pa-
rameters as initial values. Different initial param-
eter values were chosen for two reasons: first to
show that the extended multiple shooting method
is independent of initial values and secondly to
demonstrate that the parameter estimates of the
regression approach are biased despite true ini-
tial parameter values. For every setting we simu-
lated 100 different data sets and obtained estimated
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Fig. 2. Typical solution of the partial differential equation
used in the simulation study. Variables z1 and z2 are dis-
played in (a) and (b).

parameters for every data set. To display the re-
sults in an easily accessible form, we operationally
introduced an area in the parameter space close
to the true parameter and counted only those es-
timated parameters within this acceptance area.
An estimated parameter vector was accepted if it
was within the 10% range of the true parameter,
i.e. (

∑
i |p

E
i − pT

i |
2/|pT

i |
2)1/2 < 0.10 with pT

i and pE
i

the ith component of the true and the estimated pa-
rameter vector. In Table 1 we list results for both
approaches.

It can be seen that for all data sets the ex-
tended multiple shooting method yields much more
reliable results than the regression approach. As ex-
pected, for a given spatial and temporal resolution
there is a critical noise level for which the regres-
sion approach fails completely due to the problem
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Table 1. Percentage of accepted parameter estimates for the (a) regression
approach, and (b) eMSM-approach. L = 1, 2, 3, 4 corresponds to a temporal
resolution of 40, 60, 80 and 100 time points, K = 1, 2 corresponds to a
spatial resolution of 32 and 64 spatial grid points.

(a) Percentage of Accepted Estimates

K = 1 K = 2

σ0 L = 1 L = 2 L = 3 L = 4 L = 1 L = 2 L = 3 L = 4

0.02 13 20 22 26 36 68 71 75

0.10 7 9 10 14 13 19 21 25

0.20 0 1 1 4 0 1 2 5

0.30 0 0 0 0 0 0 1 1

(b) Percentage of Accepted Estimates

K = 1 K = 2

σ0 L = 1 L = 2 L = 3 L = 4 L = 1 L = 2 L = 3 L = 4

0.02 61 62 74 83 65 68 79 91

0.10 38 35 48 65 50 54 60 82

0.20 33 36 38 53 42 52 58 67

0.30 30 32 40 45 34 37 44 58

of estimating derivatives from noisy data whereas
the eMSM converges to the true parameter vector
even for high noise levels. Nevertheless, it has to be
noted that the computational cost of the eMSM is
a factor of 1.5 × 103 higher.

5. Discussion

We compared two currently applied methods for pa-
rameter estimation in partial differential equations.
As a benchmark we used an example equation of
the complex Ginzburg–Landau-type which is an im-
portant class of equations for describing nonequilib-
rium complex systems.

The first approach redefines the problem as a
regression-problem. By computing all terms which
occur in the partial differential equation from the
data, it is possible to obtain a set of equations
for the parameter vector p which leads to a least-
squares-minimization problem. While being a fast
and easy to implement technique, we showed that
estimating derivatives from noisy data is a general
drawback of this method. The second approach, the
dynamical approach, aims at obtaining a solution of
the PDE for the full trajectory of the experimental
data set. This also leads to a minimization problem

which can be reliably solved by implementing a spe-
cial minimization technique, the extended multiple
shooting method, which was introduced. In a simu-
lation study we showed the superiority of the latter
approach.

It is difficult to assess the general superiority
of this method in comparison to the regression ap-
proach. Nevertheless we think that in analogy to
parameter estimation in ODE the more complex a
spatiotemporal system is the more will the extended
multiple shooting method be superior to the regres-
sion approach. Future work will have to concentrate
on investigating specific real-world settings.

We would like to emphasize that these tech-
niques require a parameterized model and do not
lead to equations of motions from data, hence some
a priori knowledge is needed. At least for complex
systems from physics this holds for most cases. Very
often the aim is to find a “best” of a few possi-
ble modeling approaches or even to compare two
models. In this setting the eMSM is a powerful tool
which may solve questions that cannot be answered
by regression techniques since it allows for statisti-
cal evalution [Valette et al., 1997; Voss et al., 1999;
Coca & Billings, 2001].
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