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Abstract: Mathematical description of biological processes such as gene regulatory networks or signalling pathways by dynamic
models utilising ordinary differential equations faces challenges if the model parameters like rate constants are estimated from
incomplete and noisy experimental data. Typically, biological networks are only partially observed. Only a fraction of the
modelled molecular species is measurable directly. This can result in structurally non-identifiable model parameters.
Furthermore, practical non-identifiability can arise from limited amount and quality of experimental data. In the challenge of
growing model complexity on one side, and experimental limitations on the other side, both types of non-identifiability arise
frequently in systems biological applications often prohibiting reliable prediction of system dynamics. On theoretical grounds
this article summarises how and why both types of non-identifiability arise. It exemplifies pitfalls where models do not yield
reliable predictions of system dynamics because of non-identifiabilities. Subsequently, several approaches for identifiability
analysis proposed in the literature are discussed. The aim is to provide an overview of applicable methods for detecting
parameter identifiability issues. Once non-identifiability is detected, it can be resolved either by experimental design, measuring
additional data under suitable conditions; or by model reduction, tailoring the size of the model to the information
content provided by the experimental data. Both strategies enhance model predictability and will be elucidated by an example
application.
1 Introduction

‘Those involved [in] estimating parameters from
measurements would of course like to know whether they
stand any chance of succeeding’. This statement in the
foreword of the classics identifiability of parametric models
[1] brings the whole issue of this article to the point. It
is a topic becoming easily involved with sophisticated
mathematical theory but, at the same time, it is of
overwhelming practical importance. Last but not least, it
should be possible to draw reliable conclusions from the
mathematical framework utilised to describe experimental
observations. This article tries to summarises the topic in a
pragmatic and practical way, suitable to understand and
overcome the complications implied by parameter non-
identifiability issues.

Since its introduction in the late 1980s that was mostly
driven by theoretical interests, parameter identifiability
recently regained importance in the mathematical
description of cellular processes that became known as
systems biology. Bio-technological progress provided the
possibility to decipher the human genome, yielding a
multiplicity of genes representing specific functional
components such as proteins or siRNA [2, 3]. However, the
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functionality observed in cellular processes is not arising
from the components directly but from their dynamic
interplay. Therefore the sequenced genome is rather an
inventory of components than an explanation or ‘manual’ of
functionality. The remaining task, putting together the
known pieces to understand how functionality arises from
the dynamic interplay of these components, is enormous.
Detailed knowledge regarding this interplay is important to
understand how failures in functionality arise and how
resulting diseases such as cancer could be treated more
efficiently. Since the underlying network of dynamic
protein interactions is often only known in parts and
because of its immense complexity, it is most suitable to
describe the relevant processes by parametric models
incorporating the biological knowledge available [4]. This
statistical sound procedure promises reliable conclusions
about the underlying biology, given that beforehand
unknown model parameters such as rate constants of
molecular interactions are reliably estimated from the
available experimental data.

In the context of signalling networks, ordinary differential
equations (ODE) are frequently used to investigate the
dynamic properties of pathway components and their
transient modifications. This assumes that diffusion is fast
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compared to reaction rates and cell volume. The aim is to
match the mathematical model with experimentally
observed time-series data, to reconstruct and validate the
network structure. An important step is the estimation of
beforehand unknown model parameters determining the
dynamical behaviour. Once an appropriate and reasonable
model is established, it is usually desired to predict model
dynamics such as trajectories of experimentally unobserved
species concentrations or model behaviour under changed
environmental conditions such as altered network structure
or different external stimulation. Since the considered
models are parametric, the outcome of these predictions
intrinsically depends on the previously estimated model
parameters and their identifiability.

Owing to technical limitations biological networks are
frequently only partly accessible by experiments. As a
consequence, not all molecular species incorporated in a
model can be measured directly. For example, in the case
of time-series data obtained by quantitative immunoblotting
(western blotting), a widely used technique to examine
proteins, the availability and specificity of antibodies limits
the accessible species. Furthermore, measurement errors of
experimental techniques are often substantial. Given a
certain amount and quality of experimental data measured
under specific experimental conditions, it is uncertain
whether the model parameters can be estimated reliably.
Frequently, experimental data are insufficient considering
the size of the model, leading to non-identifiable parameters
[5, 6]. Even identifiable parameters can only be determined
within confidence intervals, which contain the true value of
the parameter with a desired probability, see, for example
[7]. The size of the confidence intervals depends on the
amount and quality of experimental data. Confidence
intervals of non-identifiable parameters are infinite
indicating that they cannot be estimated from the available
experimental data.

If model parameters are not well determined, the predicted
model dynamics are also not. Consequently, a biological
question that depends on inferring the dynamics might not
be answerable. Therefore it is crucial to have detailed
knowledge about parameter non-identifiabilities and
uncertainties of the parameter estimates in general. Only
then, false conclusions from model analysis can be
prevented and the precision of model predictions can be
assessed realistically.

1.1 Model for reaction networks

Reaction networks can be modelled using systems of ODE

ẋ(t, u) = f (x(t, u), u(t), u) (1)

x(0, u) = x0(u) (2)

y(ti, u) = g(x(ti, u), u) + ei (3)

see, for example [8]. The internal model states x describe via
the ODE system (1) the dynamics of n species such as
concentrations of proteins in different phosphorylation
states. Their dynamical behaviour may depend on an input
function u(t) such as an external treatment with ligands and
model parameters u = {u1 . . . ul} such as rate constants or
initial concentrations. The internal model states are mapped
to m model observables y via an observation function g in
(3). The model observables are the quantities accessible by
experiments measured at times ti. They may depend on
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additional parameters such as scaling or offset parameters
included in u. Often, only a subset or combinations of the
modelled species are accessible by experiments, meaning
that m , n. The measurement noise distribution eki is
assumed to be known, for example, being independently
normally distributed: eki � N(0, s2

ki). Each component of f
in (1) is usually composed of a sum of reaction fluxes of
several protein interactions, see, for example [9]. Equation
(2) indicates that the initial conditions x(0) of the ODE
system (1) might be dependent as well on the model
parameters u that need to be estimated from experimental
data.

1.2 Parameter estimation

Commonly the model parameters u are unknown and have
to be estimated from experimental data. The agreement of
experimental data y†k(ti) with the observables predicted by
the model yk (ti, u) for parameters u is measured by an
objective function, commonly the weighted sum of squared
residuals

x2(u) =
∑m

k=1

∑dk

i=1

1

s2
ki

(y†k (ti) − yk(ti, u))2 (4)

where dk denotes the number of data-points for each
observable k = 1 . . . m, measured at time points ti with
i = 1 . . . dk . ski are the corresponding measurement errors.
The parameters can be estimated by

û = min
u

[x2(u)] (5)

For normally distributed measurement noise this corresponds
to maximum likelihood estimation (MLE) of u because

x2(u) = const − 2 log(L(u)) (6)

where

L(u) =
∏m
k=1

∏dk

i=1

1�������
2ps2

ki

√ exp − 1

2

y†k (ti) − yk(ti, u)

ski

( )2
⎛
⎝

⎞
⎠ (7)

is the likelihood function. For a detailed discussion of MLE
in the context of non-linear regression models, see for
example [10].

Sometimes information about the distribution of the model
parameters is available from independent experiments or from
the literature. This information can be incorporated into the
model by an empirical prior distribution that extends the

likelihood. A normally distributed prior uj � N(u†j , s2
uj

) for

parameter uj yields a penalised objective function

x̃2(u) = x2(u) + 1

s2
uj

(u†j − uj)
2 (8)

extending (4). In the following, x2(u) as defined in (4) will be
used as placeholder for the likelihood, see (6).

1.3 Confidence intervals

Given an appropriate model that sufficiently describes the
available experimental data, the uncertainty of parameter
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estimates in terms of confidence intervals can be assessed by
analysing the shape of the likelihood.

A confidence interval [s−
i , s+

i ] of a parameter estimate û i
to a confidence level 1 2 a signifies, that the true value u∗i is
located within this interval with probability 1 2 a. In the
following, large sample confidence intervals and small
sample confidence intervals will be introduced. Sometimes
these are referred to as asymptotic and finite sample
confidence intervals, respectively.

1.3.1 Large sample confidence intervals: The most
simple and handy description of the shape of the likelihood
is its curvature evaluated at the estimated parameter values
û , for example, by the Hessian matrix

H = ∇T∇x2(u)|û (9)

Using the covariance matrix of the parameter estimates
C = 2 H−1, confidence intervals known as standard
intervals are given by

s+
i = û i +

�������������������
Q(x2

df , 1 − a) C ii

√
(10)

where Q(x2
df , 1 − a) is the 1 2 a quantile of the

x2
df -distribution with df, degrees of freedom [11]. The

choice of df yields two different types of confidence
intervals: df ¼ 1 results in point-wise confidence intervals
that hold individually for each parameter, df ¼ #u being the
number of parameters results in simultaneous confidence
intervals that hold jointly for all parameters.

Standard intervals allow a good approximation of the
uncertainty of û i, if the amount of experimental data is
large compared to #u and/or the measurement noise is small
[10]. They are exact if the observables y(ti, u) depend
linearly on u. However, even for the simplest reaction
network described by a system of ODE, the observables
depend non-linearly on u. Furthermore, the amount and
quality of time-series data for biological applications are
often limited. Therefore standard intervals might not be
appropriate. Fig. 1 illustrates the discrepancy of standard
interval ellipsoid to the actual shape of the likelihood.

Fig. 1 Contour plot of x2(u) on a log10-scale illustrating the
discrepancy of standard intervals to the actual shape of the
likelihood

Contour lines shaded from black to white correspond to low, respectively,
high values of x2(u). The asterisk indicates the minimum of x2 and the
MLE for u. The dashed ellipsoid indicates standard intervals and the thick
contour line likelihood-based intervals
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1.3.2 Small sample confidence intervals: Instead of
using the local curvature of the likelihood, confidence
intervals can be defined by a threshold Da in the likelihood.
This threshold defines a confidence region

{u|x2(u) − x2(û ) , Da} with Da = Q(x2
df , 1 − a) (11)

whose borders represent likelihood-based confidence
intervals [12]. The threshold Da is the 1 2 a quantile of the
x2

df -distribution and represents with df ¼ 1 and df ¼ #u
point-wise, respectively, simultaneous confidence intervals
to a confidence level of 1 2 a. The difference x2(u∗) −
x2(û ) corresponds to the amount of over-fitting for the
estimated parameters û . As mentioned in [11], for non-
linear models and small data samples the actual distribution
of x2(u∗) − x2(û ) for the true parameters u∗ may differ
from the x2

df -distribution. For instance, the distribution can
be skewed, if the actual degrees of freedom df consumed by
the non-linear model differ from the number of model
parameters #u. Since the deviation of the distribution is
dependent on the model structure and the experimental
conditions, the distribution of x2(u∗) − x2(û ) should always
be verified by simulation studies. If deviations are observed,
the threshold Da should be adjusted according to the
generated distribution. In any case, coverage properties of
likelihood-based confidence intervals, that is, how precisely
the confidence interval is matching the desired level of
confidence, are considered superior to standard intervals for
small samples [13]. For large samples both approaches are
equivalent.

1.4 Identifiability

A parameter ui is structurally identifiable, if its estimate û i is
unique. It is practically identifiable, if the confidence interval
of its estimate has finite size, that is, s−

i . −1 and
s+

i , +1 on a logarithmic scale that is usually used for
rate constants or initial concentrations. A non-identifiable
parameter indicates that it cannot be estimated from the
experimental data and hence its confidence intervals are
infinite. Structural non-identifiability is only related to the
model structure and especially to the mapping g of internal
model states to model observables in (3). It is independent
of the accuracy of experimental data and was intensively
discussed in the literature, for example, in [1]. In contrast,
practical non-identifiability takes into account the amount
and quality of experimental data that were used for
parameter estimation. In the following, identifiability will be
introduced from a data-based point of view rather than an
algebraic one. In the last paragraph of this section,
identifiability of model parameters will be linked to
observability of model trajectories.

1.4.1 Structural non-identifiability: A structural non-
identifiability arises from the model structure only and is
independent of the amount and quality of experimental
data. Consider a model defined by (1–3). Assuming ideal
measurements, with arbitrarily many and perfectly chosen
measurement time points ti and the absence of
measurements errors ei = 0, the crucial question is whether
the model parameters u are uniquely estimable from the
model observables y(ti, u).

The analytical solution of y(ti, u) may contain an
ambiguous parameterisation with respect to u, arising from
an insufficient mapping function g in (3). This ambiguity
IET Syst. Biol., 2011, Vol. 5, Iss. 2, pp. 120–130
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can be characterised as functional relations h(usub) = 0
between a subset of parameters usub , u. Hence, the
parameters usub are structurally non-identifiable and can be
varied according to the functional relations h without
changing the observables y(ti, u). In terms of an objective
function such as x2(u) defined in (4), a structural non-
identifiability manifests as iso-x2 manifold

{u|h(usub) = 0} ⇒ x2(u) = const (12)

Consequently, the parameter estimates û sub are not uniquely
identified by measurements of y(ti, u). Confidence intervals
of a structurally non-identifiable parameter ui [ usub are
infinite and hence ui cannot be estimated at all. For ODE
models, a direct detection of an ambiguous parameterisation
in the analytic form of y(ti, u) is hampered, because (1) can
only be solved explicitly in special cases.

For a two-dimensional parameter space, x2(u) can be
visualised as landscape. Structural non-identifiability results
in a perfectly flat valley, infinitely extended along the
corresponding functional relation, as illustrated in Fig. 2a.

Since structural non-identifiability is independent of the
accuracy of experimental data, it cannot be resolved by
increasing the amount and quality of existing
measurements. The only remedy is a qualitatively new
measurement which alters the mapping function g in (3),
usually by increasing the number of observed species. A
parameter is structurally identifiable, if a unique minimum
of x2(u) with respect to ui exists (see Figs. 2b and c).

1.4.2 Practical non-identifiability: A parameter that is
structurally identifiable may still be practically non-
identifiable. This can arise owing to insufficient amount and
quality of experimental data or inappropriately chosen
measurement time points. It manifests in a confidence
interval that is infinite, although the likelihood has a unique
minimum for this parameter. It is important to note, that the
standard intervals of an estimate û i are always finite
because in this case C ii . 0, see (10). They are not suitable
IET Syst. Biol., 2011, Vol. 5, Iss. 2, pp. 120–130
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to characterise practical non-identifiability. Therefore [6]
utilises likelihood-based confidence intervals. Here, a
parameter is declared practically non-identifiable, if the
likelihood-based confidence region (11) is infinitely
extended in direction of ui. This means that the increase in
x2(u) stays below the threshold Da for a desired 1 2 a
confidence level in direction of ui. Similar to structural non-
identifiability, the flattening out of the likelihood can
continue along a functional relation.

For a two-dimensional parameter space, a practical non-
identifiability can be visualised as a relatively flat valley,
which is infinitely extended. The height distance of the
valley bottom to the lowest point at û never exceeds Da, as
illustrated in Fig. 2b.

The confidence interval of a practically non-identifiable
parameter is not necessarily infinite on both sides. There
can be a finite upper or lower bound of the confidence
interval [s−

i , s+
i ], but either s−

i or s+
i is infinite. For

parameters such as rate constants or initial concentrations
that are only positive, a log-transformation yields a more
natural parameterisation. In this case, s−

i = −1 indicates
that the true parameter u∗i could be arbitrarily small.

Improving the detection of characteristic dynamical
behaviour by increasing the amount and quality of
measured data and/or the choice of measurement time
points ti will ultimately remedy a practical non-
identifiability, yielding finite likelihood-based confidence
intervals, see Fig. 2c. If the amount of data is further
increased, one finally arrives at the large sample case,
where standard intervals are a reasonable measure of
confidence. Inferring how to decrease confidence intervals
most efficiently by additional experimental data is the
subject of experimental design. How to propose new
experiments that efficiently improve parameter identifiability
and narrow confidence intervals will be addressed in
Section 3: Consequences of non-identifiability.

1.4.3 Connection of identifiability and observability:
The uncertainty of parameter estimates û directly translate
Fig. 2 Illustrative contour plots of x2(u) for a two-dimensional parameter space

a Structural non-identifiability along the functional relation h(u1, u2) ¼ u1
. u2 2 10 ¼ 0 (dashed line). The likelihood-based confidence region is infinitely

extended and there is no unique set of optimal parameters
b Practical non-identifiability along the functional relation h(u1, u2) ¼ u1 2 u2 ¼ 0. The likelihood-based confidence region is infinitely extended along the
functional relation for increasing values of u1 and u2. Lower-confidence bounds are well defined
c Both parameters are identifiable with finite-confidence intervals
Contour lines shaded from black to white correspond to low, respectively, high values of x2(u). Thick contour lines indicate likelihood-based confidence regions
and asterisk the optimal parameters û
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to uncertainty of model trajectories. Non-identifiability
describes the phenomena that parameters might not be
determined. Consequently, non-observability indicates that
model trajectories might not be determined owing to non-
identifiability of model parameters.

Internal model states xj(t, u) that depend on structurally
non-identifiable parameters usub can be non-observable,
whereas the model observables y(ti, u) are per definition
invariant. In contrast, practical non-identifiability does affect
the model observables y(ti, u). However, along practical
non-identifiability, the model observables stay in agreement
with the measurement accuracy of the experimental data
because the likelihood stays below the threshold Da.
Nevertheless, some internal model states x(t, u) might be
affected strongly by practical non-identifiability and hence
might not be observable. In analogy to the type of
identifiability, observability can be distinguished between
structural or practical. Also, confidence intervals of
parameter estimates translate to confidence intervals of
model trajectories.

From a different point of view, identifiability can be
restated in terms of observability. Additional internal model
states xn+i corresponding to parameters ui could be
introduced by enlarging (1) with ẋn+i(t) = 0 and replacing
every occurence of ui by xn+i in (1–3). Consequently,
showing the observability of xn+i implies the identifiability
of ui.

2 Methods

Various approaches to detect non-identifiability have been
proposed. Early works focus on the analytical analysis of
the model equations (1–3) whereas recently approaches
utilise the growing amount of computing power for data-
based analysis of parameter identifiability.

Approaches that analytically analyse the model equations
are called a priori methods. They allow one to check for
identifiability before experimental data are available.
Consequently, these approaches allow one to check for
structural identifiability only. Although structural
identifiability might be ensured a priori, practical non-
identifiability can cause severe problems when estimating
model parameters from real experimental data [10]. Data-
based approaches utilise the shape of the likelihood
function to infer identifiability. This naturally involves
experimental data and therefore allows statements about
practical identifiability akin to confidence intervals.

Since the model equations are analysed analytically, a
priori approaches have the advantage that conclusions about
identifiability globally hold for the entire parameter space.
Data-based approaches can, for reasons of computational
expensiveness, not validate the entire parameter space [14].
Nevertheless [10] argues that local identifiability is usually
sufficient in practice.

2.1 A priori approaches

In case (1–3) are only linearly depended on the model
parameters and the dependency on the variables x is linear
too, the model equations simplify to

ẋ(t, u) = A(u) x(t, u) + B(u) u(t) (13)

x(0, u) = x0(u) (14)

y(ti, u) = C(u) x(ti, u) + ei (15)
124
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where matrices A, B and C depend linear on the model
parameters u. For this restricted case some well-studied and
efficient approaches exist.

The transfer function approach described, for example, in
[10] assumes, besides linearity of the model equations, that
matrices B and C are not parameter dependent. In this case,
the analytical solution for the model observables is given by

y(ti, u) =
∫ti

0

CeA(u)(ti−t)Bu(t)dt (16)

Applying a Laplace transformation Lf (s) =
�1

0
e−stf (t)dt

with s [ C, we obtain

Ly(s) = C(sI − A(u))−1B︸���������︷︷���������︸
=F(s,u)

Lu(s) (17)

The model parameters are structurally identifiable, if the
transfer function F(s, u), consisting of non-linear equations
in powers of s and elements of A(u), have a unique solution
for the parameters u. However, solving the system of non-
linear equations gets rapidly involved for larger models. A
conceptually related approach, also for linear systems, uses
the similarity transformation, see for example [15].

Another popular approach for linear systems utilises the
Markov parameter matrix

M(u) =

C(u)B(u)
C(u)A(u)B(u)

..

.

C(u)A(u)2n−1B(u)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (18)

where n is the number of internal model states, see for
example [16]. The model parameters are structurally
identifiable, if M(u) is of full rank. The approach is very
efficient but only allows statements about local structural
identifiability since M(u) is evaluated at a specific u.

In biological applications the simplification to linear
dynamical systems is often not indicated, for instance, if
bi-molecular reactions or non-linear rate equations such as
Michaelis–Menten kinetics are involved. A non-linear
expansion of the transfer function approach was proposed by
Lecourtier et al. [17]. An extension of the similarity
transformation approach to non-linear systems using the local
state isomorphism theorem was proposed by Vajda et al. [18].

A straightforward approach for non-linear dynamical
systems is the power series expansion approach, introduced
by Pohjanpalo [19]. Here time derivatives of the model
observables are evaluated, yielding non-linear equations

y(t, u) = g(x(t, u), u)

ẏ(t, u) = d

dt
g(x(t, u), u)

ÿ(t, u) = d2

dt2
g(x(t, u), u)

..

.

(19)

A model parameter ui is globally and structurally identifiable,
if the system of equations provides an unique solution for this
parameter. Similarly, this approach allows statement about the
observability of the internal model states x and hence the
IET Syst. Biol., 2011, Vol. 5, Iss. 2, pp. 120–130
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identifiability of parameters accounting for the initial
conditions x(0, u) via (2). Despite its conceptual clarity, the
approach requires cumbersome calculation of high
derivatives and large systems of non-linear equations to be
solved. According to [20], the number of derivatives that
need to be calculated is (n + l )/m. For the calculations,
differential algebraic methods [21, 22] can be used.
Furthermore, [23] proposed a probabilistic algorithm based
on the power series expansion approach that address global
structural identifiability and observability more efficiently
and with high probability, also yielding the functional
relations h.

For all the so-far-mentioned a priori approaches,
computational complexity is growing rapidly with increasing
model size, compare [24, 25]. Therefore utilising computer
algebra software is indispensable. In systems biological
applications often models contain more than ten internal
models states and more than twenty model parameters. The
computational demand for a priori methods seems currently
too large for these applications. Furthermore, a priori
methods only regard structural identifiability. However, in
applications it is essential to practically identify model
parameters to ensure the estimation accuracy of the inferred
dynamics in terms of confidence intervals.

2.2 Data-based approaches

The aim of data-based approaches is to detect non-
identifiability by flatness of the likelihood function, using
simulated or measured data. Owing to data dependency, the
results of these methods cannot ensure global validity.
Nevertheless, they allow statements about the region in
parameter space specified by experimental data, which is
the relevant region and usually sufficient for applications.

The most straightforward data-based approach for
identifiability analysis is, from a perception of parameter
estimation, akin to standard confidence intervals. Here,
measures of curvature are computed, commonly using a
quadratic approximation of x2(u) at the estimated optimum
û , for example, the Hessian (9) or the Fisher information
IET Syst. Biol., 2011, Vol. 5, Iss. 2, pp. 120–130
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matrix, see for example, in [26–29]. Flat directions in the
likelihood that correspond to non-identifiability are
characterised by zero eigenvalues of the utilised measure of
curvature. Likewise, standard intervals are not suitable as
confidence intervals, this approach faces serious problems
in the assessment of identifiability for non-linear models in
the small sample case: (i) The resulting linear parameter
combinations might give a misleading impression of the
potentially non-linear parameter relations h emerging from
structural non-identifiability, see Fig. 3a. For reaction
networks the parameter relations h are usually non-linear
because of the dependency of the model observables on the
model parameters through the ODE system. Furthermore,
the threshold utilised to judge for ‘zero’ eigenvalues and
‘flatness’ of the likelihood, respectively, is not controllable
in the non-linear case and yields results that are hardly
interpretable [30]. (ii) Practical non-identifiability, as
introduced above, cannot be detected because in that case
the quadratic approximation does not fit the increasing but
limited behaviour of x2(u). For practically non-identifiable
parameters, this may result in incorrectly concluding
structural non-identifiability, see Fig. 3b, or in incorrectly
concluding identifiability, see Fig. 3c.

A remedy of the limitations imposed by the quadratic
approximation, is to sample the likelihood more
extensively. For a model with 20 parameters sampling the
likelihood on a grid of size 100 would already require
solving the ODE systems 1040 times, which is obviously
not feasible. Markov chain Monte Carlo methods offer a
more efficient sampling of the likelihood, but have
convergence problems in the presence of non-identifiability
because of the flat directions.

An alternative approach for identifiability analysis
proposed by [6] utilises the profile likelihood

x2
PL(ui) = min

uj=i

[x2(u)] (20)

to infer flatness of the likelihood. Here, for each parameter ui
individually, a section along the minimum of the objective
Fig. 3 Problems when assessing identifiability from the quadratic approximation

a Structural non-identifiability along the functional relation h(u1, u2) ¼ u1
. u2 2 10 ¼ 0 is mistaken for a linear relationship, indicated by the dashed line

b Practical non-identifiability could be mistaken for a structural non-identifiability. Numerical estimation of the model parameters terminates when the likelihood
becomes sufficiently flat, indicated by the asterisk point. The dashed lines correspond to ‘flat’ directions and ‘zero’ eigenvalues
c Two practical non-identifiable parameters are mistaken for identifiable, the dashed ellipsoid indicates standard intervals
Contour lines shaded from black to white correspond to low, respectively, high values of x2(u). Thick contour lines display likelihood-based confidence regions
and asterisk correspond to the estimated parameters û
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Fig. 4 Assessing parameter identifiability of parameter u1 from the profile likelihood x2
PL(u1)

a–b A structural non-identifiability along the functional relation h(u1, u2) ¼ u1
. u2 2 10 ¼ 0 manifesting in a flat profile likelihood in panel b

c–d A practical non-identifiability manifests in a flatting out of the profile likelihood for u1 � 1 in panel d
e The profile likelihood of an identifiable parameter u1

f The profile likelihood approaches a parabola shape indicating a good approximation by standard intervals
a, c, e The contour lines shaded from black to white correspond to low, respectively, high values of x2(u). Thick contour lines indicate likelihood-based confidence
regions and asterisk correspond to the optimal parameters û . Dashed lines indicate the trace of the profile likelihood for u1 in terms of parameter values
b, d, f The dashed lines indicate the profile likelihood x2

PL of parameter u1. The thick lines display the threshold Da utilised to asses likelihood-based confidence
regions for a confidence level a
function with respect to all of the other parameters uj=i is
computed. It was originally proposed to calculate
likelihood-based confidence intervals [31, 32]. It enables
one to detect flatness of the likelihood function for arbitrary
models and is especially useful in the small sample case.
The idea of the approach is to explore the parameter space
for each parameter in the direction of least increase in
x2(u). Consequently, a structurally non-identifiable
parameter manifests by a flat profile likelihood along the
non-linear functional relations h(usub) = 0, see Figs. 4a and
b. In case of a practically non-identifiable parameter, the
profile likelihood flattens out and does not exceed a given
threshold defined by the desired confidence level, see
Figs. 4c and d. In contrast, the profile likelihood of an
identifiable parameter exceeds the threshold for both
increasing and decreasing values of ui, see Figs. 4e and f.
The points of passover represent likelihood-based
confidence intervals [33]. The functional relations h
connecting structurally non-identifiable parameters can be
recovered from the profile likelihood by the change of the
parameters uj=i while calculating the profile likelihood of
the structurally non-identifiable parameter ui, see in [6].

An approach to infer the grouping of structural non-
identifiable parameters owing to their functional relations
h was introduced by [34]. It utilises the mean optimal
transformation to detect non-linear relationships and is
applied on samples obtained from minimising the likelihood.

3 Consequences of non-identifiability

Till now, identifiability was introduced and an overview
about methods that allow for identifiability analysis was
given. In applications, detecting a parameter non-
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identifiability is of course only the first step. Finally, the
goal is to utilise an identifiable and hence observable model
to predict and analyse dynamical systems behaviour with
reasonable confidence. If a parameter non-identifiability is
present, model predictions may not be reliable. In the
remainder of this article, we want to discuss two frequently
encountered scenarios, see Fig. 5 for an illustration.

Scenario 1: Depending on the scope of the investigation,
the uncertainty introduced to model predictions owing to
non-identifiability might affect a part of the model that is
indispensable for the analysis. In this case, the only remedy
to obtain reliable model predictions is to provide additional
data measured under suitable experimental conditions by
applying experimental design.

Scenario 2: If the part of the model affected by non-
identifiability has none or only negligible effect on the part
relevant for the investigation, the model may be reduced for
the sake of simplifying the computational complexity.

In applications, it is important to know which of the two
scenarios applies. To quantify the effect of a non-
identifiable model parameter ui on the predicted dynamics,
[6] proposed to plot the internal model trajectories x along
the profile likelihood of this parameter.

3.1 Experimental design

When initial experiments are planned, usually the timescales
of the participating molecular interactions are unknown.
Therefore the measurement time points and target quantities
are often not suitably chosen to unravel the system
dynamics, resulting in non-identifiable model parameters. It
would be valuable to suggest additional measurements that
efficiently resolve parameter non-identifiability and narrow
IET Syst. Biol., 2011, Vol. 5, Iss. 2, pp. 120–130
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Fig. 5 Two frequently encountered scenarios resulting from a non-identifiability

a Uncertainty introduced to model predictions owing to non-identifiability affects a part of the model (both interactions and species framed by the non-
identifiability box) that is indispensable for the model predictions (dashed box). The only remedy to obtain reliable model predictions is to provide additional
data measured under suitable experimental conditions utilising experimental design
b Uncertainty imposed by non-identifiability affects not or only negligibly the part of the model that is relevant for the model predictions. The model may be
reduced for the sake of simplifying the computational complexity
the confidence interval of a parameter ui affecting the
dynamical behaviour of interest, consequently enhancing
model predictability. For structural non-identifiability, it is
not sufficient to improve the mere amount and quality of
experimental data. Qualitatively new measurements that
alter the observation function g in (3) are required, for
example, measuring additional molecular species. For
practical non-identifiability on the contrary, it is sufficient
toincrease the amount and quality or the choice of
measurement time points of existing measurements. Where
feasible, qualitatively new measurements might still be more
effective also in the case of practical non-identifiability.

Various methods exists that approach experimental design
using the quadratic approximation of the likelihood, see for
example, in [35] and applications in [36, 37]. In the case of
non-linear models and small data samples these approaches
suffer from similar problems as the corresponding methods
for identifiability analysis. To overcome these problems, [6]
proposed to investigate the set of trajectories along the
profile likelihood of ui. This reveals spots where the
uncertainty of ui has the largest impact on the model
trajectories. Additional measurements at spots of largest
variability promise to resolve both structural and practical
non-identifiability and narrow confidence intervals most
efficiently. Furthermore, the amplitude of variability of the
trajectories at these spots allows one to assess the necessary
measurement precision to provide adequate data.
Methods for optimally finding the locations for additional
measurements are also discussed in [38, 39]. The impact of
IET Syst. Biol., 2011, Vol. 5, Iss. 2, pp. 120–130
doi: 10.1049/iet-syb.2010.0061
new measurements can be evaluated by simulations before
expensive experiments are carried out.

3.2 Model reduction

When building models, it is often unclear which features of a
system are essential for determining its dynamical behaviour
and which are dispensable. Consequently, detailedness of a
model with respect to the scope of the investigation may be
too large, frequently resulting in non-identifiabilities.
Having ensured that model predictions are only negligibly
affected by parameter non-identifiability, the ODE system
(1) can be simplified. This reduces the computational
complexity of further model analysis and yields a model
tailored to the information content provided by the
experimental data which remain predictive with respect to
the scope of the investigation.

To quantify the effect of the uncertainty of a specific model
parameter ui on the predicted dynamics, [6] proposed to plot
the internal model trajectories x along the profile likelihood of
this parameter. This allows one to evaluate which processes
can be simplified without significantly altering the predicted
dynamics. Whether the amount of uncertainty of the
prediction is considered as significant depends on the
application and the desired precision of the prediction.

Assume a reaction network modelled by mass action
kinetics with a practically (or structurally) non-identifiable
rate constant ui, to a point-wise confidence level by using
df ¼ 1 in (11). Let us further assume that ui only negligibly
127
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(or not at all) affects the model predictions relevant for the
investigation. A (logarithmic) lower confidence bound of
s−

i = −1 indicates that the corresponding reaction may be
too slow to be detected on the timescale of the
measurements. On the other hand, s+

i = +1 indicates that
the reaction may occurs too fast to be detected on the time
scale of the measurements. The threshold Da determining
the confidence level corresponds to a likelihood ratio test, to
a significance level of a, of the original model against a
model reduced by the reaction corresponding to ui. Falling
below this threshold, ui is practically (or structurally) non-
identifiable and the likelihood ratio test indicates that it is
not possible to dismiss the reduced model in favour of the
original model. Hence, in both cases, given the information
content provided by the experimental data, the model can
be simplified by reducing the ODE system (1) without the
model fit getting significantly worse. Note, that functional

relations connecting ui with other parameters, as may be
the case especially for the structural non-identifiable
parameters, have to be taken into account.

3.3 Example application

Both strategies to resolve non-identifiabilities, experimental
design and model reduction, will be demonstrated by a
small example model and simulated data sets shown in
Fig. 6, for a more realistic application see for example [40].
Briefly, an enzyme E is activated via two steps: E � ∗E
and ∗E � ∗∗E. The first activation is dependent on a ligand
L, modelled as an external input with constant magnitude
of one. Once activated, the enzyme can catalyse substrate S
to product P.

A typical situation in a systems biological application could
be as followed: the product cannot be measured directly; the

Fig. 6 Illustrative example model and simulated data sets for demonstrating both strategies to resolve non-identifiabilities

a After initial parameter estimation, the profile likelihood x2
PL of parameters k2 and k3 reveals a practical non-identifiability. Investigating the variability of the

model trajectories for parameter values along x2
PL(k3) reveals practical non-observability of species ∗E, ∗∗E, S and P. Consequently, the desired model

prediction for P is not reliable. Additional measurements of S for t . 10 min are suggested to improve predictability
b Additional data allow for the identification of a lower-confidence bound for parameter k3, critically determining the predicted dynamics of P. Parts of the
practical non-identifiability of k2 and k3 remain, but only slightly affect the model prediction and hence allow for model reduction. The profile likelihood
x2

PL(k2) suggests that model-to-data agreement is compatible with k2 � 1 suggesting unified modelling of ∗E and ∗∗E
c Simplified model is fully identifiable but also retains a reasonable prediction of P. Here, model trajectories indicate variability with respect to all model
parameters simultaneously and hence evaluating confidence intervals of model trajectories
For interpretation of the ‘profile likelihood’ plots see Fig. 4 panels b, d, f. The asterisks indicate the parameter values after initial estimation. The horizontal line is
the threshold Da corresponding to simultaneous confidence intervals. The variability of the ‘model trajectories’ result from parameter uncertainties evaluated along
the profile likelihood. The dashed trajectories indicate the true dynamics used to simulate the data set
128 IET Syst. Biol., 2011, Vol. 5, Iss. 2, pp. 120–130
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purpose of the investigation is the prediction of the dynamical
behaviour of the product; measurable quantities are the
inactive enzyme and the substrate concentrations only; both
measurements have an unknown concentration scale but prior
knowledge [see (8)] about absolute initial concentrations of E
and S is available; internal model states represent species
concentration in nM; measurements are sparse because of
time and expensiveness. Furthermore, assume that no prior
information about the reaction rate parameters, that is, the
timescale of the system dynamics, is available. Consequently,
initial experiments yield an ‘explorative’ data set that might
not capture the underlying dynamics efficiently. Detailed
information on the model structure and the data sets is
available in the supplementary material.

The model is anticipated to reliably predict the products
dynamics, not only for the current experimental conditions,
but also for altered conditions, for example, altered ligand
stimulation or a substance influencing one of the reaction
rates. For this reason, the model should be fully identifiable.
For the identifiability analysis the approach introduced in [6]
was followed closely. The ODE system (1) was solved by
CVODES [41], an efficient C-solver that allows us to
compute the variational equations, also called sensitivity
equations, simultaneously. For parameter estimation the
MATLAB standard optimiser lsqnonlin was used. The
example is available as repository for the PottersWheel
multi-experiment fitting toolbox for MATLAB [42]. The
calculation of the profile likelihood using this framework and
for the given example take less than one minute per
parameter on a 1.8 GHz dual core machine. For instructions
how to reproduce the result obtained in the following, refer
to the supplementary material.

The initial set-up is depicted in Fig. 6a. Initial parameter
estimation yields a good model for data agreement with a
value of the objective function x2 = 3.56 for 8 + 2 data
points and 7 free parameters. Each prior information on the
initial concentrations increases the expected value of x2 by
one, see (8). As suggested in the section about likelihood-
based confidence intervals, the actual distribution of
x2(u∗) − x2(û ) was verified to be in accordance with the
x2

7-distribution by a simulation study, refer to the
supplementary material.

The key point of this article is that it is not sufficient to
rely on the mere estimated parameter values and their
corresponding prediction for the system dynamics. It is
important to consider the uncertainties in the parameter
estimation procedure: from measurement uncertainties, to
parameter uncertainties and possibly non-identifiabilities, to
uncertainties in the predicted model dynamics and possibly
non-observabilities. Therefore after initial parameter
estimation the profile likelihood of each parameter was
evaluated, as indicated in Fig. 6a. Parameters k2 and k3 are
revealed as practically non-identifiable, that is, their profile
likelihood stays below the desired threshold for confidence
intervals. Here, a 1s simultaneous confidence level was
used. A flat profile likelihood indicates that the model
trajectories stay in agreement with the experimental data,
defined by the measurement precision, for k2 and k3 taking
extremely small and extremely large values. Here, the
profile likelihood was evaluated between 25 and +5 on a
log10-scale. The other parameters are identifiable and their
confidence intervals are well defined. Investigating the
variability of the model trajectories resulting from the
practical non-identifiability of k2 and k3, as indicated in
Fig. 6a, reveals practical non-observability of species ∗E,
∗∗E, S and P. Consequently, the desired model prediction
IET Syst. Biol., 2011, Vol. 5, Iss. 2, pp. 120–130
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for P is not reliable. A possible resolution to improve model
predictability for P is to additionally measure S for
t . 10 min.

The newly designed experiments, as indicated in Fig. 6b
provide suitable data that allow for identification of a lower-
confidence bound for parameter k3. Parts of the practical
non-identifiability of k2 and k3 still remain. Nevertheless, a
repeated investigation of the variability of the model
trajectories in response to practical non-identifiability of k2
and k3 confirms that the predicted dynamics for P is now
only slightly affected. Consequently, the remaining non-
identifiability may be removed from the model. The profile
likelihood x2

PL(k2) suggests that model-to-data agreement is
compatible with k2 � 1 suggesting unified modelling of
∗E and ∗∗E.

The simplified model, as indicated in Fig. 6c, is now fully
identifiable while retaining reasonable prediction of the
dynamics of P. Here, model trajectories indicate variability
with respect to all model parameters simultaneously and
hence evaluating confidence intervals for the model
prediction. The model fit in terms of the objective function
increases from: x2 = 5.93 for 15 + 2 data-points and seven
free parameters for the original model; to x2 = 7.39 for
15 + 2 data-points and six free parameters for the simplified
model. The increase in the objective function, as already
indicated by the profile likelihood, is insignificant in terms
of a likelihood ratio test with p ¼ 0.2571.

4 Summary

Parameter non-identifiability arise frequently in systems
biological applications and are often insufficiently
considered. We illustrated that parameter identifiability,
both structural and practical, and confidence intervals of
parameter estimates are a matter of flatness of the
likelihood. For structural identifiability, it is critical as to
which and how many of the modelled species can be
measured directly. For practical identifiability, also the
amount and quality of experimental data and the choice of
the measurement time points play an important role. Both
causes are inherent to biological applications where
experiments are time consuming and expensive. Reliable
parameter estimates are nevertheless critical before model
predictions can be trusted. We discussed methods suitable
for systems biological applications that allow us to assess
and improve both structural and practical parameter
identifiability in order to improve the reliability of model
predictions.

Recently, it has been proposed that parameter non-
identifiability manifested in ill-conditioned Hessian matrix
with eigenvalues spanning orders of magnitudes, is an
inherent property of the mechanistic ODE models utilised
in systems biology [43]. However, the accuracy of the
parameter estimates is related to both the model structure
and the information provided by the experimental data.
Non-identifiability predominantly arises owing to
experimental restrictions. Without experimental limitations
and if the models are reasonably parameterised in the
common manner, non-identifiability issues can certainly be
avoided by adequate experimental designs.

Using two frequently encountered scenarios, we illustrated
the benefit of experimental design techniques in combination
with models that are tailored to the information content
provided by the experimental data, demonstrating that
parameter identifiability is an issue that can be dealt with.
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Thus, we would like to reformulate the introducing statement:
those involved in estimating parameters from measurements
do have a good chance of succeeding.
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1 Model definition

Model parameters θ: {k1, k2, k3, init E, init S, scale E, scale S}

Input function ~u(t): [L] = 1

ODE system ~̇x(t, θ), see main text (1):



˙[E] = −k1 · [E] · [L]

˙[∗E] = +k1 · [E] · [L]− k2 · [∗E]

˙[∗∗E] = +k2 · [∗E]

˙[S] = −k3 · [∗∗E] · [S]

˙[P] = +k3 · [∗∗E] · [S]


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Initial conditions for ODE system ~x(0, θ), see main text (2):

[E](0) = init E

[∗E](0) = 0

[∗∗E](0) = 0

[S](0) = init S

[P](0) = 0


Model observables ~y(ti, θ), see main text (3): y1(ti) = scale E · [E](ti) + N(0, 42)

y2(ti) = scale S · [S](ti) + N(0, 12)


The measurement noise is assumed to be independent and normally distributed with known vari-

ance.

Prior information about model parameters:

init E ∼ N(10.04, 0.12)

init S ∼ N(4.96, 0.052)

Initial data set for setup (a):

time / min y1 / a.u. y2 / a.u.

0 39.24 10.24

3.33 - 10.61

6.66 - 7.23

10 21.89 -

20 3.08 -

30 0.12 -

40 1.37 -

2



Plot of initial data set and true model trajectories:
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As suggested in the section about likelihood-based confidence intervals, the actual distribution

of χ2(θ∗) − χ2(θ̂) was verified to be in good agreement with the χ2
df -distribution with degrees of

freedom df = #θ = 7 by a simulation study using 1000 generated noise realizations:
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Extended data set for setup (b) and (c):

time / min y1 / a.u. y2 / a.u.

0 39.24 10.24

3.33 - 10.61

6.66 - 7.23

10 21.89 5.47

13.33 - 1.43

16.66 - 0.53

20 3.08 1.08

23.33 - 0.38

26.66 - 0.11

30 0.12 0.08

40 1.37 -

Plot of extended data set and true model trajectories:
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Simplified ODE system with [∗/∗E] = [∗E] + [∗∗E]:



˙[E] = −k1′ · [E] · [L]

˙[∗/∗E] = +k1′ · [E] · [L]

˙[S] = −k3′ · [∗/∗E] · [S]

˙[P] = +k3′ · [∗/∗E] · [S]



Parameter values on a log10-scale for setup (a) and (b):

name θ∗ θ̂(a) σ−(a) σ+
(a) θ̂(b) σ−(b) σ+

(b)

k1 -1 -1.062 -1.384 -0.6961 -1.061 -1.384 -0.695

k2 -1 -4.501 -Inf +Inf -1.719 -Inf +Inf

k3 -1 +2.502 -Inf +Inf -0.431 -1.835 +Inf

init E +1 +1.002 +0.9851 +1.018 +1.002 +0.985 +1.018

init S +0.6990 +0.696 +0.6787 +0.7119 +0.696 +0.679 +0.712

scale E +0.6021 +0.604 +0.4095 +0.7413 +0.605 +0.410 +0.741

scale S +0.3010 +0.332 +0.1925 +0.4398 +0.322 +0.201 +0.446

Parameter values on a log10-scale for setup (c):

name θ̂(c) σ−(c) σ+
(c)

k1’ -1.071 -1.372 -0.749

k3’ -1.545 -1.842 -1.214

init E +1.002 +0.986 +1.017

init S +0.696 +0.680 +0.711

scale E +0.603 +0.420 +0.734

scale S +0.351 +0.234 +0.448
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2 PottersWheel instructions

The example application presented in the main text, section 3 “Consequences of non-identifiability”,

is available as repository for the PottersWheel multi-experiment fitting toolbox for MATLAB [1].

For instructions how to set up and use the toolbox see http://www.potterswheel.de. Please ensure

that the CVODES solver [2] is setup correctly, follow the instruction given in help pwInstall-

SundialsTB. The model definition and data files necessary to reproduce the results for the presented

example can be downloaded from http://web.me.com/andreas.raue/profile/software.html. Extract

the archive provided there to a convenient location, start MATLAB and change the MATLAB

working path to the newly created folder. In the following, all necessary function calls will be

explained.

Initial situation For loading the initial experimental setup as depicted in Fig. 6a of the main

text run the script initial setup.m or load the repository pwRepository initial setup.mat

using the PottersWheel user interface. The model trajectories and data sets can be plotted by

the command pwDraw. To estimate the model parameters and calibrate the model trajectories to

the data set execute the command pwFit. Alternatively, the repository pwRepository initial -

setup fitted.mat with already estimated parameters values can be loaded.

To calculate the profile likelihood for the model parameters execute the script ple initial -

setup.m. The calculation takes about 24 ± 12 seconds per parameter on a 1.8 GHz dual core

machine. The result are displayed on the screen and stored in a subfolder of the current directory

labeled with a time code. For further background on the calculation of the profile likelihood, see

[3]. To display the corresponding variability of the model trajectories for parameter values along

the profile likelihood χ2
P L(k3) execute the command pwPLETrajectories(3,3).

After experimental design For loading the experimental setup with the extended data set as

depicted in Fig. 6b of the main text run the script extended data setup.m or load the repository
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pwRepository extended data setup.mat using the PottersWheel user interface. The model tra-

jectories and data sets can be plotted by the command pwDraw. To estimate the model parameters

and calibrate the model trajectories to the data set execute the command pwFit. Alternatively, the

repository pwRepository extended data setup fitted.mat with already estimated parameters

values can be loaded.

To calculate the profile likelihood for the model parameters execute the script ple extended -

data setup.m. The calculation takes about 43± 33 seconds per parameter on a 1.8 GHz dual core

machine. The result are displayed on the screen and stored in a subfolder of the current directory

labeled with a time code. For further background on the calculation of the profile likelihood, see

[3]. To display the corresponding variability of the model trajectories for parameter values along

the profile likelihood χ2
P L(k3) execute the command pwPLETrajectories(3,3).

After model reduction For loading the experimental setup with the extended data set as

depicted in Fig. 6b of the main text run the script simplified model setup.m or load the repos-

itory pwRepository simplified model setup.mat using the PottersWheel user interface. The

model trajectories and data sets can be plotted by the command pwDraw. To estimate the model

parameters and calibrate the model trajectories to the data set execute the command pwFit.

Alternatively, the repository pwRepository simplified model setup fitted.mat with already

estimated parameters values can be loaded.

To calculate the profile likelihood for the model parameters execute the script ple simplified -

model setup.m. The calculation takes about 10± 2 seconds per parameter on a 1.8 GHz dual core

machine. The result are displayed on the screen and stored in a subfolder of the current directory

labeled with a time code. For further background on the calculation of the profile likelihood, see [3].

To display the variability of the model trajectories for parameter values along the profile likelihood

of all model parameters execute the command pwPLETrajectories(0,3).
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